ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVI, 4 (1980)

M. M. SYSLO (Wroclaw)

GENERALIZATIONS
OF THE STANDARD TRAVELLING SALESMAN PROBLEM

The Standard Travelling Salesman Problem (STSP) is to find a mini-
mal closed tour of a weighted graph. A number of procedures have been
developed for solving the STSP but there is no known one which grows
less than exponentially with the number of nodes of the graph. The STSP
has many applications to scheduling theory, vehicle routing, the imple-
mentation of algorithms in complex computing machines, the construc-
tion of information systems, etc., and to meet additional requirements
of some of these applications the STSP has been generalized in many ways.
Most of the problems which can be considered as generalizations of the
STSP are to find the optimal routes for a group of salesmen provided
the routes satisfy a set of requirements. Then a given generalization is
obtained by specifying meanings of the terms “optimal”, “a group of
salesmen”, and “a set of requirements imposed on routes”.

One of the aims of this note* is to present a family of generalizations
of the STSP which correspond to all meanings of the above-mentioned
terms introduced so far and known to the author. Some problems are
reducible to others, in particular, to the STSP, but there are only a few
simple generalizations which are not NP-complete. The STSP is closely
related to the assignment problem (AP) which has also been generalized
in many ways, for instance as the multi-index problem or as the inde-
pendent assignment problem. Thus the following question arises: how
the generalizations of the STSP are related to those of the AP.

1. In the Travelling Salesman Problem we are given a non-negative
integer n and an n-dimensional square distance matrix D = (d;) or,
equivalently, we are given an #n-node complete network. Any sequence
t = (i3, 93y ...y Gy, 4,) of integers from {1,2, ..., n}, which contains each
of the n integers at least once, and the first and last integers of which are
identical, is called a four. A tour is a feasible solution to the travelling

* The paper was presented at the IX International Symposium on Mathematical
Programming, August 23-27, 1976, Budapest, Hungary.
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Salesman problem and an optimal solution is a tour such that

(1) 2(t) = ) d;
(%.9)et
is minimized, where

1 = [(":19 7:2), (":27 7:3)’ ey (’i’p—17 ip)’ (ip’ "'1)]

This formulation of the problem can be found in many papers and
the problem will be referred to hereafter as the Standard Travelling Salesman
Problem (STSP) since it is closely related to the application which is given
in the name: find the shortest closed path of a salesman who must visit
all cities of a network. _

Let us suppose that the matrix D is feasible for the STSP, i.e., it
does not produce any closed path of negative length.

Most generalizations of the STSP, which are very often called multi-
salesmen problems, are concerned with the minimization of the length
of ‘a tour which is required to satisfy some additional requirements.

Let us review some properties of optimal tours for the STSP. The
following theorem is well known:

THEOREM 1. If D satisfies the triangle tnequality, then there is an optimal
tour which visits each mode once and only once.

If D is an arbitrary matrix, we can apply this theorem to the matrix
D* = (d;), where dj; is the length of the shortest path from ¢ to j, and
then an are (i, ¢,) of an optimal tour under D* represents the shortest
path from 4, to ¢, under .D. Hence

COROLLARY 1. An optimal tour contains mo arc (i,, t,) for which there
ewists an i, such that d; ; +d;; < d;; .

Therefore, we can eliminate from considerations those arcs which do
not satisfy the triangle inequality and, furthermore, in certain cases the
STSP may be treated as the General Routing Problem (GRP) which is
to find a minimal tour traversing each arc in a required subset of arcs
of the network and visiting each node in a required subset of nodes of
the network. The STSP and the Chinese Postman Problem (CPP) are
special cases of the GRP. Any feasible tour of the STSP on a graph can
be considered as an Euler tour on a multigraph derived from a subgraph
of the graph. Euler tours are simply characterized and easily identified,
while no efficient and elegant characterization of Hamiltonian cycles has
been obtained. It has been pointed out by Orloff [8]-[10] that the GRP
approach can be more efficient than that of the STSP, since the GRP
takes more advantage of the special structure of a network.

