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Kac functional and Schridinger equation

KAI L:AI CHUNG* and 8. R. 8. VARAD HAN (Stanford, Calif.)
1. Introduction. Let X = {z(?), t>> 0} be a strong Markov process

with continuous paths on R = (— oo, 4 o0). Such a process is offen
called a diffusion. For each real b, we define the hitting time 7, as follows:

@) T, = inf{t > 0] o(t) = b}.

Let P) and B, denote as usual the basic probability and expectation
associated with paths starting from a. It is assumed that for every a and
b, we have

(2) . P,{r, < oo} =1.

Now let ¢ be a bounded Borel measurable function on R, and write for
brevity

. 1
3) ‘ ‘ e(t) = exp fq(w(s)) ds.
0

This is a multiplicative funetional introduced by M. Kac in [3]. In this

k paper we study the quantity

(4) w(a,b) = B {e(w)}
Since ¢ is bounded below, (2) implies that «(a, b) > 0 for every a and b,
but it may be equal to + oo. A fundamental property of u is given by

(8) : u{a, b)u(d, ¢) ?u(“ao)v

valid for a < b< ¢, or @ >b>¢. This iy a consequence of the strong
Markov property (SMP).

2. Probabilistic investigation. We begin by defining two abscissas
of finiteness, one for each direction.

B =inf{dbeR| Ja<b: u(a,b) = oo}
= sup{b e R| Ya < b: u(a, b) < oo};

o =sup{acR| 3b> a: u(b, a) = oo}
=inf{a e R| Vb > a: u(b, a) < co}.
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It i.s possible, e.g., that f = — oo or + oco. The first case oceurs when
X is the standard Brownian motion, and () =1; for then, w(a b)
= B, (1) = oo, for any a # b. : ’

Levra. 1. We have

B =inf{h eR| Va < b: u(s,d) = oo}
=sup{beR| Ja < b: u(a, b) < oo};

a=sup{ac R Vb>a: u(b,a) = o}
= inf{a e R| b > a: u(b, a) < oo}.

Proof. ;[t is.m}fﬁcient to prove the first equation dbovo for 8, because
the gec_ond ig trivially equivalent to it, and the equations for o follow
by similar arguments. Suppose w(a, b) = oo; then for # < a < b we have
(2, b) = oo by (8). For a < # < ¥ we have by SMP,

w(w, b) = By{e(v,); v, < v}u(a, b) = oo

since P,{r, < 7} > 0 in consequence of (2).

The next lemma iy a marfingale argument. Let J; be the o-field
generated by {&,, 0 < s<t} and all null sets, so that N+ = Iy for ¢ > 0;
and for any optional = let .+, J,, J,~ have the usual meanings. -

Levma 2, If o <b< 8, then

’ (M limu(a, d) =1;
atd
(8) limu(a,d) = 1.
bla
Proof. Let a < b,1b and congider

9) Ble(m) I(w,)}, n>1.

ii;lee b< B, u(a,b) < oo and the sequence in (9) forms a martingale.

- 'r::i ::t,mz;gferb‘sa..s. and ?(:bu)TS(r,,"). Since e(z;) € J(v5), the limit of
b 18 a.8. equal to e(vy). On the other hand, t iti

probability in (9) is also equal to ’ b

>
B, {e(rb)eXp (%f q(z(s)) dé)‘ 3(1;%)} = o(7,, ) (by, b).

As nt oo, this must then conver, ince’
) ge 10 e(7) a.8.; since e(r, ) conve i
(7p) .8., we conclude that u(b,, b)—1. This es;:ablis]les((;’s? e o
Now let > b> a,}a, and consider

(10) . Ecs {3(711)] S(tan)} b nx=1.

This is again a martingale. Althow, i

. : . gh a7, iy a.5. left continuous, not

right continuous, for each fixed ¢ we do h;,ve T 47, and J(z )4,3’(70)
n an art
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&

Hence we obtain as before u(a,, b)—u(a, b) and consequently
u(a, b)

-——-——l—)l.
U( @y b)

u(a, a,) =

This establishes (8).-
The next result illustrates the basic probabilistic method.

TEEOREM 1. The following three propositions are equivalent:

(@) B = +oo5
(i) @ = —oo;
(iii) For every a and b, we have

(11) w(a, D)u(d,a)<1.

