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The structure of polynomial ideals in
the algebra of entire functions

by

p

P. B. DJAKOV (Sofia) and B. 8. MITIAGIN (Columbun, Ohio)

Abstract. ' We give a linear decomposition of polynomial ideals in differe
algebras of entire functions of several complex variables. In particular, for any
algebraic variety ¥ < C* the space H(V) of all holomorphic functions on ¥ has a
linear extension operator B: H(V) - H(C™ fo the space of all entire functions, i.e.
(B |V =f, YfeH(V), and its ideal J(V) = {f e H(O"): f|V = 0} with polynomial

m
gencrators {Q7 hag such a system of linear operators {E;j} that ¢ = 3 Buy-Qu
=1

for any ge J(V).

0. Introduction. Let @ == {Q;(2)}{ be a finite set of polynomials
of m complex variables z = (2, ..., #,) € C". The polynomials @, ..., @,
generate the ideal

r
(0.1) To=J(@Q) ={f = Y 0:Q:: 9. H(C"), 1< i< p)
i=1
in the algebra of all entire functions H (C"); the ideals of this form will
be called polynomial ideals. The H(C") will be regarded with the top-
ology of uniform convergence on compact subsets of €%, it is then a nuclear
Fréchet space. There are several linear problems (cf. [4]) of the complex
analysis connected with the ideal Jg: Is the ideal J, complemented as &
linear (closed) subspace in H(C™)? Is it possible to determine the
linear topological type of J, and the quotient space H(C®)[Jy? Do there

2
exist continnons lineay oporators Ly: Jy - H(C"), such that f = 2 Ly )6y
|

for all fedy?

Similar problems have been solved (positively) in the paper of B. 8.
Mitiagin and G. M. Henkin [4] in the case of the space (algebra) H (&)
of all holomorphic functions on & strietly psendoconvex domain ¢ = C"
and an ideal J with finite number of “good enough” generators, and in
the paper of W. Rudin and B. L. Stout [7] in the case of the space H (D")
of all holomorphic functions in the polydise D™ Recently V. P Zahariuta [9]
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proved that the space H (V) of all holomorphic funetions on an algebraic
variety V < C" is isomorphic to the space of entire functions I (C"),
where k& = dimg V': this solved positively the question 6.5 of [4].

In this paper, by an elementary examining the Taylor expansions,
we obtain more general results on the structure of the polynomial ideals J, Q-
The main theorem™ (see Theorem 2) is formally similar to Theorem 1,
II. 4, in the book of V. P. Palamodov [5]. We also consider special subsets
of the set of all multi-indices Z% (ef. [5]; I1.3.1); bub in our case of the
gpace of entire functions the method developped in [6] does not work.

More generally, it iy possible to investigate the structure of poly-
nomial modules over the algebra H(C"), in particular to show that the
free resolution of such a module splits (¢f. Section 6). We investigate also
the gtructure of ideals (modules) over algebrag of entire functions with
gsome bounds on the growth.

1. As usual, Z, ={0,1,2,...}, Z% ={a = (o, ..., @) e Z,,

1<i<ny, lof =0+ ... +a,, 2% =20...2n where 2= (2,...,4,).
We introduce an ordering in Z7 in the following way:
(L1) o' <a”

< |a'| < [o”| or [o'f = |o'|, but there exists %, 2 <k < n,
such that a; < ey and of =a;, §j="%-+1,...,n.

Let I be an ideal in the algebra C[z,, ..., 2,] of all polynomials of n
variables z, ..., 2,. Put
(1.2) T =T() ={acZ: el f<a]+I},
where the brackets [...] denote the linear hull of corresponding vectors.
Evidently, the set 7' is monotonous in the sense that 7'--Z"% < T. This
is a property of the ordering <: if o’ < «”, then o'+ < o'’ 4§ for any
peZy.

Put 8 = ZY\T; then every finite subset of the system {=°: o &S}
ig linearly independent modulo I, and, for any = € 7, we have the unique
representation

(1.3) #= D e mod I
o<7,065
;[n the la..ttice Z} we have the wusual ordering: a=f <> a; < f;,
1<i<n It i3 easy to prove (¢f. [5], Proposition 1, IL.2) tho following
clementary . k
LuvmA 1. Bvery monotonous subset of 2% has finite number of minimal
elements with respect to the ordering <.

Let I' = I'(T) be the set of all minimalelements in T. Then T = I'4- zr, '

i.e. for any v € T there exists ¥ e I" and § € Z7, such that
(1.4) T =9y+ 0.

" (1) This theorem was announced in [11].
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This representation is not unique, but we fix for any » € T one such rep-
resentation. By (1.3) we have, for any y e I,

D as+P,, P

o<y, 068

(1.5) & = ,el.
Tt is easy to see that the system of polynomials P = {P,, y € I'} generates
the original idenl I. We connect with this system also the ideal J(P)
ofthe type (0. 1) generated by Pin the algebra of all entire functions H (C").
The system {&° « e 2%} is an absolute basis in H(C™). It 8 « 2%, we
denote by H,(C™ the closed linear hull of the veetors {#°, ¢ & 8}, L.e.

(1.6)  H,(C" = {rp CH(CY: g = 3 % g, =0 if a¢S}.

2
uezﬁ’_
Now we state our main result:

TamoreMm 2. Let T = T(I), 8 = Z}\T; then there ewist continuous
linear operators Ry, R,: H(C")— T (C"), y € I, such that’

@) f = Ro()+ 3 B (NP, Jor all f < T(CY);.
yal'
(b)) ImR, = H,(C™), ker Ry = J (P), RE = R,.

