66 T. Lezariski

Done |2, —#,,ll, tend vers zéro (si - oo) uniformément par rappors

4 n — naturel, et la suite {z,} est bien coneordante. De plus, ¥, (3,) = 0,

&0t P () = P({z,}) = lim ¥,,(3,) = 0, done Z e Z. Soit z un antre clément
N

de Z, z = {2,}. On peut admettre, A’aprés le lemme (a), quo ¥, (z,) = 0,
d’ott il résulte, en vertu de 3.4.11, que P(z) = lim®P,(2,) == lim @, (z,)
n ¥

=@(2). m '

Travaux cités
C[1]
{2]

F. Clarke, A new approach to Lagrange mullipliers, Math. of Oper. Research
1 (2) (1976).

C. G-6£d4%, Suites concordanies d’espaces mormés ef leurs applications, Studia
Math. 62 (1978), pp. 169-192.

P. Loridan, Sue lo minimisation de fonctionnelles convemes par pénalisation,
R.I.R.O. (1971).

— Sur un process d’optimisation utilisant simullanement les methode de pénalisa-
tion et des variations locales, SIAM J. Control 11 (1973).

0. Mangasarian, Unconsirained methods in mnonlinear programming, SIAM
Proe. 9 (1976).

D. Morrison, Optimization by least squares, STAM J. Numeor. Anal. 5 (1968).
[M. M. Vainberg] M. M. Ba#u6epr, Bapuayuwonnuil wemod u smemod moro-
mowmwuwz onepamopos, Mocxsa 1972.

(31
[4]
[5]
(6]
[71

MARIA CURIE-SKLODOWSKA UNIVERSITY
DEPARTMENT OF MATHEMATICS
Lublin, Poland

Received October 4, 1977
Revised version February 2, 1978

(13583)

icm°®

STUD IA MATHEMATICA, T. LXVIII. (1980)

Concerning some version of the Lax-Milgram Lemma in normed spaces

by
KRZYSZTOP MOSZYNSKI (Warszawa)

Abstxaet. This paper containg o generalization of classical Lax-Milgram Lemma
for the case of a complex bilincar form defined on a pair of linear normed gpaces.

Theorems concerning existence and (local) unicity of solution for the subgequent
variational and operator equations are given, as well as somo information concerning
the operator deflined by the bilincar form (in the simplest case) is joint.

The Lax-Milgram Lemma is an useful and elegant tool in the theory
of differential equations of elliptic type. It was discussed by many authors.

The classical version of this lemma tells that if @ is a bounded and
coercive bilinear form defined on a real Hilbert space V and I is a hounded
linear functional over V, then there exists exactly one v, € ¥ such that
a(vy, v) == L(v) for any v eV ([3], pp. 92-95).

A theorem of similar kind for a pair of Hilbert spaces, especially
convenient in applications to the theory of differential equations can
be found in Lions’ book [2]. The purpose of the present paper is to gen-
eralize ideas of [2]. .

Let X, ¥ be linear, complex, normed spaces. We denote by X', ¥’
their strong duals. If not necessary, wo shall not distinguish in notation
the norms in different spaces. We shall also equivalently use both no-
tations for duality pairing for any # € X and fe ¥':

F@y = <o, fox.

The following notation will be used in the text:

R — for real line,

C — for complex plane,

D(4) — for the domain of the operator 4,
R(4) — for the range of the operator 4,
Iy — for the identity operator over X

