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Counterexamples for classical operators on Lorentz-Zygmund spaces
. by
ROBERT SHARPLEY* (Columbia, S. C.)

Abstract. Lower estimates in terms of Calderén maximal operators 8, are provided
for various classical operators which appear in Fourier analysis: Hilbert transform,
fractional integrals, and convolution. Necessary conditions for the boundedness of
the operators S; on Lorentz—Zygmund spaces are produced which complement the
sufficient conditions given recently by Bennett and Rudnick. By a combination of
these results, pairs of Lorentz—Zygmund spaces (triples in the case of convolution)
for which the specified classical operators are bounded are characterized in terms
of their indices.

§ 1. Imiroduction. A major activity in Fourier Analysis is the investi-
gation of the behavior of operators, intimately related to the Fourier
transform, on function spaces. The spaces are usually of the types: restrie-
tions on growth, restrictions on smoothness, or mixtures of these two.
In this paper we shall be concerned with the first class of spaces. In par-
ticular, we seek to characterize pairs of spaces (X, ¥) so that particular
operators are bounded from X to ¥ where the spaces are both drawn
from the class of spaces known as Lorentz—Zygmund spaces [1]. This
class includes the standard L?, L™9 and L”(logL)? spaces which histori=
cally have been the most widely used to study the relative growth behavior
of functions and their transforms. To get sufficient conditions for an
operator to be bounded, one typically obtains certain endpoint estimates
for the operator and then applies interpolation theory to get intermediate
estimates. A particularly powerful fool in interpolation theory is the
maximal operator 8, of Calderén [6], [22], [1], [7]. In fact, if an operator '
satisfies certain weak type endpoint estimates, then

(1.1) ~ (ZF)*(8) < 08, (f*)(2) ave.

where f* ig the decreasing rearrangement of f. Normally, 8, is eagier to
investigate than the operators 7. Once boundedness conditions are obtained
for 8,, (1.1) gives an estimate for 7. Recently, C. Bennett and K. Rudnick

* This research was supported in part by National Science Foundation Grant
No. MCS 77-03666.
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[1] have shown that using S, one obtaing not only the standard inter-
mediate estimates, but also the limiting cases “around the two endpoints?.
The main purpose of this paper is to, first of all, show that for important
classical operators (Hilbert transform, fractional integrals, convolution)
lower pointwise estimates are obtained in terms of the same operators §,
(the reverse of inequality (1.1)). Secondly, we show that conditions derived
in [1], [22] for §, are best possible. Thus combining these, one can obtain
tight estimates for the classical operators on the Lorentz—Zygmund
spaces. Finding “optimal pairs” is by no means new, but has been largely
overlooked after the fundamental paper of Calderén [6] appeared. It seems
that this idea has promise in the more general setting of Banach spaces.
Recently, the operators §, have been shown to describe operations in
the Banach space setting with many applications to analysis [7]. Hopefully,

techniques in this paper can be used to get best possible results in many

of these cases as well.

In Section 2 we give necessary conditions of two types: ones giving
Dpointwise lower estimates in texms of Calderdn operators, and ones dealing
with the fundamental functions of the spaces. Section 3 containg an
important embedding result (Proposition (3.1)) which is used to get best
possible convolution theorems for Lorentz-Zygmund spaces. We proceed
in a similiar way in Section 4 to get “tight” theorems for the Calderén
operators. Using the known upper estimates (as in (1.1)) and the lower
estimates of Section 2 we can characterize pairs of Lorentz—Zygmund
spaces 50 that certain classical operators are bounded from one space
to the other. We shall use the remainder of this section to introduce the
pertinent definitions and notation.

‘We deal with Lebesgue measurable functions both on the ecircle
T =[0,1) with normalized measure and on the line R = (— o0, o).
Two functions f and g are called equimeasurable it m{s| g(s) > 1}
= m{s| f(s) >t} for each ¢ where m is the Lebesgue measure. If f is a
measurable function which iy finite almost everywhere on one of these
two measure spaces, then. the decreasing rearrangement of f is defined
to be the almost everywhere unique positive decreasing function f* on (0, c0)
which is equimeasurable with |f|. Notice that when f has support on T,
then f* has support on [0, 1). Also, notice that we use the term decreas-
ing in the wide sense and will continue to do so throughout the paper.