Proof., It is possible to choose constants A4,,...
2< A< ... < 4, and

, 4, such that

(1.7) for all y el

D) e Ape L At AW <
a<y, 088
hore {¢’} are the coefficients of representation (1.5). Indeed, since I is
finite, we can choose .4, > 2, such thab

1
(1.8) el A < o for all y el

aeM;(y)

where M;(y) = {0 €8: |o| = |p|, 0; =y, BT m, 05 <7pp}; TNext we

choose 4, > 4,, such that

(1.9) SV ja). AT A <2% for all y eI,

oelMy(v)

where M,(y) = {oe8: |o| = |yl, o =y, d<I<n, 05 <y}. Inan anal-
ogous ‘way ono can choose by induction constants As, ..., d,_;; more

B w
exactly, let us put {oe8: o<y} = |J M(y), where
Jew= 1

My(y) ={oe8: |o] =lyl; oy =y, b+-2<i<0; Topr < Vi1t
1<h<n—1, M,(y) = {o e 8: lol < Iyl}-
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oAy, oy dy, 2<4,<

. < Aj_y, ave chosen, we choose 4, > 4, |
in guch a way that '

I—1
1
(110) 3 1ebl- ([] Agrvvin) A< = for all ye .
aeMjfv) ge=1 2n

At the final step we choose 4,, > A, _, in such a way that

(1.11) D) el (” AgirYie )M M2 forall yel.
oe M, (v) d==l 2n
The inequalities (1.7) follow immediately from (1.8)-(1.11).
Put B, =4,, B; =4, ,4,, i =2,...,n Then by (1.7) the in-
equalities

(1.12) D 1B <4 for yel
oeS, o<y
hold, where B = (B,,...,B,), B"“” B1=?1 . B,
Let b =(by,..., b)), b;>0, 1<i<n I‘01 any entire function
F= 3 [ we put |fly= 3 Iflb“ Bvidently, [f,| < IIfll, ™% and

T 0
aeZ’ + aeZ |

gl < Iflls- lglly for all f, g e H(C™). It is easy to see that the system of
norms

(113)  Wfls = D LB for f= N fet, rz1,

aez"_'f‘_ an’_“l’_

generates the topology of H(C").

Now we show that, for any o e 27, there exists a representation
(1.14) =y Z:p,’ny ,

yel'

where 4 and ¢, are polynomials, such that

(1) if a e, then p*(e) = 2% ¢ = 0;

(2) if aeT, theny” e H,(C"), degy®< lal, doggp < |al;
(3) for every » > 1 the inequalities

™ lis < 1l = o' Be,
slhs < Ie%l,5  for all y el

hold. Put °(2) = 2% @) = 0 for a € §. Then (1) holds. For a eI’ we uge
representation (1.5) putting

(1.15)

= D &) =195 =0 dor

o<a,068

y #a,yel.

The structwre of polynomiad ideals 8y

By (1.12), the conditions (2) and (3) hold for all « e I For multiindices
v e I\I" we use induction. Suppose that, for all o < 7, we have built the
representations (1.14) with the properties (1)-(3). Then, by (1.4), 7 = 549",
and we have

o ’ O ’ sl
o7 = ",.;r‘l oV em zd 0?; 7 '[_]‘)y’ ) — Z G':;z&[ ”—}—z"-l’y'
ueN, oy’ oes, 0y’
Tt S QLI &
24 & (’J/’ LN Z @yt -J;’y)‘l-z P,
aes, o<y’ pel'
S 1 Ny
Z TR Z( 4_}4 Pt A )] -
o, oy’ yel' oS, oy’
whore A, == 0 for y sy’ and 4,,, = 1fory = y'. Put
: e
(1.16) vo= Yyt
aed, o<y’
. T . N J—( o
(1.17) = ¢l 8 /JWW , wyel.

oy, o<y’

Evidently tho formulas (1.16) and (1.17) imply that the conditions (2)
hold for « == 7. Using (8) for a <<z, and the basic inequality (1.12) we-
obtain, for v = é-}9,

” - ’ 5. V| ol 3l
[ N A " P N ATy

oed, o<y’ oeN, oy’

== pl¥ BT 2 [03;’“.\01—11"1 B < 31 BT,

oeN, 0y’
and in an analogous way (since B; > 4, > 2, 1 <j<n):
g < BT g B e IR (- 1B~y L I B7,

2. Construction of operators £ in Theorem 2 with properties (a) and (b).
Lot fe H(C™, f = 3 [f.&" Then using (1.14) we obtain (formally)

a(zz'f;’)
@1) e 3 Ly Z wiy) = 3 3 > £.5) Py
uclﬁ’a ml"‘ vel! rxel'"’
Put
(2.2) Bo(f) = D fuv®s
aszz‘”‘
(2.3) B(f) = Dfugyy vel.
acz™

4
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By (1.18) we have, for every r = 1,
”R f“ﬂ" 51 |fal ”1/) ”rb 2 Ifa] ”za”r]f == ”/‘Hr.b’

acZ ":'_ CIEZ?::

(2.4)

and in an analogous way

(2.5) 1B, o < 1 Nl s

These inequalities prove that the operators K, and F,, y e I, are conti-
nuous and justify the formal operations in the formulas (2.1). Tlence we
obtain

(2.6) f = Rof+ D (R)P,

vel

By Definition (2.2), the image of R, is contained in H,(C") and since (1)
hold, wehave Ryz® = #°for all o & 8, therefore R} == B, and Im R, = H,(C").
By the properties (2) the operators R, and R, yel’, map the
polynomials into polynomials and, moreover, their degrees satisty the
following inequalities:

(2.7)

yel.

for all fe H ().

degR,g < degg, degR,g < degg, yel.