Proof. Suppose #(0) =b and let a<b<<e If (i) is true, then
(b, 6) < oo for every ¢ > b. Define a sequence of successive hitting times
T, as follows (where 0 denotes the usual shift operator):
8= 7, i 7,<7,

o i T, <T,;
(12) . Ty =0, lefg:
Ty = Top1+700q,, ;> Topyy = Top+800g,,,

for » > 1. Define also

(13) N =min{n > 0] Ty, = oo}.
Tt follows from P, {z, < oo} = 1 that 0 < ¥ < oc a.5. For n> 0, we have
2n Tryl

@) Byletw): ¥ =np =Ffexp (3 [ afow)as))

= Eb{e(ra); Ty < T i Ea{e(Tb)}"Eb{e(Tc); T < Ta} .

Since the sum of the first term in (14) over = > 0 is equal to % (b, ¢} < oo,
the sum of the last term in (14) must converge. Thus we have

(15) Eb{e(ra); Ta < Tc}u(a; b) <1.
Letting ¢-—co we obtain (11). Hence u(b, a) << co for every a < b and

so (ii) is true. Exactly the same argument shows that (il) implies (iii)

“and so also (i).
We are indebted to R. Durrett for ridding the next lemma of a

superfluous condition.

IEMMA 3. Given any acR and Q> 0, there ewisis an & = e(a, Q)
such that
(16) B,{%} <
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where o, = inf{f > 0| o(t) ¢ (4 —e¢, a-+-o)}.
Proof. Since X is strong Markov and has continuous paths, there

is no “stable” point. This implies P,{o,> 1}—+0 as e—0 and
exists ¢ such that ‘ } o here

an P {o, =1} < =@+,

Now o, is a terminal time, 80 #—>P, {0, = 1} is an excessive function for
the process X killed at o,. Hence by standard theory it is finely continuous
By ff)r a diffusion wnder hypothesis (2) it it clear that fino topoiogjg;
coincides with the Buclidean. Thus 2P, {s, > 1} is in fact continuous *
It now follows that we have, further decreasing ¢ if necessary :' -

(18) sup Po{o, = 1} < ¢~@+D,

|2 —a] <8
A familiar inductive argument then yields for all n > 1
(19) P {0, n} < ¢ ™0+

and (16) follows.

Levua 4. For any a < § we have
(20) u(a, B) = oo;
Jor any b > a we have u(b, o) = co.

Proof. We will prove that if %(a, b) < oo, then there exists ¢ > b

such that (b, 0) < co. This implie
: . plies (20) by L . y d
assertion is proved similarly. (30 by Lomms 1, and the. ssoond

Let @ = |jg|l. Given b we choose ¢ and b so that <b< dand
(21) B, {e?atd) < o0,
This is possible by Lemma 3. Now let b < e¢< d; then ag vo,Lb wo have
(22) Eb{e (Ta>; Ta < Te} < Eb {eQ(TaArd); Ty < Tc}’»'o

because Py{z, < 7,}--0. Hence there exists o such that

(23) Byle(z,)s 1, <t} < —,
_ w(a, b)
This is just (15) above, and so reversin
that the sum of the first term in (14
(b, ¢) < oo, a3 was to be shown.
To sum wup:
THEOREM 2. The function (@) b)—~u(a, b)
a<b<pB and in the region a <b<<a. Furth

g the argument there, wo conclude
) over # > 0 must converge. Thus

18 oontinuous in the region
ermore, ewtended comtinuity

1 :
(*) This fact can also be Proved in an elementary way.
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holds in a<b<p and a<<b<a, except at (B, B) when B< co, and at
(a, a) when a> —oo.

Proof. To see that there is continuity in the extended sense.at (a, f),
where o < 8, let a < b,}B8. Then we have by Fatou’s lemma

limu(a, b,) > B, {lime(z, )} =B,{e(z,)} = u(a, f) = oo

N—>00

If p< oo, then u(f, 8) = 1 by definition, but % (a, f) = oo for all a < f;
hence u is not continuous at (8, f). The case for « is similar.

3. The Schridinger equation. From now on the process X will be
the standard Brownian motion on R and ¢ will be boundéd and continuous

“in R. The Schrodinger equation

(24) 10" (@) +q(@)gp(a) =0, veR

will be referred to as “the equation”, and any of its solutions “a solution”.
The fundamental existence and uniqueness theorem for linear differential
equations (with a Lipshitz econdition) is applicable and guarantees & unique
solution for given initial values ¢(@) and ¢'(a) for any a € R. A fortiori,
‘it guarantees the unique extension of any solution given in a non-empty
interval to a solution in R. i

Levva 5. Let ¢ be a solution in [a, b] with ¢(a) = @(b) = 0; then
b—a>(2Q)", where Q = [gl. et 0 <b—a< (2Q)"*, A>0, B> 0;
then there is a unigue solution @ satisfying

(25) pla) =4, ¢(b) =235,

and >0 in [a,b].