A Banach space X of Lebesgue measurable functions (on. either T
or R) is called a rearrangement invariant Banach function space [14:] if the
following conditions are satisfied:

(1.2)  if gis equimeasurable with some f € X, then g ¢ X and lglx = flx;
(13) gl < If] ae, feX implies g & X and |lg|x < [fllx;

(1.4) if mE < oo, then there exists a constant ¢ (depending possibly
on F) such that for each f e X, [ fds < off|x;
‘ &

icm°

Cownter ples for classical operaiors 143

(1.5) if mE < oo, then [yzllx < o3
(1.6) it 0<<fAf ae and f, e X with [f,llx < M < oo, then feX and
Ifllx << M.
The Lorentz—Zygmund space IP*(log L)%, 0 < p, a < o0, —o0 < a < 00
is defined to be the space of all measurable functions f so that the functional

st atyie
1) e ={ [ 7' @220 +mmeyer 7|

0

is finite where the definition is modified in the normal way for a = oo,
For p = oo, LP*(logL)* = {0} unless either a+1/a <0 or a = 1/a = 0.
TFor this reason we exclude other cases of ¢ and ¢« when p = co. Forp > 1
(and some cases of p = 1) the functional given by (1.7) is equivalent
to a norm. In all the other cases (1.7) determines a topology on L?*(log L)*
which can be generated by a complete invariant metric [9] and is therefore
an F-space. It is not hard to see that in all cases L™*(log L) satisfies (1.2)
through (1.6). We still call these rearrangement invariant spaces. For
a = 0 these are the standard Lorentz spaces L?%, whilefor 1< a =p < oo
they are the Orlicz spaces L?(logL)*. For a = p = oo, they produce
the exponential classes of Zygmund (see [1] for further details). We note
here that for a, p > 1 these are special cases of the so called 4,(X) spaces
[207.

The Calderén operator S, for an interpolation segment o = (pi, ¢1;
Doy )y P2 <Pay §x # o 18 defined by

o . [stPL glPe\ ds

.9) s = [ femin (s ) 5
[}
for f defined on (0, ). Notice that for functions defined on the circle T,
the integration in (1.8) is only from 0 to 1.

The fundamental function px [19], [20] of a rearrangement invariant
Banach function space X is given by

ox () = llxgly where mE =1.
For the Lorentz—Zygmund spaces L**(logL)* we have
Px(t) ~ P (L+{Int])".

This equivalence also holds in the case p = oo, when 0 < t < 1. We remark
that the constant ¢ is used to denote an unspecified but fixed constant
when it appears on the main line of an inequality. This constant may
change from line to line.

Finally, the author would like to express his thanks to Professor
Colin Bennett who explained the work in [1] during private conversations
with the author.
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§ 2. Lower estimates for classical operators. In this section we give
necegsary results for certain eclassical operators to be bounded on re-
arrangement invariant spaces. Some of these appear as rearrangement
inequalities involving Calderén’s maximal operators, while others use the
fundamental functions of the spaces involved. Sufficient conditions in
terms of the Calderén operators have been given much attention [6], [5],
[207, [11], [22], [24], [1], bub necessary conditions with a few exceptions
[6], [4], [8] have been largely overlooked.

‘We begin by considering the bilinear operation of convolution
from which most of our results follow. The convolution of two measurable
functions f and g is defined by

Frgty= [ fle—s)g(s)ds

when the right hand side is finite a.e. For periodic functions the normalized
integral is, of course, taken over [0, 1).

Lmymma 2.1, If g s a measurable function which is positive and decreasing
for >0 _and I,(f) = fxg evists (at least in the principal value semse) for
cach f in somerearrangement invariant space X over R, then for each fe X
there is am equimeasurable function fy such that

& oo
(2.1) (furg)* () = g(20) [ f*(s)ds+ [ f*(s)g(2s)ds
0 t

holds for t> 0. i
Proof. For each f, let f,(f) =f*(——t)x(_w,o)(t), then for ¢> 0

(fr) ) = [ fi(8)gl—s)ds = [ f*(s)g(t+s)ds

o - i ]

> [ f*(s)g(2max(s, 0)ds = g(2t) [ f*(s)ds+ [ f*(s)g(25)ds

0 0 1

since ¢ decreases and (s+1) < 2max(s, ¢). But by differentiating the func-
tion on the right hand side of (2.1) we see that it decreases for ¢ > 0.
Since (f;*g) dominates this decreasing: function, so does (f, %g)*.

For functions f defined on the cirele T, f* has support on [0, 1) since
we have normalized the measure. Using the same argument as in the
previous lemma, we have

Lovmua 2.2. Suppose that X is a rearrangement invariant space over T,
g 98 @ posilive decreasing function on.(0, 1/4), and f*g cwists in the principal
value sense whenever f belongs to X. Then for each f in X there cxists an f,

* ©
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with fF < f* (and hence fy € X) so that
i/8

t
(frxg) ()= (@) [fH(9)ds+ [ [ (s)g(28)ds, 0<i<
[} 1

e

Remark. Actually, for positive symmetrically decreasing functions
f-and g one can geb :

i : o0
(P9l (1) (112) (g8) [ F(s)ds+ [ F(£)g(s)ds).
0 i
In particular, for > 0

t ' ¢ ¢ '
()= [F6—8)g()ds > [fli—s)ds g (&) = [ flw)du g (2)-
[1} 0 0

Also,

(Fra) (0> [ fE—s)gls)ds = [ Fls—Dg(s)ds > [ f()g(s)ds
i t » t

since j deereases and hence f(s—t) > f(s) when 0 <t < s.. Combining
) i oo
the above results and noticing that g(¢) [ f(s)ds+ tf f(s)g(s)ds decreases,
0

we reach the desired conclusion. Hence, for positive symmetriea]ly de-
creasing f and g there holds -
i

(%) (Fg)* (8) = [ F(u)du g(t) = () 9 (8).