By (2.6) we obtain that g eI implies By eI. Since the monomials 27,
o €8, are linearly independent modulo I, we have K,g = 0 for all g ¢ I.
Evidently, the closure I of the ideal I containg J = J(P) and, since R,
is continuous in H(C"), we have R0|;, =0 and Ro’ 7 = 0. On the other
hand, if Byk = 0 for some function heH(C™), then by (2.6) we get
h = 2 (R,h) P, ed. Consequently J = Ker R, and therefore J is a closed

subspace in H(C". m
Let H(4,5) be the space of all holomorphic functions in the poly-
dise
dp = {geC":
" where B = (By, ..., B,) are the constants of Theorem 2 satisfying the

conditions (1.12), with the topology of uniform convergence on compact
subsets of 4,5. It is easy to see that the system of norms

ez = D Ifd(eB)  for  f= Y fe, 1<o<r,

n o
aeZ + ue‘—l-

7| <7B;, 1<ign}, r>1,

define the same topology in H(4,z). ’
Yor any function f e H(4,z), f = 3 f.2% we define the operators B,

ae2”

i
and R,, y €T, using the formulas (2.2) and (2.3). Then, since (2.4) and
(2.5) hold, we obtain the following '
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CoROLLARY 3. The operators By and R, y € I', act continuously in the
space H(A,5), r > 1; moreover,
2) = Bof+ 3 (RSP, for all f €T (4,5);
yel'

(b) ImRO = H,(d,3), KerRy = J,(d,5), B = Ry;
== {feH(Ag): [ = 3 f.%f, =0%ora¢sS}andJ,(d,z)

ch:’:’_
is the ideal gemerated by the system of polynomials P == {P,,y e I'} in the
algebra I {4,y). ‘
"QOROLLARY 4. Let = {Q ()} be a finite set of polynomials and let
J = J(Q) be ideal (0.1) genorated by § in the space H(C™). Then there ewist
linear continuous operators
R,:

+

where H,(A,5)

HEM-I(CY, 0<i<p,

such that
. : . .
(a) f = .R(,f—i—)j (R )Qy for all f e H(C™);
(b) Im Ry == II 0™, Ker By = J(Q), B} = Ry,

where 8 = Z2N\T, and 1" = T'(I) corresponds to the ideal I = 1(Q), gen-
erated by the polynommls Qyy -y Q, inthe algebra of all polynomials Clz, ...
o Zpl

Proof. For a given ideal I we construct the sets T, 8, I" and the
polynomials P,, ¥ € I. Then we have
‘171 )
(2.8) P, =D aiQ, yel,
i=1

where =} arc polynomials. Let R, and R,,y € I', be the corresponding

operators of Theorem 2. Put
(2.9) Byf = D) (R,f)m, 1<i<p.
yel"

By (2.6), wo obtain,

f s .Rof’l‘ E (Rif) (b)’l'

Al

for all fe H(C").

Therefore the operators Ry, 0 < 4 < p, satisty the conditions (a) and (b). m
Tt ig easy to see that, by Corollary 3, the operators R, 0<i<p,
act continuously in the space H (4,y). Hence Corollary 4 remainy true
if ingtead of I (C™) one put the space H (4,5)-
Remark 5. In Sections 5 and 6 we shall use some additional proper-
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ties of the operators R;, 0 < 4 < p, which follow from their construction.
First, observe that the relations (2.7) and (2.9) imply,

(2.10) deg Ry < degg+d, 0<i<p,

where d = max {degn’, y eI', 1 < ¢ < p}, for any polynomial g.
Further, considering in the space H(C") the system, of norms

(2.11) Ifl, = 3 \fdre for f= Mf#r>1,
ati aczﬁi

we conclude from (2.5) that
(2.12) 1By f 1 < 1B Nl < 1F lhp < 1 L
where a = B,. Using (2.9) we get
(2.13) IRif 1y < OF%|f luns
where the constant ¢ equals the sum of modulus of the coefficients of all
polynomials #;, y el', 1 <i<p, appearing in expansion (2.8).

3. The structure of the set § = Z}\T'.

Levua 6. If T is a monotonous subset of Z7, i.e. T == T+ 2Z%, then
the set 8 = Z7\T can be represented as the union of a« finite number of
sublattices of type Z7, 0 <m < n.

(Here by a sublattice of type Z7} we mean any subset of Z7% of the form
(8.1) a+Z%(K), 27 (K) ={BeZ: , =0 for i e K},
aeZ, KEc{1,2,...,n}, m-+ K| =n.)

vel)

1i<p, r=1,

where

Proof. By Lemma 1, the set I' = I'(T) is finite. Let k(I") = max {y;:
Y = Y1y .-eyvy) €L, << i< n} and choose v > k(I'). There are only fini-
tely many points of Z7% belonging to the set B(») = {w e R": 0 < o < v,
1< i< n}. Pub, for any ae B(v)nZ7,
K, ={je{l,2,...,n}: ¢y <}
Then we have the representation

(3.2) 8= U (o+2709(E,).

aeSAB(v)

Indeed, if o €8, then by the monotonicity of T, every point ¢’ < ¢ belongs
to §; in particular, the point & = (g,)7, where &; = min (o, v), belongs
to 8. Hence