Proof. The first assertion is known as de la Vallée Poussin’s theorem.
The second assertion then follows from a well-known criterion for the
solvability of the equation with given boundary conditions. For both
results see [5], pp. 91-92. The solution cannot vanish more than once
Dby the first assertion. Nor can it vanish just once for then it must assume
its minimum there and so @' must also vanish which is impossible by
the uniqueness theorem. :

LEaMA 6. Let @ be a solution in R. For —oo<<a<b< oo define

(26) v =inf{t> 0] ®(}) ¢ [a, b1}
and ‘

t
@n M(t) = Dn(t))exp [ qlo(s))ds.

Then {M(tA7), J(@), tz=0} is o martingale.
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Proof. Using Ito’s formula (see [2]), we have
1
(28)  dM(t) = exp [ q(a(s))ds x
. 0

‘ x[2 (@) da(t) + (30" (2(t) + ¢ (o(t) & ( (1)) at],
namely, for ¢ > 0:

8

A
(29) M (t)—2(0) = [[exp [ glo()dr] e (w(s)) da(s)+
0 0 '

i 8 )
+ Of [ exp Of ¢(o(r))@r| (30" + g (w(s)) ds.

If we substitute ¢ A 7 for ¢ in the above, the second term on [the right
T:amshes because @ is a solution. The first torm is then of the form

{ f(s)dz(s) where

f(s) = z(s) [exp [ q(o(r))dr] @ (a(s)),

0
(30) 1 i s<r(w),
0 i szaw),.

Clearly, f(s, w) is progressively measurable, ‘being right continuons, and

x(8, w) = {

i
(31) | Ez{ff(m)zds} <o, wseR,
0

because ¢’ ag well as ¢ is bounded in [a,b i
: € : » b]. Thus the. firgt term on the
right side of (29) is an Ito integral, hence a martingale.

THEOREM 3. Suppose u(w, b)

: < oo for some, hen
u(b) is @ solution in (—oo, b). * ’ “ ol & <D Then

Proof. Let o, < o < #, < b where 2, —g =1
. —wy < (2Q)" 12,
B, there is a solution @ satisfying =9 hen by Lemma

(32) D) =u(w, d), 4= 1,2,
Let

o =int{t> 0] a(t) ¢ [5,, 2,7}

and M be as in (27). Then M(tA o)
for 1> 0 we have

(33) P(@) = B {M(0)} = B {M (i A o)}
=B,{M(0); o<1 + B {U(t); o=1.

is & martingale by Lemma 6, Hence
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By Lemma 5, we can choose @, — o, 80 small that
(34) B {°} < co.
Then
B {M(t); c>1} sup |@| [ ¢¥aP,
T STETy {2t}
converges to zero as t—oo by (34), since o < oo almost surely. Therefore,
it we let t—co in (33) and use (32) we obtain
(35) &(2) = B, {M(0)} = B,ju(z(o), b)e(a)}.
On the other hand, by the strong Markov property applied at o (< 14),
we see that :
(86) u(m, b) = B {e(0) By [e(z) ]}
= B, {e(0)u(x(s), b)}.
Comparison of (35) with (36) yields u(wz, b) = P(x). This being true for
each # < b, Theorem 3 is established. See the Remarks at the end of the
paper.
TeROREM 4. Let © be any solution such that P (x) > 0 for @ € (—o0, b].
Then b < B, and we have

D(x

(37) u(w,b)gi%b—;—, —oco <D,
In other words, w(-, b) is the minimal positive solution in (—co, ) with
limu(z, b) = 1. . )
ztb

Proof. Consider the M in (27) but write 7y, for the 7 in (26).
Then for each # € B and ¢ > 0, we have the martingale relation
(38) D(w) = B {M(0)} =B {M (@A Tab)} -

If we keep b fixed but let a— — oo, then under P, for z e (—oo, b) we have
Tigui! 7o 80 M (A Ty ) >M (t A7) by continuity. Since M (i A Tyy) > 0
because & > 0 in ( —oo, b], it follows from (38) by Fatou’s lemma that

(39) D) = B {(M(@AT)), —oco<o<bh.
Letting {->co, we obtain by another application of Fatow’s lemma
(40) D (2) = B, {M (1)} = &(b)u(z, b).

Thus (37) is true for # < b; for @ = b it reduces to a trivial equation.

