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DUELS WITH POSSIBLY ASYMMETRIC GOALS

1. Introduction. We generalize slightly the usual formulation of the
family of zero-sum, two-person games called duels. Player I (IT) has m (n)
bullets. He may fire at any times during [0, 1]. If Player I (II) shoots
at time ¢, he hits with probability P,(t) (P,(t)). The probabilities P; are
called accuracy functions and are assumed continuous and non-decreasing
_ With P,(0) = 0, P;(1) = 1. If either player hits, the game immediately
ends. The pay-off is u (— ) if only Player I (IT) hits and it is u— o if
both hit. Otherwise the pay-off is 0.

The mild generalization here is in going beyond the usual case of
# =9 =1. :

A bullet is noisy (silent) if the opponent of the shooter knows (does
Dot know) that the bullet has been fired. Such information is instantaneous.
A player is noisy (silent) if all his bullets are noisy (silent). A duel is noisy
(silent) if both players are noisy (silent).

For 4 = ¢ =1, general solutions exist for the silent duel [3], the
noisy duel [1] and the silent vs. noisy case (Player I silent, Player II
noisy) with » = 1 [4]. A formulation of a non-discrete firing duel and its
Solution for 4 = ¢ = 1 has been provided by Lang and Kimeldorf in [2].

In this paper these results are all given in the more general context
of arbitrary u, ¢ > 0. The results in the more general context are generally
the same, but in the silent vs. noisy case we must deal separately with
¢ = 0. Proofs are not presented when they are identical with those of
Previous papers.

Sections 2 and 3 present the noisy and silent cases. Section 4 contains
silent vs. noisy duels and is divided into three subsections dealing, respec-
tively, with the cases n =1, p>0; m =1, ¢ =0; and n =1, ¢ = 0.
The solution of the first of these cases is a straightforward generalization
of Styszynski’s [4] result. The second reduces to the solution of the noisy
duel. For the third case, the solution is, in a sense, partially Styszynski’s
and partially the solution of the noisy duel. Section 5 deals with the non-
" -discrete firing case.

2. The noisy case. If there exists a ¢ e (0,1) such that P,(t) =0
and P,(t) =1 or P,(t) =1 and P,(t) = 0, the solution of the game is
obvious. If this is not the case, Fox and Kimeldorf ([1], Section 2) show
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that there exist ¢; € (0, 1) satisfying

m n
(2.1) [ 11 =Pl [ [ (1 —Pa(tm)] = 1
1=1 J=1
for each m,n =1,2,... Furthermore, 0 < P,(l;),Py(t;) <1 and
tU < min(t'_l’j’ tl'.j—l)’ Whel'e tOJ = t‘-o = 1.
Multiply both sides of (2.1) by u + ¢ and rearrange to obtain

m n
22)  p—(u+o) [[(1—Pitu)] = (u+e) [ [ (1 —Pyltm)]—e
=1 j=1
and denote the common value of the two sides of (2.2) by v,,,. It is then
easy to verify the recursive relations

Vyn = uu-Pl (tmn) + [1 _Pl (tmn)]'v -1, = QPz(tmn) =+ [1 _-Pz(tmn)]'vm,n—lr
where v, = —p¢ and v,, = u for m,n =1,2, ...

The proof of the following theorem is as in [1], Section 3.

THEOREM 1. The noisy duel has the value v,,,.

The &-good strategies used to prove Theorem 1 are randomized. Play-
er I chooses a time ¢ for his first shot according to an arbitrary probability
density on (?,,,, t,.,+ 6), where 8 is chosen to satisfy

(i) Pa(tpn+ 0) < Py(tmn) +2/3;

(ii) tpp+ 0 < mMin(ty_y ny by ner)-

He will shoot at time ¢ unless Player II shoots first. If both players
survive, he will then choose an (¢/3)-good strategy in the resulting game
(available as a consequence of (ii) and an inductive hypothesis). This
makes the probability of simultaneous firing equal to 0.

Set

bmn = ."‘Pl(tmn) - sz(tmn) + [1 —Pl (tmn)][l _Pz(tmn)]@m—-l,n—u

the result, to within ¢, of simultaneous firing at tinie ,,, followed by &-good
strategies in the resulting game if both players survive. As in [1], Section 4,
if b, = Vyn (Dpn < V), Player I (II) has an e-good strategy in which,

unless his opponent shoots earlier, he shoots his first bullet at time ¢,,,.
In this case we say that ¢, is a good first shot time.