0 =&+ (0—5) € 5+ 2" (K )
and & € B(v). Relation (3.2) is proved.
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Obviously 02 e T, where & == (1,1, ...,1). Since a = v2 iy the only
point in B(v) for which the set K, is empty, we have in representation

~ (3.2) only the sublattices a-- 2K, with m(e) < n. ®

Put
(8.3). m(T) = max{m(a): a e §NB(v)};
this number doeg not depend on v = K ("), bub it depends on the monot-
onous seb T ‘

Romark 7. Tt is cagy o see that m(X) == m if and only if, for any
gabset K < {1,2, ..., n} with K] = n—m—1, there exists an ael,
sueh that a; = 0fori e I, bub for gome £ < {1,2,...,n}with |K| = n—m,
there is no o & 1 with the property «; == 0 for i e K.

The dimension g of the lattice L of type Z% can be find from the
agymptotic behavior of the nwumber of points in subsets LNz, where
q, = {peZt: p| <k}, 1<k< oo Namely, LNy ~ kY, theréfore

q =='lim (og|Lnm,| logk).
Te—rc0

By representation (3.2) wo obtain, for every point & such that m(&)
= m(T), the following inequalities:
|(d+ 250 (IC3), Ny < 18 O] < ]?(_)L)’I(F 27K O
Olbviously, there exist constants ¢, e(a), ¢ = 0, guch that the inequalities
A < |8l < Y (@) 0
aeSrB(v)
hold. Consequently we have
(3.4) m (T = /]im (log |8 N7z | flogk).

Lot I be an ideal in €[z, ..., 2,1 Pab m(I) = miT (I)). Formula (3.4)
shows that the namber m (I) does not depend on o linear (affine) transform-
ation of the coordinate system &, ..., ¢,. Indeed, the number |8 Ny,
equals the dimension of the quotient space P (I))P, (k) NI, where P (k)
is thoe ypace of all polynomialg with degrees = k.

Liamma 8. e corvespondence I - m (1) has the following properties:

() if I, & Xy, then m(ly) = m{ly);

() m(RadI) == m(I);

(e) if I ==I,NIy, then m(l) == max {m(Iy), m(Iy)}

(ere Radl denotes the set of all polynomials P & Clzy, -5 R
such that P* e I for somo integer %.) ’

Proof. (a)IE T, < I,,then Z'(Iy) = T'(Ie) and therefore m(I,) = m(Ls),
i.c. (a) holds. )
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(b) Since I < Radl, we have m(I)> m(Radl). On the other hand,

if o € T(Radl), we have (z°— 3 ¢5ef)* eI for somo integer %, and thom-
B<a

fore ko & T(I). Then by Remark 7, we get (b).
(0) Pub Ty = T(I,), Ty = T(L,), T =T(I),Tyy = {acZ: a = a,-+
+ay, 0y €T, oy € Ty} It is easy to see that Ty, = 1\ Indeed, if o, e T,

and a, € T, we have
I .
Qo = 22— Ddpel e I,

Betag

P, =z1— Y o eIy,
H<oy

for some constants g, dg" Since P(, w €L == I;0I,, wo obtain -
“+a, e I'. Bvidently Iy, is a monotonous so’o and we have Ty « T < 1,
NTy. Therefore m (L.} = m (L) = m(TynT,) = max {m (1), m(Ty)}. On
the other hand, by Remark 7, we obtain m(T,) < max {m(Ty), m(Tz)'}.
Indeed, for every sublattice of form # (X;), where X, < {1, 2, ,fn}
Ky =n—1, 1> max{m 1), m(T)}, thae exist o, ely and oy ey, :
such t][]?;lt ay, 0y € 2 (K;). Oonsequently, ay+ ay & 2%, (1), and by Remark 7
:;((31’5}, ar,ll‘i e;ngéZ) <l whenece it follows tlmt m(T'y,) < max {m( fl),

m(T) =max{m(T,), m(T,)}, i.e. m (L)} m

Denote by ,V(I) the algebraic variety corresponding to the ideal
IcClz,...,2,] Le :

V(I) ={zeC": P(z) =0 for all Pel}.
If V = C"is an algebraic variet’y, we put
(8.5) (V) = P P(s

m(I) = max{m(l,),

=0 for all ze V};

this is the ideal, associated with V. By Hilbert’s Nullstellen,
q satz (ef. [10
we have I*(V(I)) RadI. (et oD
‘Suppose 4 is an irreducible algebraic variety; then the ideal I* (4)
ig prime. By definition, the dimension of 4 (dimgd) is oqml to the tran-
e.f:endence degree of the field C(4) over €, where €!(4) is the field of frac-
tions of the ring Cflzy,...,2,]/I"(4).

It is well known, thut every algebraic variety V ean be répresented
as & union of irreducible algebraic varieties;

V=4,u...U4

By definition, the dimension of V is

g

dimeV = max {dimed,;, 1<i<s}.

TemoREM 9. Let I be an ideal in Cle, .., 2,]. Then m(I) = dimg V ().
Proof. First, remark that it ig enough to prove the statement in

icm
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the case, wheve the ideal I is prime. Indeed, if I is not a prime ideal, we
have V(I) == AU ... U4, where A,,.. _/18 are irreducible algebraic
varieties; then the associ&tod ideals 1*(A1), ., I"(4,) are prime. Suppose

8
<. Then Radl = [

=1

I*(4;) and by
Lemma 8 wo geb
m(I) = m(Radl) = max{m(I*(4,), 1<i<s}
= max{dimg(4,), 1< i<} = dimgV(I).