Primes will be used for duality and stars for adjointness.
Congider a bilinear form
a: X XY~ C

which we shall also call shortly the “orm’.
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DerINTIoN 1. (1) The form a is X-bounded iff

a, = sup |a(z, §)| < oo
llell=1
xeX

foranyy e Y.
(2) The form « is bounded iff
la = sup |a(e,y)l < oo.
el = o] =1
zeX, ek
LovwmA 1. If o s X-bounded, then there ewists a linear operator
I Y — X'y in general unbounded, such that
o, y) = <@, Fydx
for any 2 X and y e X.
Proof. For any fixed y e ¥, a(-, y) is the lincar bounded fundétional
over X. Hence
a(®,y) = <o, Fyd>x
forany @ € X, where F': ¥ — X'. From linearity of a follows lincarity of I. m
DerinITION 2. Let a: X X ¥ — C be an X-bounded form such
that a(x, y) = (x, Fy)>x forany 2z € X and y € ¥. Put
a'(y,2) =<y, F'edy

for any ye Y and 2€Z = D(F') < X", where I': D(I')— ¥’ i the
dual operator (see [1], pp. 49-50). The form o’ is called dual with respect
to the form a.

LeMMA 2. Let @ be a bounded form, a(x,y) = <z, Fydsx. Then
I = | = liall = lla’]},
and
Z =X".
Proof. If 4 is bounded, then it is X-bounded and for any ¢ e X
yeX, ol =yl =1,
la(@, 1)l = Ko, Fydx| < o) [1Py] < sup |2y|| = |7
==
and hence
lall = sup Ja(z,y)| < (F).
llclt=llos| =1
zeX,ye¥”

Suppose [af <7 < |F|l. It follows that there exists y e ¥, ||| = 1 such
that

llall < v < [Tyl =8 |p|<m,1“y>x! < llell,

flafl=1
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which ig impossible. Since in the considered cage F: ¥ — X' is bounded,
henee I': X' — ¥’ is bounded too, and. |[F'|} = ||F|l. Moreover, Z = D(I")
— X!I,
o' (y,8) = <y, F'edy
and by the same argument ||la'|| = ||| = [|F] = lol.
Let K: X -~ X' bo the canonical embedding, i.e. the linear isometry
of X into its bidual X’ defined by the formula
(Ka)(f) =f(=@)
for any @ € X and f e X" If a: X x ¥ — €' is a hounded form, then
al@,y) = o, Bydx = Py, Ky
Since KX < X" = D(F'), we have
a(w,y) = <Y, F)Kw>l’ = a'(y, Ku).

Thiy means that one can consider the dual form ¢’ with respect to the
bounded form @ as some extension of the form @ over the space X'’
The notion of coerciveness is in general referred to the bilinear forms
in Hilbert spaces [2]. Now we need some extension of this notion.
DrmNIeoN 3. The form a: X x ¥ — € iy coercive iff there exist:
positive constants §, y < oo
the function p: X - ¥ such that

llp ()l < B 1zl
and
y ol < Ja(z, @ (@)
for any x e X.

_ Examerm 1. A bilinear form a: X X X' O, defined by a(w,f)
=@, f>y for any weX and feX' is clearly bounded and coercive.
Indeed, by the Hahn-Banaech Theorem, for any » e X there exists fre X’
such that [|f,]| = 1 and f,(2) = ||, I we take

(p(w) =2 “w”fa:
then.
ligp (@) 11 = [l
and
el = <@, fodxe ol = <@, 9(@)>x = la(z, p(a))]. m

TeMMA 3. Let a: XX Y~ C be an X-bounded and coercive form
such that a(@, y) = (o, Fydx for any @ € X and y e X. If, for the camonical
embedding K: X — X",
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B(K)cZ =D@F)c X"
holds, then the operator
(F'E)"': R(I'E)—> X
n
Y'
©s bounded.
Proof, If « is X-bounded and coercive, then
YIelP< o (2, p(@))] = Ko, Fp(@))x] = [<Fp(), Koyl
< lip @) 1" Kl < 8 |jo]| 11" K]

for the constant § and y, and the funetion @ from Definition 8 because
Kz e D(F'). Hence .

17" Eolf 2 = i}

X
B
forany zeX. m

COROLLARY. Let a: X X Y — C be bounded and coercive. Then KX < 7
= X" amd Lemma 3 holds. )

LeMMA 4. Let a(z,y) = @y Fy>y. Assume that o is coercive. Then
FYuYR(P)~Y

n
X,
is bounded.