Example 2.1. Let P,(3) = P,(t) =t. Then
ton = 1/(m+n)7 Vpp = (m:“_'n’@)/(m‘*_n) and bmn = vm—l,n—l/(m"{_”)z-
Hence b,,, > v, iff v,_, ,_; > 0, that is, (m —1)u > (n —1)e. A player
whose opponent has one bullet always has a good first shot time i,,.
Example 2.2. Let ¢ = 0. It is easy to see that Py(?,,_, ,—,) > Ps(lp,).
Hence
(2'3) bmn = .uPl(tmn) + [1 ""'-Pl (tmn)] [1 —Pz(tm—l,n—l)]vm—l,n—l

= /“Pl(tmn) + [1-P1(tmn)]”m.n—1 = V)
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8o that Player I has a good first shot time ¢,,,. In this case, Player I has
@ good strategy. Equality results in (2.3) if and only if v,,_, ,_, = 0 which,
for u > 0, the only interesting case, requires m = 1.

3. The silent case. In the silent case we proceed as in [3]. Assume
that P, are differentiable. Set
pP,(x;) it 2z, = a,,
—oPy(y;) I 2z =y,

and definc $(z;) and y(2;, ..., %) as in [3]. Then M(z,y) = 9(21) ..y Zmin)-
The lemmas of Restrepo ([3], Section 4) are identically proved. Note that
m and » are interchanged here.

We modify Restrepo ([3], Section 5) by putting
@(D"7") = puDy+ (1 — D;)p(D¥).
Then the formula in Lemma 4 takes the form

By ooy Ym—15Ym) — B Y1y - ooy Ypua1)

k-1 m—1
=[] @=Dy [] (1 —Py)1[1 —Ps(y)] x
i=1 i=1

Ok 41

x{(u+o) [ Py@)aFy(zm)+(1—Dyle+e(DH1}.
Ym

The remainder of the proof is as in the remaining sections of [3].
In Section 6 the factor 2 appearing in the definitions of the constants hy;
and y; becomes u+- o.

Thus, we find that there exist constants ¢, <a,<...<@, <1,
by =a,<b:<...<bp, =1, b; (s =1,...,m), k; (j =1,...,n), a (0
< a<1)and 8 (0 < < 1) such that, setting

Pi(1)
3.1 =] ] 0—P)]) 4
(3.1) £ = g[ U=y
and
| Pl(1)
(3.1) !J (1 =Pate)] z 5y
we have
1
(3.2) h, ff*(t)dt+a =1,
am

2 — Zastosowania Matematyki 17.1
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(3:2) ke g a+p=1,
bm
i1
(3.3) b [ fro@ =1 (i=1,..,m-1),
(3.3") ki | g*®dt =1 (j=1,...,n—1),
bs
(3.4) [ e+ ra— o1 —a)Py(0)1f* (At = (u+ 0)(1—a),
1
(3.4") [ [u+ 08— (1 —B)Pa(t)1g* (1) &t = (u+ o) (1—p),
bn
%41
(3.5) [ =PI W@ =1/, (i=1,...,m—1),
‘:‘;+1
(3.5") [ L-P.lg*@®dt = 1/k;yy- (G =1,...,n-1), -~
bj
(3.6) af = 0.

Then the following theorem is obtained.

THEOREM 2. The silent duel with the P; differentiable has a value and
both players have good strategies. Player I’s good strategy requires firing the
i-th bullet (+ =1, ..., m—1) at a time chosen in the interval (a;, a;. ,) ac-
cording to the density k;f*. His m-th bullet is fired at a time chosen in the
interval (a,,, 1] according to the distribution function F,, given by F, (i)
= kaf*() on (a,,1). The a; and k; are chosen to satisfy (3.1)-(3.5).
Player 1I’s good strategy is similarly defined wusing (3.1')-(3.5'). Further-
more, (3.6) is satisfied.

Example 3.1. Let m =n =1, Py(f) = Py(t) =t. If u = o, it is
easy to see that h, = k, =1/2, a = =0, a; = 1/3 and the value is 0.