Congider the eage when the ideal I is prime. Then, without loss of
generality one may assume that 2;, ..., %, is a rogular coordinate system
for the 1dc&i I (it not, using a Imoayr transformation of coordinates we
would get such a system — cf. [1], IIT. A, or [10]). “Regular” means
that the following conditions hold:

i) InClzy, --.y 2] =0, where r = dimgV;

(i) €21, .., #,1/I is integral over Clz;, ..., 2]

Condition (ii) gives that there exists polynomials

u]—l

z —«djjlz u

=0

& = (R, .- %), rH1I<I<n,

"),
such that w, e I. By (i), the monomials 271 ... g =¢'% aeZ, are lin-
early independent modulo I. Therefore

1
(36) 8w = dim(P, (k) [INP,(R)) > |2} Nyl = —- (LB

On the other hand, if r+1 < j < m, a; < b, then one can represent E

in the form
aj—1

(3.7) &= 3 Pyt
)
where t;el and degPy< M:b, M =max {degwy, 0 <i< a;—1,
r+1j<n) Indeed, if b = a;, we have
a1

. !
oY e — 21 wy (') &) - w; (2).

1eal)
Suppose the statement is true for some b zx ¢y, Then wo obtain

05)‘—

Inlwzz MZ’I) ')

| teal)

Aoty

aj—2 a1

= Z Py ()2 4 Pragny (#') ("2 wif(z')zj'i_wj)”l_zf'tfb’
1=0

i=0
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, Using this formula, one can ecasily show that (3.7 ) holds for b-1-1. Hence
(3.7) holds for all b > a;.

Now it is casy to sec (using (3.7)) that for any f €z} there exis
constants 7, such that

Y .
& = Ydbe’ mod I,

where o+ ... o, < M|B], 0< < ay—1 for j=r-1,...,n There-
fore

" "
(3.8) 8 < ]n[ 4 ) |2, nmpg ) < (I a,):,(w L MR
-1 el *
By (3.4), (3.6) and (3.8) we get

m(I) = lim (log |8 Nyl flogk) = ». m
J->c0

LeuMA 10. Let T < 2% be a monotonous set and 8 = 2N\, Then
the space H,(C™) is isomorphic to the space H(C™), where m = m(T).

Proof. It is easy to see that representation (3.2) yields a decomyp-
osition of § into digjoint subsets. Since the system {2, ¢ e 8} is an ab-
solute basis in H,(C™, the space H, +(C™) can by represonted ag the direct
‘sum of the subspaces H, ("), where 8, = a--Z™(K,), ae8NB(v).
The operation of “dividing by #2*” ig an isomorphism between the space
H, (C") and the space H{ C™%) of all entire functions depending on m(a)
variables (namely the variables &, ¢ K,). On the other hand, the space
H(C*)@H (€Y, I < 1, is isomorphic to the space H (€F) — this iy a particular
case of well-known statements about isomorphism between power series
spaces (cf. [4], Prop. 18 or [6] § 9.3). Therefore OH (C™Y) ~H(C™). m

4. Ideals in H(C"), connected with an algebraic variety in C". It

¥ .= C" be an algebraic variety. It is natural to define the space H (V)

of holomorphic functions on ¥ ag the quotient space H (C™) /I (V), wlhero

J (V) is the ideal of all entire functions in €%, which equal zero on V, i.e.
J(V) = {f e H(C"): f|} = 0}.

The agsociated with ¥ ideal V) = {Pe Oleg,y i, 8,1 Dl == 0} has

{a;s every id:ea,l in Ol ..., 2,]) a finite systen; of gonerators @ = {Q,},
l.e. it coincides with the ideal

»
o = {P = 2 Pi@i: Pre Oz, gl 1 41%12)}
i=1
The ideal

To={f = Xt fiem(en), 1<i<y)
t=1

©
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is gemerated by the wame system of polyrmmi:.'nilf @ in tho algebra of all
entive funetions H(C"). Obviously the closure I, of the ideal I, in the
space IT(C") containg Jg, thevefore wo have J, « I:J = J (V).

LeMmA LL. Under the assumptions and nolations of this section we have
gy = Ly = J(V).

Proof. This statemoent iz o particular case of Cartan’s Theorem
B (ef. [1], Theorem VILL A. f4). Indeed, let us denote by # the sheaf
of germy of holomorphic functions over €* and by #(V) the sheaf of
ideals of tho algebraie variety V, i.e. the subsheaf of 2, eonsisting of
germs of holomorphie funeions, which are zero on V. Consider the #
homomorphism  of  shewves

q: AP~ F(V)
d ) .
defined by the formula (g,)? e 2% LA ) 0:0:€.7(V),. The homomorphism ¢
=1

ig gurjective (see [87, Prop. 4). Therefore the sequence of sheaves

0->Kerg > o 5 £(V)—>0
ig exact, Consider the corresponding exact sequence of the cohomology
groups:

0> (€, Kerg) % 10(em, oy 5 mo(¢m, 7 (V) >

2 HHC", Rerg) — ...
Since the sheal kerg is coherent (see [17, Theorem IV. D. 2 and Prop.
IV. B.'12) by Cartan’s Theorem B we have H'(C", Kerg) = 0. Ther(gfogg
’ : g AV
the homomorphism ¢, is surjective. But HO(C", #7) = H(C")?, H ((:Z )
F(V)) == J(V) and ¢° acts in the following way: (fi,...,f,) e H(CY
L . R . 2
.l > L@y ed,. Bvidently the image of ¢, is the ideal J,, hence
fusl
Tg = J(V). m
PROPONITION 12, Let V be an algebraie variety in C* and let the system
of polynomials Q. == {QN qenerates the idead I*(V). Then there exist a sot
8 e 2% of type (3.2) with a characteristic aumber

max m(a) == dimgV
S 1)

and continuous Wnear operators Ry WGP - H(C"), 04 p, such that
P
(@) f == Byf - 3T (R for oll feH (O
al
(b)Y ImBy w= H (C%), KevRy == J(V), Ry == By.