Proof. If &’ is coercive, then there exigts positive constants g, y
and the function ¢: ¥ -2 = D(F’) such that
Yl <la'(y, o )] = KKy, F'o ()]
= <Y, o) | < I Fy|B Iyl

and hence

4

1Fyl = =yl

B

for any y e Y. u

Lemva 5. If T and F~* are bounded, then the form a(
s bounded amd the form o is bounded and coereive.

Proof. Let #~! be bounded; then for some positive constant «

Pyl = ally| holds for any y € Y. From the Hahn-Banach Theorem, for
any y € Y there exists 2, € X", such that Il

Wy ) == L@y Fydy

)l =1 and

<-F?/7 zz/> = “Fy”
Put

o(y) = |Pylle,;
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then by boundedness of F
p: Y7 =X",
llp ()11 < 11Ty Iz = [} gl
and

On the other hand,
afw, y) = <oy Py x

and by Lemma 2 [l == |7} < co. w
Let now X, Y and I be normed spaces, and

' ¥ - H'
a linear operator. Consider an X-bounded form
a: X x¥—~C,
a(@,y) = (@, Fydx
and its’ dual
o: ¥Yx4—+C, %=DI) X',
a'(y, ) =<y, F'e)y.
Define the subspace U < Z « X' asfollows: w € U iff both conditions
(i) and (ii) are satisfied:
(i) B'y = 0implies a'(y, u) = 0;
(i) the linear functional @,: B(E')— C,
n
H/
’ = F
D, (f) 5 o' (y,w) for any fe DY, f =By
VY 4 ol ’ 1R o to-
(B, is well defined because of (i)) iy bounded on R(E'Y = H' for the to
ology of H'. ) y
* %rbmsrvo that the space U always (axlsw? h})wevm:‘ it »ma.y ;;educe to
{0} = X", In this ease the only @, is 0 whieh obviously is bmmd‘.(w‘. Lo the
At any eage the tunetional @, defined in (i) can be oxtended by th
Tiahn-Ban om over The w amace H.
Hahn-Banach Theorem over the wholo spaco . N
Weo shall denote by the same symbol @, some fixed extension of
this kind. _
Sinee @, e H', for any u & U, wo can write
1) Pu(f) = {fy Audpr,

for any fe ll’, where the operator
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A: U-H"
n
XI/
ig not necesgairily linear, nor bounded. However, for any f == By, formula, (1)
can be replaced by .

(2) o' (y, u) = By, dudy.,
thz'ut is, because of linearity of the form o', for these particular values of i
A is still linear as a function of w & U = X", ’
Observe that 4 is in general non-uniquely determined (as the extension
of &, is in general non-unique), except for the case BV - 11’
Temoram 1 (Existence). Let X, Y, H be linear normed

spaces
3 - b ’
4: XX Y C an X-bounded form such that a': Y XZ - (! 8 coercive

7. ' . . Yo :
Let B': Y—>H be linear (not  mecessarily  bounded) operator, and

geD(B") < H" be arbitrary, where T' is the dual of B'.
Consider the following wariational equation
@) @'y, w) = <B'Y, g
?’hen the set o]:”all solutions w of equation (3) is non-void and is contained
nlU cZ < X", where U is the subspace of Z = D(F') defined by (i) and (ii).
If A is the operator defined by (1), then any solution of the equation
(4) Aw = g,
s @ solution of (3).
If in addition B'Y = H s then (3) and (4) are equivalent.
Proof. By X-boundedness of a,

for any ye ¥,

we U

o, y) = <@, Fydy
and

a'(y,7) =<y, P'edy

for any e X,ye Y, 2eZ = D(F') where

F:¥Y-sXx

. Z-Y.