Otherwise, try a = 0. Then, (3.2) yields a;>—1 = 2/h,. This with
(3.4) results in gh,V1+2/h, = o— uh, which has solutions

By = [o(p+ o)+ oV2e(r+ 0)1/(u* — 0¥)-

However, since o— uh, > 0, this solution requires u > ¢ which, in
turn, requires the use of the negative sign.

By (3.2') we see that 8 = 1 —k,/h, which with (3.4') and the previous
results yields

ky = [20—V20(u+ 0))/[2(0 — p)].
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Finally, the value is

0= —k [ [ot—p(L—01%@ — —ky[(n+ ) o' —1) — p(ar* —1)].

Similarly, we find that f = 0 requires x > p and the constants can all
be found by symmetry.

4. The silent vs. noisy case. In the silent vs. noisy case we must
consider separately o > 0 and ¢ = 0. For ¢ > 0 we deal only with the
case n = 1. For o = 0 we consider separately the cases m =1 and n = 1.

These cases are discussed in the three subsections following. Unfortu-
nately, the silent vs. noisy duel has not been solved yet in greater generality.

4.1. n = 1, o > 0. In this case, the method is that of Styszynski [4].
We assume that P, and P, are differentiable and their derivatives are
positive on (0, 1). The pay-off function is

p—[u+eP 1 [[(1—-Pi(z)] it 2, <y,

i=1

k
(41)  M(@,9) = {p—(u+Po@) [[(L-Pi(x)] i 2, <y <,
. k=1,...,m—1),
u—(p+e)Pa(y) it y <.

We will not consider y = x; for any ¢ =1, ..., m, since this will
occur with probability 0.
- The equation and solution for the probability density f; (¢ =1, ...
..., m—1) for the time of firing of the i-th bullet by Player I is exactly
as in [4]. However, for f,, we have ‘

(4.2) _ [e+ Qpl(y)]fm(?/)
e—e fP Of )t 41 [ Fin t)dt

v
D Piw)u+oPi(y)]
T Tu+ ePo(y)I[1—P1(1)]1— (e + ) Pa(y)

on [a,, 1). Since

(ki + e)Py(ay,)
(4 + @) Py (@) — [+ 0P2(a,,)1[1 — Py (ay,)] ]
the solution of (4.2)-we obtain is

fm(a'm) =

¢
(4.3) fu(®) = (u+ Py () E (exp | — [ [u+ oPy(u)IPy(w) K (u)du},
%
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where

E(t) = 1/{{u+ 0)Py(t)— [+ oP:(1)1[1L — P, ()]}

The form of Player IT’s strategy is an absolutely continuous part
with density g on (a,, 1) and probability g of firing at time 1. Here

flg(t)dt —1-8.
For t € (a,,,1) we obta,i:ll
[+ 0Pa(0)]g (9
(w8 + [ tu+ ePal)lg(0)

_ Pi()[p+ePe(t)]
[e+eP: (D11 — Py ()] —(u+ @) Py (})
The solution of (4.4) is of the form

(44) —

1
(4.8)  g(t) = (u+Q)BPIN K (t)exp{ [ [+ ePs(w)1P](u) K (w)du}.
¢ .

The equation and solution for g on (a;,a;, ,) (¢ =1,...,m—1) i
exactly as in [4] as is the proof of the existence of solutions for a,, ..., a,,
and pB. )

Thus we have the following

THEOREM 3. Consider the silent vs. noisy case with o > 0 and n = 1.
Assume that P, and P, are differentiable and strictly increasing. The game
has a value and the players have good strategies. Player I's good strateqy
requires firing his i-th bullet (¢ =1, ..., m—1) on an interval (a;, a,,,)
using the density proportional to that in (3.1) while his m-th bullet is fired
on the interval (a,,, 1) using density (4.3). Player I's good strateqy requires
firing hes bullet at time 1 with probability g > 0 and, otherwise, on the interval
(@y, 1) with density g which, on each (a;,a;.,) (¢ =1,...,m—1), is pro-
portional to that in (3.1) with P, agd P, interchanged. On (a,,, 1) the density
g i8 given by (4.5). The value of th®game is p—(u+ 0)P:(a,).