7 — Studla Mathematlea LEVIIL1
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Proof. By Theorem 9 and Lemma 11 the statement is a particular
case of Corollary 4.

CoROLIARY 13. The ideal J (V) is a complemented subspace in H (C™).
Indeed, consider the operator P defined by the formula

P
Pf = (1—Ry)f = D (B,f)Q, for all feH(C").
i=1
Since R} = R,, we have P* = P and TmP = KerR, == J (7), i.e P ig
a projector on J(V).
COROLLARY 14. The space H (V) of holomorphic fumctions on the al-
gebraic variety V < C* is isomorphic to the space H (O™), where m = dimg V.
Proof. Consider the operator

A: Hy(CY—~H(V), Af =jf|, for all feHg(C").

The operator A4 iy surjective. Indeed, for any function ¢ eH(V)
= H(C")[J (V) there exists an entire function § & H (C™), such that ¢ [V = q.
Then

§ = Ryp+Pj,

and we have Pjly = 0, Rfly =§ly =g, i.c. ¢ = Af, where f = R
€ Hg(C™). Therefore Imd = H(V).

On the other hand, 4 is an injective operator. For if Af = f |V =0
and f e Hg(C"), then f e (ImR,) n(KerR,) = {0}. Since 4 is a continuous
linear bijective mapping between two Fréchet spaces, by Open Mapping
Theorem it is a linearly-topological isomorphism. Now we have H(V)

éHS(C") and, by Theorem 9 and Lemma 10, Hg(C") ~ H(C™), where
m = dimg V. Hence H(V) =~ H(C™).

COROLLARY 15. There ewists a continvous linear operator H: H(V)
—= H(C") of extention of holomorphic functions from the algebrase variety V
on the entire space C" i.e. Byl = ¢ for all p e H(V).

Proof. Indeed, put ¥ =jd~’', where 4~! is the inverse operator
to the operator 4 from Corollary 14, and j: Hg (€™ — H(€") is the im-
beding of the subspace Hg(C") into H((™). Since A7gly = @, we have
Boly =@ for all pe H(V). w

Let us remark, that the Corollaries 18 and 15 are oquivalent, but in
the proof our argument gives not only the existence of snitabloe operators
but also some information on their structure.

Let us also observe that Proposition 6.4 of [4] states that if there
exists an isomorphism H (V) ~ H (€™), then one can prove the existence
of a continuous linear operator of extention B: H(V)—+ H (C™). There-
fore Corollary 14 implies Corollary 15. But the proof, sketched in [4]
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requires an analysis of the solutions of 8-problem and cohomologies with
estimatos, which is, in fact, not necessary in this situation.
The ideal J(V), a8 every polynomial ideal Jg, has the same linear
topological structure as H(C™). Indeed, wo have
CoroLLARY 16. There emists an isomorphism J, o2 H(C").
Proof. Bvidently,
T == T (L Ry) v Ker By =2 H (O™ I By o H o (CY),
where 1’ == .’l‘('JQ) in the monotonouy set (1.2). Sinco
T Uy,
pEl .
where I" == I'(T) i the (finite) set of the minimal elements of T', we have
the representation 2' = () L(), where || < co and L(B), f e F, are

per
digjoint sublattices of type 27, ngxq(ﬂ) == n. Using the same argument
el

as in Lemma 10 we get J, o H(CY).

CorOLLARY 17 (cf. [4], Theorem 4.1). Let J =J, be o polynomial
ideal n H(C"), generated by the sysiem of polynomials @ = {Q)F. Then
there ewist continuous linear operators Ly J ~~ H{C"), 1 < i < p, such that

»
F= D L(f)Q  for all fed.
el

Proof. Indeed, since Ro} == 0, it is enough to put (by Corollary 4)
Li = Ril"'

5. Spaces of entire functions with bounds on the growth. We¢ have
investigated in details the structure of polynomial ideals in the space
of all entire functions H (C"), Usging the properties of the constructed
operators B ono can obtain similar results for some special spaces of entire
functions. We recall that operators B, which have been built in Theorem 2
and Corollary 4, for the ideal Jg, satisty (by (2.13)) the estimatos

(B1)  |Bifl, < Oyr |l 1321, 0<i<p, for all feH (O,

where Oy, d, @ are suitable positive eongtants. The norm ||, have been
defined in (2.11).

Lot H, (O™, He(O" denote the algebras of all entire functions of
oxder o, which are of minimal ox finite type, respectively, i.e.
HO == limind H,yp,

Dt
where H,j, == H,;,(C™) is the Banach space of all entire functions f, such
that |f[, < CoxpDr? for some O > 0 and every # 2 1, with the norm

[z pll = in{C: If], < CexpDr, 7> 1}.