n
X/l
Using equation (3), we can write
G Fwyy = a'ly, w) = By, gyy = qy, B9,

where H'': D(E") - ¥’ ig the dual of B'. B
following equation 7 Heneo ()

(5) .F’w =:E“g,

i equivalent o the
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By coerciveness of @' and the Lemma 4 we have that
Il B> Y
is bounded, and hence by the Banach Theorem (see [1], p. 63, Theorem
11.4.4 (i)
R == ¥’

which ineang that (5) hay always a solution w e Z (for any fixed #'). Let w
be such a solubion; then

@'y, w) = <B'Y, O

and if By == 0, then a'(y, w) = 0.
ITence the linear functional

for any ye Y,

By v o'y, w) == KHE'Y5 g

is well defined over B(H") = H' and bounded there for the topology of H’
(its norm is oqual to |lg)).This moeans that (i) and (ii) are satisfied and
w & Uj hence any solution of (3) is in U. By (2) we can write the following
variational equation
(6) a'(y, w) = CBY, Awdy = CB'Y, o
which. is equivalent to equation (3).

From (6) it follows that any solution of equation (4) is a solution
of (8). Moreover, if B(H') « H' iy dense in H’, then obviously (3) and (4)
are equivalent. w

Tasorim 2. (Local uwniqueness). Let as before K: X — X' be the
canonical embedding, and consider the form a: X x ¥ — C of Theorem 1.
Assume that R(K) < Z = D(I') and that a s X-bounded and coercive.

Then equation (3) has at most one solution in the set

M= UnRX) « X".
Proof. If w = Ku is o solution of (3), then
I Kw = B'"g.

The loeal uniquencss of the solution follows from Lemma 3, because,
if w iy the solution of (3), then.
(7) @ = (B H g,
and henee w == K(F'K)*H"g is uniquo in M. w

COROLLARY. (1) Observe that if B': Y —H' is bounded, then D(B")
=H" and Theorem 1 holds for any geH".

Moreover, in this case 1’ is bowunded as well and (7) implies that under

assumptions of Theorem 2 the unique solution of (3) in the set M (if it ewisis!)
depends continously on ¢ (see Lemma 3).

for any y e ¥
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(2) If K: X X' maps onto the whole space X'' (X is reflewive!),
then under the assumptions of Theorems 1 and 2 there ewists emaclly one
solution of equation (3).

Consider now the special case where ¥
— C is gimply

(8) a(@, f) = <z, [Ox = [f(®)
for any # € X and f e X'. Clearly the dual a': X’ x X" - ¢! iy of the form
{9) o' (fy2) = <f, dx = 2(f)

for any f e X' and # € X"'. Observe that both forms a and o' are hounded
and coercive.

Take now two normed spaces X and H, the bounded lincar oper-
ator B': X' — H’ and consider in this case the operator

A: U —-H"
n
XII
defined by (i) and (ii) for the form . Then wo have the following
TarorEM 3. If @ is defined by (8) and H': X'~ I’ is bounded, then
: B"A =Ty

Proof. Wehavea'(f,u) = (B'f, Aupg. forany f e X' andue U cX".
By (9)

X" and the form a: X x X’

frupx = B, Auyy = {f, B Aupy,
for any fe X’ and hence
B Au =u
for any ue Uc X". n

Levwa 6. Let B: H - X be o linear and bounded operator, and take
as B’ the dual of B. Then for the form (8)

KFH « U < X",

where K: X — X" is the canonical embedding.
Proof. It is enough to verify that for u = I ER, where heH is
arbitrary, (i) and (ii) hold. Indeed, B'f = 0 implies that
o' (fy KBh) = <fy KBWyx = <Bh, f)x = <h, Hfdpy = 0
hence (i) holds.
Now if L: H— H" is the canonical embedding, then

Bf > o' (f, KBb) = <hy Bfyy = <B'f, Lhy

icm°®
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and this means that @,z H' - ¢ is bounded in O’ (its norm is \Lh]} = [|&]).
Henece (ii) is fulfilled. w L

TUROREM 4. Let assumptions of Lemma 6 be satisfied, ond lot ' X" = H'.
Then, for the operator defined by the form (8) we have
(11) LY AKH = Iy,
where K: X~ X' and L: H = H' are canonical embeddings.