Example 4.1. Let m =1, P,(t) = P,(f) = ¢. Then (4.3) yields

J1(t) = (u+ o) (ea} +2pa, — ) (ot? +2ut — p) 32
so that we solve
1
[fimar =1
al'

to obtain
a; = [(p+0)*(u+20)"* —(u+0)l/e.
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Furthermore, (4.4) yields

9(t) = B(p+ 0" (ot +2pt — p)~*"2,
and solving

Jowar =

we obtain
[ ]
B = oa/[p+o(1+a,)] =1—(u+ o) /(n+20)".

Finally, the value of the game is u—(u+ 0)a,.

4.2. m =1, p = 0. Let t; be as defined by (2.1) and let v, be as
defined by (2.2). It is easy to see that the solution is that of the noisy
case. This includes the fact, noted in Example 2.2, that both players have
& good first shot time ¢,,. Thus Player II should shoot his j-th bullet at
time?, ., . .. PlayerIshould fire at the first of the bn—jrr() =1,...,0+1)
for which it is not true that Player II has previously fired j bullets.

4.3. n =1, p = 0. Assume that P, and P, are strictly increasing
and differentiable. Let ¢, be as defined in (2.1), i.e., P;(t,,) + Ps(t) = 1.
Let ¢ = («,, ..., x,) be a strategy for Player I with «,, = t,,. Then

pl1—Py(y)] if y <,
pl—Po(y) [[[1—Py(x)))y Hzm<y<w
(4.6) Mz, y) — { ﬂ 15 } i+1
(¢ =1,...,m-1),
sl [] 1Py} ity >t

For i =1,...,m—1 let f; be the density of x; and assume that the
Support of f; is (a,, a;,,), where a,, = t,,. We consider the randomized
strategy F for which #; (i =1, ..., m—1) is chosen according to f; and
‘/vm = tll' Then (4.6) ylelds
(4.7)  M(F,y) =

i—1%41

p1=Pu) [[ [ 11—Py(2)1f; () day [1 — f P (a))f;(@;) da |}

Jlaj

= if a; <y <ay,, (z=1 ceeym—1),

pfi— U f [1—Py(2))fy (@) dn}  if 4> t,.
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Assume that F is a good strategy, so M(F,y) =v for a, <y <1,,.
Differentiating in (4.7) with respeet to y € (a,, {,,) yields, as in [4],
Py(a;) Py(;) . .
4.8 ; =———- e <z <a; =1,...,m-—1).
( ) fz(mi) -Pl (-’L',)Pg (071) a; &y aa+1 (7' ’ y M )

Let @ assign the probability J to ¢,, and the probability 1 — é according
to the density g on (a,, t,,). Here

i

‘ [ 9y =1-s.

Then, by (4.4),

1
(4.9) M(z,@) =,;{1— [ P9)g(y)dy —

m—1 1 Tit1
_Ennrwmf mmw6HUPwm

for « in the support of F. But, for such x, if G is a good strategy, then
M (a: G) = ». Differentiating in (4.9) successively with respect to $m_1,
, &, yields, as in [4],

(4'10) g(y) 1(?”' \ i @ <Y < Ga (7’ = 1, s 'm_l))

P (y)Pz(?/)
where 1, _, = 6P;(y;)P(l;,) and Loy = L;,[1 —Py(a)].
Substituting (4.8) into (4.7) and using M (F, 1,,) = v we get
v = p[l—"Py(a,)].

The same result is obtained from M(F,y) =0 if 6, <y <iy;.
Substituting (4.10) into (4.9), using M(x,G) = v and setting z; = a,
(¢ =2,...,m—1) we obtain

v = p{l—1L[L—Py(a,)][Py(a)}-

The existence and uniqueness of the a; (¢ =1, ..., m—1) follow as
in [4].
Then, by using

m—1
h=mlnnfmwhumem[ﬂ1ﬂwm
J=1i+1 j=i+1

the normalizing equation

T

[9ay+o =1
a
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takes the form

o Putt P > T, [T 0-Pi@ 1) =1,

i=1 Jj=i+1
where

41

_ L (NS
’ o Py(y)Pi(y)

80 the remaining constants, 6, I, ..., ,_,, are uniquely determined.