0 .
O'Neil observed this in his original paper [16]. This type of condition
shows that (f#g)*(2) = 8,(f, 9)(t) for the bilinear Oa.lderén.opera@or [22]
corresponding to the segment o = [(1,1;1), (1, o0 o0), (00, 1; oo)]..
Lemmas 2.1 and 2.2 allows us to get lower estimates for many cl&:ssma.l
convolution operators. The first such example is given by the Hﬂbe..rt
transform

ds

and is implicit in [4]. ) i
COROLLARY 2.3. Suppose the domain of H contains X, & 'rea.rmngement

inwariant function space on R, then for each f in X there is an equimeasurable

function f, so that

(2.2) (Hf)* (1) = 1/(4) 8,(F) (@)

where ¢ = (1,1; co, oo). In particular, if H(X) Y a rearrangement

invariant space, then S, is a bounded operator from X to Y.
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The first part follows by applying Lemma 2.1 to the function g () = 1 I3
while the second follows immediately from the closed graph theorem.
Using estimates of O’Neil and Weiss [18], it has heen shown [6], [4]
[1] for rearrangement invariant spaces that S, being bounded im’plieé
the Hilbert transform ag well. Using techniques of Boyd and Bennett
similar results are obtained in [8] for the conjugate operator on 7, Wher(:

1

ft) =pv. ff(s) cot m(t —s))ds.

0
‘We have the easy estimate:

. OOROLLARY 2.4. If the domain of the conjugale operaior contains X,
theg for each f in X, there is a function f, so that ff < f*, f belongs to X,
e .

1/8

1 (14, . . ds
22—1/3;(70ff (s)ds-}-tff (s)—8~), 0<t<1/8.

(2:3) (f)° ()

In particular, if X and Y are rearrangement invoriant spaces on T such
that X < Y, then it is necessary that the Calderdn operator S, for the circle
where o = (1,1; oo, oo) be bounded from X to X.

Proof. Since constants always belong to rearrangement invariant
spaces of the cirele it is obvious from (2.3) that »S’[,(f*) Le,ys) belongs to ¥
when f; does. This follows sinfe S,{f*) and the right hand side of (2.3)

. ds
differ only by the constant f f*(s) — on(0,1/8). Bub 8,(f*) decreases
18
80 S:( f*)x(1,8,1)< 8,(f*)(1/8) which with the previous reasoning, impliey
8,(f") belongs to ¥. By the closed graph theorem 8, must in fact be bounded
from X to Y.

Relation (2.3) is established by applying Lemma 2.2 to g(f) == cob ()
Cos (7 [4)
) ) - (s)

. If we consider radially decreasing functions on R", wo' can show
;sn:;g the proof of Lemma 2.1 and changing to spherical coordin.sutes:
ha,

a.1_1d then noticing that cot(s) > for 0 < s << /4.

(2.4) (F*9)" (=0, [ f*(s)g" (2" max (s, 1)) ds
0
where ¢, depends only on the dimension since in this cage *

\ o se 7 (ls|") ~ f(s).
f V;fi ieb ?"(t)dz 1t n,lgn< a < m, then fxg, = R,(f) are just the R)ioszfl()o)-
entials of order a on R”. By inequality (2.4) we have for decreasi i
tive f on R™ that ecreasing posi-

Bo(£)(8) = e8.(f) (1)
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where o = |1, 30 la, oo) ginee g*(#) ~ t*~1. Combining this with the

well-known sufficient conditions [6], we have that a necessary and sufficient
condition that R, is bounded from X (R") to Y(R") (where X (R") is the
set of measurable functions f on B" with norm [|f*[[x) is that 8, is bounded

from X to X.
The fractional integral of order o for periodie funetions f with mean

value zero is given by

falt) = [ (&) Pu(2m(t —s)) ds

where
n
3 . 5 (27_:)11—1”:1]
T{(a)¥P,(t) = (t° 1-{-1111'1{ t -+ Omk)* " — ————
@20 = (- +1im 32t —
= U T(a)r(t)/2%, O0<a<1

(see [25], p. 135, vol. II). But the function 7, is infinitely differentiable
on [0, 2=] so for functions f with mean value zero the statements (i) f,e ¥
for each f e X and (ii) f*t*' € ¥ for each f e X are equivalent. By sub-

1
tracting [ f(t)dt from f and noticing that constamts always belong to X

[}
we see that (i) and (i) are equivalent for all f. But now by Lemma 2.2
there holds ‘ i ;

COROLLARY 2.5. A mecessary condition that the fractional integral
fo€ X for each f in X, where X and Y are rearvangement invariant -spaces,
is that S, is a bounded operator from X to ¥ for ¢ = (1,11 —a;1/a, o).