As a corollary to Theorem 4, we can relate the two abscissas § and
a to the solutions (-, b). Supposé f> —oo. For each b < f, u(,d) is
a solution in ( —oo, b) by Theorem 3. By the fundamental existence and
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unifueness theorem for linear differential equations, there is a solution
P, in R satigfying :

(41) -
Itffollows from (7) that @,(b) = 1. Furthermore, the uniqueness theorem
implies that for b <c¢< f we have

(42) De(@) = By (w)u(b, o),
Thus the family of solutions {®,, b < f} are lincarly dependent,

Similarly if @ < + oo, then there is a family of linearly dependent
solutions {,P, a > o} satistying

(43)

Oy(0) = u(o, ), —oo<aw<bh.

welR.

a¢(m) =’”‘(m7“)7 LW < oo,

COROLLARY TO THEOREM 4. For each b < B, B is the smallest root
of @,. For each o >'a, a is the largest root of ,P.

Proof. Fix b < # and denote the smallest root of @, by 2. Since
Dy >0 in (—oo,2), we must have &< B by Theorem 4. On the other
hand, for b < ¢ < g we have Dy (2) = @, (@) /u(b, ¢) > 0 for €(—o0, 0)
by (42). , .

Hence 8 <z and 50 8 =2 as asserted. The assertion abowut a i3 proved
similarly.

TEBOREM 8. The following propositions are all equivalent:

() There is a solution which is positive in R;

(i) B = + oo;

(i) @ = — oo

(iv} for every pair of real numbers a and b we have

(44) u(a, bu (b, a) < 1;

(v) for o pair of régl numbers & and b we have (44).

Proof. The equivalence of (ii), (iii) and (iv) has already been proved
for any diffusion in Theorem 1.

Let @ be a positive solution in R. Then Theorem 4 applies for every
b in R and yields B = +co. By symmetry o = —oo,

If B = + oo, then for any beR, @, has no root by Corollary to
Theorem 4; hence it is a positive solution in R. Similarly if ¢ == 00,
then for any d e R, & is a positive solution in R. We have thus proved
the equivalence of (i) with (i1), (iid), and (iv).

It remains to prove that (v) implies (i), Let o and b satisfy (44) and
@ <<b. Then : ‘

{45) ae<a<b< B

by the dgfinition of ¢ and # and Lemma 4. Bisecting the interval [a, b]
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we deduce from (44) and (5) that w(ay, by)u(by, @) <1 for some a, and .
b, where o < a; < b, < b and b, —a, = (b —a)/2. Continuing this process in
the grand tradition of Bolzano—Weierstrass we see that there exist a, and
b, such that a,te, b,} e where ¢ € [a, b], and u(a,, b,)%(b,, @,) < 1. Since
a<a,<b,<b we may use (41), and (43) and (5) to obtain

(46) By (a,) 4D (D,) < Dy (D) /P ().

Writing, e.g., $,(b,) = D,{a,)+ Dy(c,) (b, —a,) where a, < ¢, < b, by tl}e
mean value theorem, substituting into (46) and letting n—oo, we obtain
(47) W(e) = ,P(0) Py(0) — By (0) o P (0) > 0,

where W is the Wronskian of ;@ and @,. Since ,® and P, are both solutions
of the equation, it is an elementary fact that W is a constant. Now suppose
for the sake of contradiction that @, has a root; then by Co.rolla,r}.f to
Theorem 4 its smallest root is g. Since @, > 0 in ( —oo, ﬁ),.1t. Iy obvious
that @;(B) < 0; since §> a, we have ,H(8) > 0 by the 'definition of ,P.
Thus

(48) W(B) = .P(B)P,(B) < 0,
which contradicts (47). Therefore, ¢, is a positive solution in R and (i)

is proved.

Acknowledgement. Under the assumption (49) below, van Moerbeke
proved that condition (v) implies that the solution w; in (50) has no zero.
The prqof above is modelled after his.

4. A particular case. In the analytical study of the Sechrodinger
equation (24), the following condition on ¢ is often assumed:
(49) [ 1mg(@)|ds < oo.
It is known (see e.g. [1], p. 284) that there are then two solutions w,
and w, such that

(50) lim w, () = 1.

2=t 00

lim w,(x) = 1,
L= 00
Any solution v which tends to a finite limit as #——oco [+ 0] must be
a constant multiple of w,; [w,]. For " must tend to zero at —oo [+ o0],
g0 that Wrongkian of » and w, [w,] must vanish.
The probabilistic counterpart of the result above is given below.

TrarorEM 6. Under the assumpiion (49) we have for any b < 8,

lim (2, by < oo

x—>—00

(51)
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.and for any a> a,

(52) lim «(x, a) < oco.