This proves the following theorem:

THEOREM 4. Consider the silent vs. noisy duel with ¢ = 0 and n = 1.
Assume that P, and P, are strictly increasing and differentiable. The game
has a value and the players have good strategies. Player 1’s good strategy
requires firing his i-th bullet (#=1,...,m—1) on an interval (a;, a;,,)
using density (4.8), where a,, = t,, as defined by (2.1). The m-th bullet is
Jired at time 1. Player II’s good strategy requires firing his bullet at time 1,,
with probability 6 > 0 and, otherwise, on the interval (a,,t,,) using den-
sity (4.10). The value of the game is u[1— Py(a)].

It is interesting to note, when ¢ = 0, that (4.3) yields

¢ ’
P4 (1) 1 [ [14P(w)]P;()
4.11 = 2 S : d
A NCES N { e J P rwy 1 ™

However,

lima,, =1;.
e—0
But (4.11) with a, =1, is not a density. In fact, the distribution
of z,, is converging as p—>0 to degenerate at t,;. A similar remark applies
to g on (1,,, 1) as given by (4.5). Furthermore, 8 converges to 0 as ¢—0.
It is the probability assigned by g on (a,,, 1) Which tends to 8.
Example 4.2. Let m =2 and P,(t) = P,(t) = t so that 1, =1/2
ad I = §/4. Since f,(t) = a,t~%, we obtain a, = (V5—1)/4. Also g(f)
= 0t7%/4 for @, < ¢t < 1/2 yields 6 = 1—V5/5. Finally, the value is

p(l—a,) = pu(5—V5)/4.

9. Non-discrete firing case. The formulation and theorem of this
Section follow the pattern set by Lang and Kimeldorf in [2]. See their
Paper for a full motivation.

For ¢ = 1, 2 assume that we are given numbers N ;2 0 (ammunition
available to Player i) and strictly increasing, absolutely continuous func-
tions 4; on [0, 1] satisfying 4,(0) =0 and A,(1—) = co. The A, are
called modified accuracy functions. A pure strategy for Player ¢ is a measure
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A; on (0, 1) for which 2;(0,1) < N;. Set

Qut) =1—exp{— [4,di}.

(0,]
The pay-off function is

(8.1) MAydg) =p [ (1-Q.)dQ—o [(1-Q,)dQ,.
(0,1) (0,1)

There is an implicit assumption in this formulation that the duel is
silent. However, any randomized strategy is clearly equivalent to a non-
-randomized strategy. Hence, the good strategies, the existence of which
can be demonstrated, are pure. By the spy-proof property of good strategies,
we will then have the solution for the noisy case and for all mixed informa-
tion cases.

Let
A4;(1) .
(652) foult) =) OO0 SIS
0 : otherwise
and
4,() fa<t<l
(5.3) 9-,a(t) =1 4:1(8)[z4,() +4.(1)] ’
0 otherwise.

Lang and Kimeldorf [2] proved the existence of v>0 and a€(0, 1)
such that .

(5.4) [foa®dt =N, and [g.q()dt = N,.

Let f, and g, be the functions defined in (5.2) and (5.3), respectively,
with ¢ and 7 chosen to satisfy (5.4). We can prove that f, and g, are densi-
ties (normalized to give total masses N, and N,, respectively) with respect
to Lebesgue measure of good strategies for Players I and II, respectively.

The proof of the following theorem proceeds exactly as in [2].
THEOREM 5. The densities f, and g, are good strategies for Players I
and II, respectively. The value of the game is
wpd,(a) — gA(a)
T4,(a)+ Ay(a)
Example 5:1. Let 4,(t) = 4,(t) = —log(1—1). This corresponds to
getting P,(t) = P,(t) =t in usual duels (see [2]). Then

fea® = [(1—1)(1+1/7)log?(1 —t)]™"
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and

9:a(t) = [(1—8)(1+7)log*(1—2)]7".

Solving (5.4) we get 7 = N,/N, and a = 1—exp[—1/(N,+N,)], so
the value is ( N,p—N,;0)/(N,+N,). Compare this with the expression
for v,, in Example 2.1.
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POJEDYNKI Z MOZLIWOSCIA ASYMETRYCZNYCH WYPLAT

- STRESZCZENIE

W pracy uogélnia sig standardowy model pojedynku na przypadek niesymetrycz-
hych wyplat. Przedstawione s3 wyniki dla pojedynku gloénego, cichego, cicho-glosnego
! niedyskretnego. Poniewaz uiyte metody sa podobne do metod uzywanych w przy-
Padku symetryeznym, dowody twierdzen sa na ogél opuszczone.