Tt is well known [6], [17], [15], [1], [24] that the condition is also
sufficient and, in fact, -

(fa)* (8) < Ba(FH(®),

Our last example of lower estimates is for the real Laplace transform

o<1,

L(f)t) = [ fls)etds.

For positive decreasing f, there holds

1 1t o0 o
L(f)(t);f f(s)e“”ds>e“1ff(s)ds = e—1ff(s,)dmin(.sl/tﬂ,so/tl).

0 0

Since T is of wealk types (1, eo) and (oo, 1) (see [67), then this inequality
can be inverted with a change of constant if we replace f with i
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In [20], Theorem 5.7, it is shown that a necessary condition that
8,(X) < Y is that for all s and ¢

@58 o9x(s) > p(min

gip1 glimg
tl/'ll ? tl/’lz

where o = (py, ¢4; Ps, ¢2). This results from the fact that

ll%,9lx = ||Sn(x(o,s)) Iz 2 @r () 8.(%0,q) (t)

must hold, which implies (2.5) upon evaluation of 8o (%,0) (8). Letting
m = (1/g:—1/g2) /(L [Py —1/ps) and b = 1/g, —m]p, (i.e. the slope and y
intercept of the segment o), then we see that it is ‘necessary that

(2.6) ‘ Pr(f) < epx(t™-#  for all ¢

if S,(Z ) € X, by letting ¢ = ™ in (2.5). Condition (2.6) along with other
conditions can be shown to be sufficient in certain cases for boundedness
of 8, [11], [23], [24].

We end this section with a necessary condition on spaces X and ¥

for which X = ¥. Here we use f to denote the Fourier transform of f
on the line given by

oo

o) = @m0 [ f(s)e~etds,

~—~o0

A‘ slimiliar result holds for the Fourier coefficients of a function on the
circle.

. TEEOREM 2.6. If X <= Y for rearrangement imvariant spaces X and Y
on R, then . :

tpr(Lf) < opx(f), t> 0.
Proof. An easy calculation gives
JAC(—t,s)(S) = 2(2'7‘7)_1/”(3111(373)/(375))
g0 that -
(2.7 (;f(—t,t))*('g) = 9(277)_1/277.‘7* (st)
where g(s) = [sin(s)/s|. But ‘

9(8) = (2m)7" 357y (s)

where ;, = [n/6+kwr, Bx/6+ kr], so

L)

L
—=1/2
(2.8)  g*(s)>3(2m) Zm Kianis, aner1ym (8) 2 (27) " min (1, 1/s).
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It X < ¥, then there must in fact hold
Il < ollflx-
Applying this to f(s) = xyy(s), we see by (2.7) and (2.8) that
tpr(L/t) < tSl:P {min (1, 1fis)pr(s)} < GS?P(JE(—c,t))*(s)WY(S) < olxnlly

< opx(27).
But ¢x(28) < 205 (¢) for all ¢ establishes the result.
Jodeit and Torchinsky [10] have shown that a similar condition,
namely

spp(1/st) < opy(sft), 0<t<1,8>0

is necessary and sufficient for the Fourier transform to be bounded from
the Orliez space L, to Lp.

§ 3. Embeddings and convolution. In this section we consider Lorentz—
Zygmund spaces on the circle with normalized measure. In order to facili-
tate the statement and proofs of most of the results in this section and the
next, we distinguish certain subsets of the closed upper. half plane R?
= {(a,1/a)] —co < a < o0, 0 < a< oo}, Leb

(31)  I(B,1/b) = {(a,1/a)] a+L/a<f+1/b, 0 <a <D}V
’ U{(a,1/a)] a< B, b<a< oo}

and

(3.2) E@,1p) = U I{a,1/a).
LS

%

/ I% (B1/h)

.

Using the results of [1], there holds
ProrosinioN 3.1. A necessary and sufficient condition that

(3.3) I (log L) = I (log LY

Fig. 1
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48 that either (i) r < q, or

when

I8, 1/p)
L(g, 1)

< o
(i) r =g and (y,1/0) et

when g = oo,

Proof. By the closed graph theorem the containment (3.8) is actually
a continuous embedding. The sufficiency is Theorems 9.1, 9.3, and 9.5
of [1]. For the necessity we first notice that » > ¢ imiplies that the positive
decreasing function f(t) = t~®*¥9 pelongs to L2(log L) but not to
I (log L)”. Hence we can assume ¢ = 7. We also assume that ¢ < oo
leaving the case ¢ = oo to the reader ag the proofs are gimilar but gome-
what simpler. If, in this case, (v, L/e) ¢ L(B, 1/b), then either (y > B,
b<e< o) or (y+1/e= B+1/b, 0 <e<b). In the first situation, the
continuous inclusion (3.3) implies :