H, == limprojM,,, or
LD
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If f e H,;, we obtain v
(8.2)  [BfI, <0y S < 0, 0r* - exp D (ar)e < 0, 0(D)-oxp (2Dac1?),
for B =R;, 05i<p,
where O(D) = Osupr® exp(—.Da? %), Thereforo every operator
1]
RB: H,j,—~ Hyp, Dy =2Dat,
is continuous and its norm < ¢, ¢(D), where 0O, 1s the constant of (5.1).
Since D, is proportional to I, the operators R act continuonsly in hoth
the spaces H, and H? ¢ > 0. Therefore we have
Prorosrrion 18. Let @ = {Q,)? be a system of polynomials, and lot J,(Q)
(resp. J°(Q)) be the ideal, generated by Q in the algebra I, (resp. HY). Then
this ideal is a (closed) complemented linear subspace of H, (resp. H®) and the
linear operators R, 0 <4< p, act continuously tn H, (resp. H°); Mmoreover,

@) f = Bof+ 3 (Rf)Qs for all f e I, (resp. 7);

(b) B} = R,, KerR, = J,(Q) (resp. J°(Q)).

In partioular, if V is an algebraio variety and Q is o system of generators
of the associated ideal T*(V), then we have

n i
63 {feH,: fly =0} = { 3 W@y b e H(0Y, 1:<i < g).

The same is true, if one puls the space H instead of H,.

Proof. The relations (a) and (b) have been proved in Theorem 2

(or Corollary 4), and factors E;f, 0< i< p, belong to the space H, ox H°

because the estimates (5.2) hold. These relations imply that the ideal,

I, (@) (resp. J2(Q))is a closed, complemented subspace of H, (resp. JHY),

and that the ideals (5.3) coincide. Indeed, it feH, and f ]V =0, thon
U

Z
by Lemma 11 (or Prop. 12) Rof = 0, therefore =X (R, w
! g ]

(Let us emphasize, that we dont use cohomologies with bounds
to prove (5.3); we only remark, that the operators B act continuously
in H, (or H®) and therefore factors E.f belong to the corregponding space.)

Similar statements hold for any algebra of entire functions of the
type

(a) Hyy (C") = Timproj Hyy,
Keroo

or

(b) BM(C") = lmind H,y,,
K=o

where M = {M} is a system of functions Mz: (1, o0) — (1, o0) such
that the following conditions are fultilled:
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(2) V&, D, K ALK, 0| "M (Dr) < OMye(r), 731,
or . k
(b) Va,D, K AK, 0| " Mg(Dr)< OMy(r), r3=1,
and Hyp, == Hy, (C") is the Banach space of all entire functions such
that |f|, < OMg(r) for some C and every r > 1, with the norm

”flEM,ﬂ” = S:}IIJ I.flr/]l[lc(r)‘

6. Results about polynemial modules. Lot P, denote the algebra
of all polynomials C[z, ..., #,]. The cartosian products PY and H(CMY
of N copies of P, (vespectively I (C")) are modules over I, and H(C"),
respectively. To every (N, x N)-matrix of polynomials @ = (Qy) wo.
attach the module homomorphisms

Q: PY—PJo and §: H(CYWY —H(CY),
N
which are defined to map(g,)¥, into (j Zi' Q49;)7%9, . Such homomorphisms

will be called polynomial homomorphisms. Evidently, . the vectors Qs
= (@), 1 <j< N, generate tho submodulos Im@ and Im¢, where

N .
IIIIQ ={fE'P’Z”VO: f =291Qj, ng»P,” 1<j’<.N},
J=1

N
Ing ={f e H(C"): f = D)0y, g; e H(C", 1<j< N}
i=1

Modules of this form will be called polynomial modules.

Now consider the submodule KerQ < PY. Since the polynomial
ring P, is Noetherian (cf. [10]), Ker@ has a finite system of generators
{QiePy, 1<E<XN,}. The polynomial vectors @} = (@} )N,
1< k< Ny, determine the matrix @' = (@J,). Consider the corresponding
module homomorphisms @' and ¢*; then we have the sequences

1
(6.1) NS p¥ 4 py
and
(6.2) wHemM & ey & ogemm,

By the construction of @', Kex@ = Im@?', i.c. soquenco (6.1) is exact,
T is natural bo ask if the same is true for sequence (6.2), i.e.if Kor§ = Img*.
The answer is affirmative (see Lemma 7.6.4 in [2]). Therefore we have
LeMwaA 19. Let 2 H(C™WY — H (C™)M be o polynomial homomorphism.
Then Ker @ is a polynomial module, i.c. there exists a polynomial homomor-
phism G': H(C"YN1— H(CYY, such that Ker§ = Img'.
TrmormM 20. Let ¢§: H(CYHY - H (€™ be a polynomial homomor-
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phism. Then Ker@ and Imé are complemented subspaces in H (€Y and
H(C")No, respectively. In pariicular, every polynomial module is a comp-
lemented subspace.

Proof (Sketch). By Lemma 19, it is enough to prove that Img
is a complemented subspace. The detailed proof would roquire to repeat
many constructions of Sections 1-4. We shall only underline those points,
where some modifications are needed.

We begin with some constructions, econnected with the wmodule
M =1Im¢. The system {z(a,4), ae Z, 1<i< N}, where 2(a, i),
equals 2% if ¢’ =4, and 0 if ¢’ = i, 18 the natural basis in the space 11 (™M,
‘We introduce a linear ordering in the set of all indicos {(a, 9)} in the tollo-
wing way :

(a'yi') <(a”,4"), it
where for multi-indices o', o'’ € 2% the relation of ordering “<?” ig the
same, as in (1.1). )

Let T' = T'(M) be the set of all indices (@, %) sueh that the bagiy cl-
ement z(a, i) belongs modulo M to the linear hull of the preceding bagis
e'ements z(8, j), i.e.