Lerf-00
Proof. We use the trivial inequality, for » < b,

]

65 wen-ti< = [ el - S, v,
1 Pymal,

n= 0
where ({, = 0)

K

u(w,b) = B[ [] fbml(m(t]))dtj}'

=142,

(54)

Put also
M™ (b) = sup M™(x, b),

x<<h

then M™ (d) is nondecreasing in b. Using the Markov property of @ at
t,-, in (54), we obtain '

(85) M) (@, b) < M* (@, b) M (b) < (MW (B)]".

Let v be as in (26). Then it is part of the standard theory of Brownian
motion that for # €[a, ] we have

T b
(56) 7, of lal {o(t)) dt} = [ Gz, 9)lg) (v) dy,

where G is the Green’s function for [a, b], specifically (see, e.g. [2]),

©—a)(b—
Lb)——«(a,:& i e<<o<y<b;
G(z;9) =
’ y—ap-2
TThea ESASE A

Letting a—>—oco and using (49), we have by dominated convergence

T,

&7 U0, 0) = B { [ lalfaw)ar) = [ [0-a)r 0 —=9)]igl(9)dy.

Hence

b
(58) MO < [ b-y)lal(y)dy

which tends to zero as b—-—co by (49). Choose b, 8o thatb
(69) MO (by) =p<1.
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Then we have by (83), (55) and (59) for b < b,:

M@0
sup ju(z, b)—1|< ®
a<<h 1"'77

’

and consequently the left member above tends to zero as b—--—oco. This
and the fundamental relation (5) for u implies (51) for b = by, hence
also for all b < g by the meaning of § (Lemma 1). This proves (51), and
(b2) is entirely similar.
COROLLARY. We have the following bounds for § and a:
b

p=sup{d Rl [ (b—yd @iy <1}, -

(60) . oo
a<int{acRl [ (y—alg(y)dy<1}.

5. Remarks. In [3], Kac proved that if p(f; a,b) denotes the funda-

mental solution of the partial differential equation:

op 1 O%¢ N
72 o +q(®)p,

then
p(t; a,b)db = B, {e(t); a(t) € db},

where 2 is the standard Brownian motion on R, and e(?) is defined in (3).
The associated semigroup has been called the Kac semigroup. It appeaxs’
that Theorem 8 can be derived by Kac’s original method using Laplace
transforms (vesolvents). This idea is due to Moerbeke, but a difficulty
arises because z->u(w,b) in Theorem 3 is not necessarily bounded, so
that a crucial dominated convergence required by the method appears
missing. This was pointed out by Murali Rao. Although we have managed
to overcome this difficulty by a moderate detour, the present approach
to Theorems 3 and 4 throws more light on the “gonnections between
probability theory and differential and integral equations” — Kae’s
original theme. We are indebted to Moerbeke for some stimulating dis-
cussions.
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Multilinear singular integrals
by
JONATHAN COHEN (Athens, Ga.)

Abstract. This paper uses Fourier Transform and Mellin Transform analysis
to obtain L? estimates for certain multilinear singular integrals. The results obtained
here extend estimates by Calderén, Coifman and Meyer on eommutators of singular
integrals to a wider class of multilinear singular integrals.

§ 1. Introduction. In this paper sharp estimates are obtained for

. operators of the type:

my Az €5 4) | f@)
1.1 y ,
( ) Pﬂfn{ (w ymjjwyy
where
mj—1
o AP ok
T, (A5 5 9) = 4;(2) — E hf(_y_)l_a(_"”_.__y)ﬁ :

k=1

These operators are related to those introduced by Calderén in [2] and
[3] and studied by Coifman and Meyer in [5], [6] and [7]. We will some-

n .
times denote these operators by D¥H{ [] Ty (453 @, 9f(*)} where DVH
=1

is the Hilbert transform followed by the nth derivative. (The reason for
this notation will become apparent in §3.)

The operators studied in this paper arise naturally from the study
of higher commutators of differential and pseudo-differential operators.
The simplest case is the commutator [4, DY H] where A is pointwise
multiplication by the function A (x). It has been shown by Calderén
[3] that this commutator can be written as the sum of pseudo-differential
operators of degree less than or equal to N —1 plus an operator of the
type studied in this paper.

One can show that higher commutators of the form [Al, ..y [4,,DVH]

..] can be written as the sum of pseudo-differential operators of degree
less than or equal to N —n plus the sum of operators of the type con-
sidered in this paper. One exampleis the second commutator [4, [B, DVH]]
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