' 1—Inty
o> sup Wodloey o i

3.4 ~ sup o
. o<t<1 Ifo,llep,s o<t<1 (1 —Ing)?

which leads to a contradiction when y > f. In the second case we first
notice that we might as well assume y+1 fe = B--1/b, 0 < ¢ < b since the
sufficiency of the theorem applied to Y= B+1fb—1[o yields L@ (log L)
< L%“(logL)”. We consider the function J (depending on ¢, g, b, 6)
given by

(3.8) ) = (it (1 ~In g1 [l (1 ~Tn [2]) )= .0 (1£1)
where « is chosen appropriately small so that f decreases on (0, u). Letting
6 =1/e we see by a direct calculation that f belongs to L%?(log L)’ but
not to L%°(log LY.

Remark 3.2. In the first case of the necessity of this theorem we
could construct f explicitly by the formula

) = 2 ®n(0,t,)

where 4, = (g1, 007", 1, = exp(—nt¥o-f) and @ = (b-£1)b
rather than rely upon the closed graph theorem for F-gpaces.

We should also mention that certain cases of the necessity were
also mentioned in [1], Remark 9.4. There they show that inclusion (3.3)
does not hold when either (b = 1, =0, 6=00, y=3) or (b = oo,
B=1,¢=1, y =0). We have merely tightened wp these in order to
get necessary and sufficient conditions for the clagsical operators in Section
2 to be bounded on the Lorentz—Zygmund spaces. Our first indication

of this is to completely describe intermediate convolution vesults for
- these spaces on T.
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TrroREM 3.3. Suppose 1 < p, ¢, r < co. A necessary condition that

(3.6) IP4(log Ly s« L@ (log L)? = L"°(log Ly’
is that
(3.7 p+ljg<1fr+1

] et 4 ; g 4 then the convolution theorem (3.6)
hold. If striot imequality holds in (3.7), . . ‘
holds for all choices of a, @, By b, v, ¢. If equality hf;lds in the relation (3.7),
then a mceésary and sufficient condition for (3.6) is that (y, Lje) e I(a B,
1/a-+1/b). ) - .
/ Proof. To show (3.7) is necessary we lirst show that (3.6) is equivalent
to the continuity of convolution, i.c.

(3‘8) ”f*g”r,c;y < ¢ ”f”p,a;a”g”q,b;ﬂ‘
If (3.8) holds for no finite ¢, then we ean find a sequence of func(z?;s
{fn} a’nd {gn} S'llGh 1;]19;13 ”fn“p,a;a = ”gn”é,b;ﬁ =1 b‘llt an*gnnr,c;y >n .

Sinee |f,] * 0] = |fn*gysl, and all spaces are rearrangement invariant, we
n J v o
can assume f, and g, are positive. Leb

- . —2(1+1/B)
f=wmsef, g= 3 Gn-

Then f e I?*(log L)* and g & L#?(log LY, and so by (3.6) fxg & L"*(log )"
But sinee convolution is a positive bilinear form,
(55

e e )
F* Gl ery = 7 [lf ® Gl > 1y for each n.

is obvi hat (3.8) implies (3.6).

Hence (3.8) must hold. It is obvious t

Nﬂ(ﬁeil)lg Ko, *L0,(8) =S¥, 1y(8); W seethat (¥, *X(O,t))*(s V2 (6/2)20,42)(8)
and so by substitution into (3.8) we have

(#/2) @2 (L —Int)” < xe.n% X0l
< ¢i¥? (1 ~Int)%He (1 —In)’

or
(3.9)

Hence it iy necessary that condition (3.7) hold, If 1/2)1;]{;@17 1 -/;J-.{-/;,
then we chooge 1< p; <P, L < g <, r<<r3< o0 80 th& . fféoreml
= 1/r;+1. But then by (i) of Proposition 3.1 and by Young n,

we geb

t“‘”"(l —lnt)” < 0t1/p+1IQ(1 ——lnt)“"'ﬁ, 0<t<.

LPa(logL)*« Lo (log LY < LP1+If < It L"c(log Ly

- . 1
for each selection of a, g, b, B, ¢, . The onlylremmnmg case Jsl ip+ (/g
=1fr+1. By Theorem (41) of [15] with ¢i() = [s0,lprasar P2
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= [Zo.nlaws, 30d @y(8) = lx0,glye, We have that (3.6) holds with y
=a-+f and 1lf¢ =1/a+1/b. The remainder of the sufficiency follows
by the embedding in Proposition 3.1. For the necessity we see from (3.9)
that y < a+ f must hold. Hence to show that (y, 1/e) e I(a-+ B, Lja+1/8),
we only need to show that

(310)  y+ljo<atf+lla+1/b  when Ljo> 1ja-1/b.