Proof. It we U, thon for any fe X’

a (fy ) v WSy Awdy.
Put w o KR, B e 15 then, according to Lemma 6, v € U and
a (f, KIhY v {B'fy ATCERY gy

But from (8)

W (f, KIhY == f(HR) = (B, f5x = <hy B>y
= (W'f, Lhyyp = <IUf, ATy,

(vt

and by the density of A" we have

AKD = L. n

Comment. In the special case of the form a given by (8) Theorem 3
ghows that 4 is simply the right inverse to B, It we agsume that the map B
is the dual of somo map KH: H > X with R(Z) dense in H', then by Tho-
orom 4 A can be congidlered as an extension of B over U < X',

Let now {V, ( )p}, {H,( )y} be two real Hilbert spaces guch that
J: V < H, J being the lincar, bounded embedding. We assume that
JV = H

VI

Tt 8: 7' -»V be the Riessz representation operator ((1(\fin(a(]. by
K @y = g) anil lob I, I be the canonical emboddings of V and H,
respectively. Becausoe of roflexiveness we put IO == Ip. Define
. I -V,
(12)
Tih == 8y J gr
for any b e H.
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LevMA 7. We have
(13) B =J*,
(14) ' B = (-, I8 )y
for any o' e V'. Moreover, B'V’' is dense in H'.
Proof. For any he H and v eV
(hy JO) gy = (*h, v)p

hence

(hy T ) = (o, I*B)y
and
Bho=8(h, J-)y = J*h
ie. (13) holds. For any h e H and v' e V'
by By = (Bhy 0"y = (I*h, Sv')y
= (b, J8V)g,
hence (14) holds.

The density of B’ V' in H' follows by the Riesz Representation The-
orem, because R(J) is dense in H. w
Consider now the bounded bilinear form

a: VXV >R,
where .
a(u, v) = {u, Fodp = {u, T8>y = b(u, v)
and F: V-V, v = 8v', v e V'. For the form b we have:
b: VXV' —R.
LemmA 8. For any v,2ze V, v = Sv':
a'(v,2) = a(z,v) = b(z, ') =" (v, 2).
Proof. Because V is reflexive (K = I), by the definition of &’ we have
ob’(v‘, R) = {0, F'&)p = (W0, &ppe = <z, I'v)y
= a2, v) = b(z, ') = b'(v',2). m

COROLLARY. a' 45 coercive iff a is coercive; b’ is coercive iff b 48 coercive.

Observe that in this case Theorems 1 and 2 both hold under the
assumption that a is bounded and coercive. We get in this way the exist-
ence and uniqueness of the solution to the variational equation

Sama wverston of the Tuw—Milgram Lemmo 7
(15) w(te,v) (g, d0),  YeeV
when g € I s arbitrary. Tn the diseussed case (1B) is equivalent to the
equabion
(16) Aw =+ g,
where .
Az Uer1l"
n
v

is the uniquo operator defined by (1) and (i) for 1;11(7 form @ fhml 1;11(5.01)01'-
ator K This s just thoversion of the Lavx=Milgram Temma discussed in [2].
Toxamer 2, Take the Hoboley spaces:

I 00, 1) = IO, 1), Vo= HG(0, 1)

then

1
(g Ry == [ Bahadlt,y
[

1
(0, D)y = J Dwy Doyt
[
D being the davivative operator, Tn this case J: V = m, JvV = o ho_l(l.
Tet 70 o defined by (12) and put ag e VX ¥ - R the following
bounded and coercive form:

