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Corrigendvm and addendum to the paper
“A simple diophantine condition in larmonic analysis’
Studia Math. 52 (1975), pp. 195-202
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1. Lemma 2.3 in [1] is misstated and should boe replaced by
LimMA 2.3, Let I" be a discrele (not necessarily countable) abelian group.
Let {F;}2., be o family of finite and mutually independent sets (0 & 17),
i.6., gp () Ngp (Fy) = {0} whenever ¢ 4 j. T'hen, {I}} is « swp-norm par-
tition for ()17,
7

Victimized by the misstatement of Lemma 2.3, the proof of Theorem ¢
containg an error: We can conclude only that the Sy’s are independent
in the sense that whenover y, eS8y, ¢ =1, ..., & N; o Ny, i @ 440,
then {y,}%_; is an independent sob. Bub, we cannot conelude that gp (Sy) 0
Ngp(8y) = {0} whenever N =% M, and therofore we ave unable to apply
the (correctly stated) Lemma 2.3. We are unable to supply a correed
proof of Theorem C. The above error does not affeet the main results of the
paper.

2. Our diophantine condition is necessavily satistiod by H = (JI7,
where {;} is as in Lemma 2.3 : Without loss of generality, we assumo that
UTy « @Iy =TI, where Iy = gp(F) and Iy =G, Lot Dy, as usual
be a dense countable subgroup of G, and write ) = (1), which is, then,
a denso countable subgroup of @6 == I, The proof of the following
proposition iy a routine veritication.

PROVOSIRION. $py () 4y) acoumadatos precisely at O (D),: (DL -» 60 ).

Again, as at the end of [1L], we note that the independence condition
in the above proposition i gsharp in the following senge: A sequonce of
disjoint and mutually lacunary blocks of intiogers, {7y}, can bo construetod
80 that @p(|JH,) is denso in j), for all D =5 I Mo geo this, wo mimice the
construction at the end of [17, and add the requiremont thatb Woylly == Lo
It then follows (seo Tiemma 1.2 in [27) thab U specthy 18 dense in ﬁ, tha
Bohr compactification of Z. Our claim now follows from the observation

that if # < Z is dense in 5}, then .(])'l)(Es == f), for all D < I
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Tinally, weremark that the examples B e 7 sueh that L5 - 0 3 4,
congtructed by Rosenthal in [3] follow from our Theorem B in [17]. Tf i

>
proved in [37, via the notion of sup-norm partitions, that (J(19)%n! .

neal
) o

=X and UJ (2n)! By, = I* are Re-sots:  Let W ) Ly > [0, 2m)
=) Nesl)

be the map that carvies «e B2y, into Zw—-» ot (mod 2r), Seb

D = DZpyy [korW. Bivee, for N e Z (N )(n) is N (mod (2n)1), it follows
that @, (F') and @, (H*) aceumulate only at 0 in 0D (- closed subgroup
of ®Zyny). Now apply Theorem B,
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