Using the formula (3.5), define f with parameters D0, 0, 1/a+e and ¢
with parameters g, f, b, 1/b+ where ¢ = (Lo —(1/a-+1 /b)}/2. Since both
funetions are positive and symmetrically decreasing, a straight forward
calculation shows feI®%(logL)* and geL®(logL)Y. By the remark
following Lemma 2.2

(Fg)* () > tf(6)g (1) = #7/"(L —Ing)~(HetPrild) 1n (1 _Ing))=2e

for ¢ appropriately small. The only way fxg could belong to L™(log L)
is for (3.10) to hold when 1/e > 1 /a+1/b.

§ 4. Calderén operators. Our aim in this seetion iy to characterize
the Lorentz—Zygmund spaces on [0, 1], so that for a given interpolation
segment o = (py, ¢1; Pay ga) With p, < p,

(4.1) 8,(LP*(log L)) < L¢¢(log L)y

keeping in mind the results of § 2. For ¢ = (1,13 oo, oo) this will charac-
terize the pairs of spaces of this type so that X < ¥ jforo = (1, (1—0)7Y;
67!, o), X, = ¥ is determined where Jo 18 the fth fractional integral of f
on [0, 27) with normalized measure. For the Riesz potentials and Riesz
transforms on R"” we have similar results but must ingtead deal with sums
and intersections. of Lorentz—Zygmund spaces. We leave these to the
interested reader to formulate [1]. We will agsume that 41 < ¢, since
interpolation segments with positive slopes are the only interesting ones
for domain and range spaces both over finite measure Spaces.

We first restrict ourselves to only the interesting cases. 'We observe
that it is necessary that L*%(logL)* = IPv (log L)° in order that 8.(f)
exist for each f e L**(log L)". This is due to the fact that 8,(f*) is positive
decreasing and 8,(f*)(1) = [[f][pl,,;o. By the embedding result Proposition
3.1, then either p, < p or p = p, and (0,1) eI(a, 1/a). We define

R(y,1/0) = {(a, 1/a)| (7, 1/0) € I(a, 1/a)}.
The case p > p, is also uninteresting since X belongs to IL7%(log.L)®
but 8, (%0, belongs to no “smaller” space than L% (log L)*. To see
this, we notice by the embedding Proposition 3.1 that it is emough to
consider L%°(logL)’, y+1/c = 0. Here

7-1/112
8o (20, (1) = T 0<i< i
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1/a

Fig. 2

80 am

. . d /e
Hsv(x(o,r))”qz,cw > i {f (1 ~Int)” T} =
b

sinee y6 = —1. So the best that can be said for p > p, is that
SO'
LPe(log L)® = LP»'(logL)® = L% (log L),

for each 0 < a < 00, —o0 < a < o0. We, consequently, need only consider
either

(4.2) P1<P<De
or )
(4.3) (¢,1/a) cR(0,1) when p = p;.

With the domain restricted in this manner, we notice by relation (2.6)
that :
(4.4) mip+b<1/g
where we remind that m = (1/g; —1/g,)/(1 /pl.——l/pg) agld b=1/¢; —Zn/pl.
If there ig strict inequality in (4.4), then we pick p; <P <p z.md 1< g<gs
50 that m/P+b = 1/7. Condition (4.1) is satistied for all choices of a, a, ¥, 0
since .

IPa(log L)® s L 5 I8! ees TO0(log LY

holds by two 'alpplica,tionﬂ of Proposition 3.1 and the o?iginal' weak type
theorem of Oalderén. [6]. We have now reduced consideration to con-
ditions (4.2) or (4.3) for the domain and

(4.5) 1/g = m[p+b

for the range. . o p<ps and
TamoreM 4.1 (Intermediate case). - uppose Pi<P: Ps ¢

(4.5) holds, then o mecessary and suffioient condition that relation (4.1) s

satisfied is that (y, 1/o) €I(a,1/a). '
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Proof. To sce that the condition is sufficient, one applies Theorem 5.6
of [20] or Theorem B of [1] to get

8. (L™ (log L)*) = I=*(logL)°.
Proposition 3.1 provides that (4.1) is true when (y, 1 /6) elI{a,l/a),
On the other hand, if (4.1) holds, theni noticing

m

d
(4.6) ) < 1M f J¥(s)s '?8< 8" (),
9
we have by a change of variable % = ™
1
a )
oy < of [ (@)= P < o1 e < Ol
0

This just says L™*(logL)* < L*¢(log L)" and so by Proposition 3.1 (v, 1/e)
el{a, 1/d).