T'=T(M) = {(a,9): 2(a, ) € [2(8,4): (B,5) < (a, 4)]-+M}.

o' <o or o =a" and ' <,

No
Then T = (J I; where T} = {(a,4) eT: i = Jj¥ We can consider T
F=1
as a subset of the jth copy of the lattice ZY,1<j< Ny, and T as o subset
No

in their union U Z%. Obviously GVOI;Y subset T'; is- monotonous and, by
Lemma 1, the Js;; of ity minimal elements I is finite. Therefore the set
I'= 601’] is also finite. Let us fix, for every olement 7 — (v,4) e,
some ];elpresentation (analogously to (1.4)) v = ¢+ 0, 6eZ%, yely.
For every § = (y,4) eI, we consider the corresponding expansion.

d7) = D 0Le(5)+P(G), P() el
G<Y, G#T
The system z = {P(7), 7 € I'} generate the module M.
We shall not give all constructions, which have to be done analogously
to the constructions in Sections 1 and 2. Instead of this wo shall only
remark that they imply the following statement:
ProrositIoN 21. Under the assumptions and notations of this section
there exist continuous linear operators
Ryt H(C™YNo s H(CM,
and

Ry H(C")N"‘*H(C’Z;L(No; o), # er,

icm
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where H(C", L(N,, 0)) is the space of all holomorphic fumetions om C®
with values in the space of all complen (Ny X N,)-matrices such that
(@) [ = Rof-+ 3 (Bs f)I; for all f eI (CNo;
yel'
(b) ImBy = g, where Iy is the closed Tinear hull of the system

No o
{ela, i) (2,9) €8), 8 == (U ZNT; KRy = H(a) = M, B = Ry;
e

(¢) The oporators Iy, By, v el'y map the polynomial cements into
polynomial elements; moreover, for their degrecs we have
deg Bf = dogf--d,
where @ 48 a constant, deponding only on the module M. (The clement
f = (fi)o is said to bo a polynomial eement if f;, 1<i< Ny, are poly-

nomials. We define deg f == max dog f;.)
1Ny -

(d) For every operator K (Ry, By, ¥ € I") we have
\Bfl, << O |fl  for all fe H(C™, r>1,
where | fl, = max |fyl, for f = (fi)7'0.
4

Point (b) of this proposition gives the statement of Theorem 20
on the module M == Im@. m

Tvidently, it M < H (O™ ix a polynomial module, one can construct
(using Lemma 19) an exact sequence

. N O i G
(6.8) —> H(C"Wn Ly gr(emVe-1 21y s gremy s g (em M,
where M == Ker@, and §,, k =1, 2, sy ATO polyuomia-l homomorphisms.
Tvery such soquonce ig called a polynomial free resolution of M.

COROLLARY 22. Hvery polynomial free resolution of o polynomial
module M < H(C")No splits.

Proof. Indeed, “splits” means that there exist continuous lm,.ea.r
operators 8, which are rvight-hand-inverse to @y, & =1,2,..., ie.
@18 = Loy, Since Im@y, Koerd,, k=1,2,..., are complemented
subspaces, one can. oasily congbruct such operators.
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Corrigendvm and addendum to the paper
“A simple diophantine condition in larmonic analysis’
Studia Math. 52 (1975), pp. 195-202

1

by

RON O, BLIX

1. Lemma 2.3 in [1] is misstated and should boe replaced by
LimMA 2.3, Let I" be a discrele (not necessarily countable) abelian group.
Let {F;}2., be o family of finite and mutually independent sets (0 & 17),
i.6., gp () Ngp (Fy) = {0} whenever ¢ 4 j. T'hen, {I}} is « swp-norm par-
tition for ()17,
7

Victimized by the misstatement of Lemma 2.3, the proof of Theorem ¢
containg an error: We can conclude only that the Sy’s are independent
in the sense that whenover y, eS8y, ¢ =1, ..., & N; o Ny, i @ 440,
then {y,}%_; is an independent sob. Bub, we cannot conelude that gp (Sy) 0
Ngp(8y) = {0} whenever N =% M, and therofore we ave unable to apply
the (correctly stated) Lemma 2.3. We are unable to supply a correed
proof of Theorem C. The above error does not affeet the main results of the
paper.

2. Our diophantine condition is necessavily satistiod by H = (JI7,
where {;} is as in Lemma 2.3 : Without loss of generality, we assumo that
UTy « @Iy =TI, where Iy = gp(F) and Iy =G, Lot Dy, as usual
be a dense countable subgroup of G, and write ) = (1), which is, then,
a denso countable subgroup of @6 == I, The proof of the following
proposition iy a routine veritication.

PROVOSIRION. $py () 4y) acoumadatos precisely at O (D),: (DL -» 60 ).

Again, as at the end of [1L], we note that the independence condition
in the above proposition i gsharp in the following senge: A sequonce of
disjoint and mutually lacunary blocks of intiogers, {7y}, can bo construetod
80 that @p(|JH,) is denso in j), for all D =5 I Mo geo this, wo mimice the
construction at the end of [17, and add the requiremont thatb Woylly == Lo
It then follows (seo Tiemma 1.2 in [27) thab U specthy 18 dense in ﬁ, tha
Bohr compactification of Z. Our claim now follows from the observation

that if # < Z is dense in 5}, then .(])'l)(Es == f), for all D < I
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