1
(1, V) == j DuDodt = v'(u),
0

where v = Sv’, o' € V'. Hoeneo Theorem 4 can Do applied and we seo thaﬁ;
tho operator A: U —» H'" defined by (i) and (ii) is simply an extension o
TN gyer ity domain U in V. o o .
) To soo what renily A. is, lot’s ealenlato * in this cage. To this end take
veV abiteary, and b e H guch that D*J*h & H. Then

1
(o, By = (0, 7By = [ Do DI it
0

1 1
Q:-])J"‘hl — [ oD bt

0 0
1
= -—f@;.’DzJ*hdt
0

e e (J0, DR
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i.e.
b= —DJ*h

for all such % € H. Taking into account (11) we see that 4 is an extension
of —D* TFinally observe that in this case

1 [
Eh = J% =tffa Fo(z) dzds — ffq h(z)drds.
0 00

0

")

BExamperE 3. Take X = C%[0,1]), ¥ = X', H = O([0, 1 ]
B: H-V defined by T 7 ([0, 13, ama

12
Bh(t) = p(h)+ [ h(s)ds,

where ¢ € H' is an arbitrary, fixed functional.

It we put a(w,f) = f(x) for any v e X, fe X' = ¥, then o (f, 2)
= z(f) fozi any f e X' = ¥ and 2z ¢ X", and both forms ¢ and &’ are bounded
and coercive; hence Theorems 1 and 2 apply.

Observe that DE = I, where D: V — H is the bounded derivative
operator; hence R(E') = H', and Theorem 4 applies as well. This means
that 4 is the extension of B~ over U < X''.

“We have ™' = D|R(E).
Ii? is easy to see that R(E) < V is the set of all v € V such that the
following boundary condition is satisfied:

(18) 2(0) = g(Dv).

X 1
Indeed, if veR(E), then o(t) =q@(h)+[h(s)ds and »(0) = @(h), and
since D% = h, (18) holds. ’

. If, on the other hand, (18) holds for some v e V, then & = Dv, ve V
an

i 1
o(t) = 0(0)+ [ h(s)ds = p(h)+ [ h(s)ds = Th.
[ 0

We can consider T~ as the operator D over R(HF) = V with the boundary
condition (18). o
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Maximal operators defined by Fourier multipliers
P

by

CARLOY 1, KENTG
and
PETER A TOMAS* (Chicago, 11L)

Absteact. The authors develop a linearizution for maximal operators defined
through Fourier mulliplives, and ostablish for wuch operators transplantation and
yostriction thoorems. Applications are discussod.

. Introduction. Let A be am L®(R" function; define for each real
' A~ u .
number R > 0 an operator Ty, on IA(BY) by Lyf(€) = A(§/R) f(&) and T
S N
on 2™ by Tpf(n) = A(n/R)f(n). ‘V}(fe Ky A iy ﬁwrmmmal on R" (or
weal p-mamimael on R™) if the operator 1™ defined by I%f(2) = sup |Lpf(2)]
’ R0

is bounded (or weakly hounded) on L7 (R%); similarly for 2 on IP(T™).
The purpose of this note iy to extablish for p-maximal operators results
on transplantation between I™ on R™ and 7 on ™, and vestriction of 1™
and T* to subspaces. These results are similar to those of de Leeuw [3]
for Fourier multipliers. The study of such transplantations was initiated
by A. P. Calderdn [1] and by Coifman and Weiss [2].

The authors wish to express their gratitude to ‘Antonio Cordoba, whose
work has ingpired us. Wo also thank R. Latter for his helpful comments.

1. A linearization.
TaMMA. Fiw p, 1 = p < oo The function 2 s p-mazimal if and only if

| Seadilly< o] 2 15l

uniformly in all soquences of positive reals {By}).

Proof. Define the Bunach gpace LG, o)) for @ = R"or @& = T,
ag the collection of all suquences of I¥ (@) functions {f;} such that the norm
lIswp 1511l is finite, Tt is cloar that Ais p-maximal if and only if the linear

I

I
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