Next we obtain the corresponding results in the more delicate end-
point cases. For thiz we need to partition R into sets Ry, ..., R, given
by

B, = {0,1/a)] 0 <a<1},

R, = {(a,1/a)] 0 <a<1, 0 < a},

By = {(a,1/a)| 1< a< o0, at+1/a> 1},
R, = {(a,1/a)] 1<a< 00, at1ja =1},
R; = {(a,1/a)] 1< a< 00, atl/a <1},
R = {(a, 1)) 0<a<1, a< 0}

C[;hese sets are all digjoint and have the property that Lﬁ) R, =R’ and
QR, = R(0, 1). Keeping the redtctions made earlier irjr%his section in
Jmind, we state
TEEOREM 4.2 (Right Endpoint Theorem). Suppose p = py, then it is
necessary that (a, 1ja) e R(0,1). If ¢ = ¢ (see relation (4.5)), then in order
Jor 8, to satisfy relation (4.1) when (o, 1/a) belongs to the region
(a) Ry, 4t is necessary and sufficient that (y,1/6) e B(0, 1] o0);
(b) Ry, it is necessary that (v, 1 /o) belong to the dlosure of E(a~—1)a, 1/a)
and sufficient that (y,1/e) eE(a—~1/a, 1/a);
(c) Ry, it is necessary and sufficient that (yy1/e) e E(a—1, 1/a).
- TarorEM 4.8 (Left Endpoint Theorem). Suppose p = p, and so by
relation (4.8) ¢ = q,. In order for S, to satisfy relation (4.1) when (a, 1]a)
belongs to the region .
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(a) R(0,1), it ds necessary and sufficient that (vy1/e) e E(0,1]00);

(b) R, it is necessary and sufficient that (y, L/c) belong to the imterior

of B(0,1/c0);

(¢) Ry, it is mecessary and sufficient that (v, 1/e) e E(a—1,1/a);

(d) R, it is necessary that (y, 1 [¢) belong to the closure of E(a—1]/a,

1ja) and sufficient that (y,1/e) e E(a—1/a,1/a).

Remark 4.4. If not for the cases (b) of Theorem 4.2 and (d) of Theorem
4.3 we would have n complete chavacterization of fractional integration,
conjugation, and weak {ype interpolation for the Lorentz—Zygmund
spaces. The most important cases in applications, Theorem 4.2 (c) and
Theorem 4.3 (¢), are characterized, however. The sufficient conditions of
these cases are contained in [1].

By sketching the regions in the completed cases of Theorems 4.2
and 4.3 and investigating the configuration of the sets E as you approach
boundaries of the various regions, one is inclined to conjecture, say for
example in Theorem 4.2 (b), that (4.1) does not hold in the remaining
case of y+1/¢ = a, 0 < ¢ < a. But a careful examination of the relative
behaviour of f and S,(f) for various functions (powers, logs, ete.) forces
us instead to state

Conymerurm. For (a,l/a) e Ry, o necessary and sufficient condition
that (4.1) holds with p = p,, q = ¢, is that (y ,1/e) belong to the closure
of E(a—1/a,1/a).

Proof of Theorem 4.2. (a) By the definition of 8, one eagily sees
that

girL glmey g
s

1 1
. ; . s ds
2 g, (f*) (1) < ¢n ff*(s)mm (ij; T —<ff*(6‘)81/"”1 vy
0 0

or 8, (L”l’l(logL)“) s L% (logL)°. By the embedding Proposition 3.1 the
sufficiency of (a) for (4.1) to hold follows.

To prove the necessity we first notice that it suffices to show that
there exists f e L"v%(log.L)° such that §,(f) ¢ L%(log L)” when y+1lje =0
and 0 < ¢ < co. Thig is due to the fact that the complement of E (0,1/c0)
satisfiey

RZNE(0,1/0) = |J R(y,1jc).
(D%
For if (', L/e’) ¢ B(0, 1/oc0), then there is (y,1/c) such that (y'y 1/¢")
eR(y,1/c)(i.e. (y, 1/o) e X(y', 1¢')) and y+1jc = 0,0 < ¢ < co. ,By Pro,--
Dosition 3.1 if S,f ¢ L%°(log Ly, then it cannot belong to L% (logL)"".
Now consider a = 0, a =1. Let
F@) = (P11 ~Int)[In(2 -—111t)]1+8)‘1x(0,4)(t)

where 4 and e are chosen appropriately small. The function J is positive
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decreasing and belongs to I*v*(log.L)’. Bub
m

S0 > v | fs)son ﬂf > o™ [In (1 ~In )™ g0, (1)
O

But the function on the right, and hence 8,(f), does not belong to
L%°(log L)?. We see that ¢ should be chosen less than 1/¢ > 0. For o = 0
and 0 <b < 1 we use characterigtic functions. As mentioned before, the
cloged graph theorem implies that (4.1) is equivalent to the statement

(4.7) 18 llg, o0 << 0111l 50+
. plioy
But since 8.y, decreases and ’gﬂ(x(ﬂ"))(t)}”ﬁlif Ktim, 1y (1),

ol [ dt e
8.ty =177 | [ (L=t s i 1 Iy .
plim
Sinee [|x0,nllpya0 ~ 71, we sec that no relation of type (4.7) can possibly
hold.
Proof of 4.2 (b). We first prove gufficiency. Since

”Saf”gzlcy clf aﬂqla,a—-lla: y"{'l/c = a> 01 o KO o

holds by Theorem 11.2 of [1], and by Proposition 3.1, we see that we only
need to establish (4.1) for the cagse y =a—~1/a, ¢ - a. Since (8,7)*
< 8, ( f )y we consider only positive decreasing f. Letting g,(t) =

ds
t—l/énf £ 3)31/1@1 — and g,(t) = S,f(t) —g.(t) = 0, we see that it suffices to

show
1 ila
([ weana—moe 2 < ap,, o,

We only estimate this for g, as the case for g, is similax. Weo let F ( )
ds
= f f(s)s‘”“l— in order to get

(4.8) f (#0ga(t) &~y e1 2 [ peps(a gy £
V0 0

1 B c
= [ POrar-0-moer <o [ @ —morer e eyt

where we have used integration by parts and the fact that
Jim P51 ~100)" < I Wyl 0 = 0-
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But ¢ — 1< 0 and F() > Ff™) 1, so
F(i)u—-l < (f(t'm.)lmlpl)a—l'
Upon making the substibution % = ™ and taking ath root of inequality
(4.8), we reach the desired conclusion.
For the necessity of 4.2 (b) we notice that if (y, 1/e) does not belong
to the closure of E(e—1/a,1/a) in R}, then y+1/¢c> a> 0. Consider
again the functions yq,. As before

‘E at 1/e
oy > 71| [ty s 1 —tmpye
plim
but: ([, llpy,a:a = 7¥71(1 —In7)% 50 no inequality of the form (4.7) can
hold as r — 0.

Proof of 4.2 (¢). The sufficiency follows from Theorems 11.2 and
12.1 of [1] which say that for y-+l/e = a+1lja—1, a < ¢< oo, there
holds

19 fllz, 0 < €Sl asams < OlF Iy

For (y, 1/e) in the interior of E(a—1, 1/a), the embedding Proposition 3.1
applies.

For the necessity we consider only y+lje =a—14+1lja, 0<c<a
for the reasons mentioned in part (a), i.e.

RINE(a—1,1/a) = U R(y,1/e).
r+1l/e=atlja—1
I<c<a
We let
F@) = (7 (L —Int)* e [In (1 —Ind) ]/ "o 4 (8)
where 4 and & are chosen appropriately small. The funetion f belongs
to L¥r%(logL)®, bub

m
d
SN0 =17 [ fe)sn =
0
> otV (L —Ing)* e [In (1 —In#) o+ "1y 4 (2).
But the function on the right, and hence 8,(f), does mnot belong to
Llaee(log L) .
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Divisible subspaces and problems of automatic continuity*
: by

W. G. BADE (Berkeley, Calif.), P. C. CURTIS, Jr., (Los Angeles, Calif.)
and K. B. LAURSEN (Copenhagen)

Abstract. This paper explores the role of divisible subspaces for linear operators
in the theory of automatic continuity of homomorphisms between Banach algebras.

§ 0. Introduction. Tn 1972 Graham Allan [1] showed that the algebra
of formal power series could be embedded in a commutative Banach al- ]
gebra B if and only if there exists an element # in the radical of B satisfying

Ba™tl o By )

for some positive integer m. He went on to observe that if this condition
is satisfied, then there exists a discontinuous homomorphism 6 from the
dise algebra A4 (4) into the radical of B with unit adjoined which maps
the coordinate function # onto 2. To construct the mapping 6, Allan
first shows that if  satisties the above condition, then there exists a non-zero
subspace Z in rad B such that for every A e C, the complex plane,

(@2—NZ =Z.

The subspace Z, necessarily non-closed, is called o-divisible, and the
existence of such a subspace is the essential tool in Allan’s construction of 6.
Indeed in a later paper [29]M. Thomas observes that the existence of an -
divisible subspace Z in a radical algebra R is a necessary and sufficient
condition for there to exist a discontinuous funectiomal caleulus for the
element «. Since o (x) = {0}, this is equivalent to the assertion that there
exists a discontinuous homomorphism of the dise algebra into the algebra R
with unit adjoined which carries z onto z.

In this paper we shall investigate the relation between the existence
of divisible subspaces for elements @ in a commutative Banach algebra B
and the existence of discontinuous homomorphisms from certain commmu-
tative Banach algebras into B. Johnson and Sinclair [20] were the first
to investigate the relationship between automatic continuity questions

* This research was supported by the National Science Foundation Grant No.
MC8-75-07091 and the Danish Natural Science Research Council.
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