We can easily prove the existence of an optimal tour of the STSP
‘which has the following properties:
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PROPERTY 1. There is an optimal tour such that each its elementary
subtour (i.e., a closed path without multiple arcs) contains a node of degree 2.

COBOLLARY 2. There is an optimal tour which contains a node of degree 2.
PROPERTY 2. There is an optimal tour which contains less than 2n arcs.

Thus, in fact, an optimal solution to the STSP is that to the following
multisalesmen problem:

ProOBLEM (P1). A salesman is required to visit each of n —1 “customer”
nodes from a “base” node (which is not fixed a priori). During his travel
he is allowed to return to the base. It is required to find such a base node
which minimizes the number of the base visits and the total distance
travelled by the salesman.

By Coro’lary 2, there are an optimal solution and a base which is
visited exactly once.

Note that for a fixed node a tour can be considered as the union
of elementary subtours. Notwithstanding, there is no need to introduce
different salesmen for different elementary subtours in the case of the
STSP with the optimality criterion of form (1). Simply, we may allow the
salesman to visit the base node during his travel. However, if D is a time
matrix, then we can state the following

PrOBLEM (P2). There are m salesmen available at a “base” node (which
is not fixed a priori) who are required to visit » —1 “customer” nodes and
return to the base node. The problem is how many of the m salesmen should
be used to minimize the time of travelling, i.e., to minimize

. Al
(2) y¥(f) = min max 2 d;,
1<k<n {vgy (hi)evs

where {v,}; is the set of elementary subtours of ¢ with respect to node &
(k=1,2,...,n).
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Fig. 1 shows the network for which
2(1) = z((abeda)) =20 and y(1;) = y((aboacda)) = 13.

§ — Zastosowania Matematyki 16.4
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2. The STSP has found application to many scheduling and sequencing
problems, in some cases, however, there is a need to introduce more than
one salesman.

Let us define the class of generalizations of the STSP as follows. We
are given » nodes N = {1, 2, ..., n}, m n-dimensional square distance ma-
trices D* = (d¥%) (k = 1,2, ..., m)and the cost vector C = (¢;, ¢y, ..., ¢,)T.
Let {t,} denote a family of subtours (i.e., closed paths) covering all
n nodes and let N, denote the set of nodes of ¢, (k =1,2,...,m).
We have

U‘Nk='N°
k

The problem is to determine subtours {f,} (i.e., also subsets {N,}
such that one of the following optimality criteria is minimized:

(3) Z({u}) = ZLk‘l‘ 2 Ck
% s N #2)

(4) Y({t}) =max L+ ) ¢,
k {k: Ny, #0}

where L, is the length of tk,' and ¢, is the cost incurred if a salesman k
is actively used. The restrictions on subtours {f,} and/or subsets {N,}
can be of the form

(5) |Nel > 1,

(6) NynNy, =0 (k #k),

(7) (\ Npad,
{k: Ny, 0}

(8) t, is the Hamiltonian cycle in N,,.

Basing on restrictions imposed on subtours {f,} and subsets {N.},
and the form of the criterion we can formulate the following problems:

PrROBLEMS 1, 2. For a number of subtours less than or equal to m
determine the feasible subtours {t,} satisfying (3), (b), (6) or (4)-(6).

PrROBLEMS 3, 4. For a number of subtours less than or equal to m
determine the point ¢* € N and the feasible subtours {t,} satisfying (3), (5),
(7) or (4), (5), (7).

PROBLEMS 5, 6. For a fixed node ¢* e N and a number of subtours
less than or equal to m determine the feasible subtours {t,} satisfying
(3), (8), (7) or (4), (8), (7).

As particular cases of Problems 1-6 we can consider Problems 1'-6"
in which the number of subtours m is fixed.

In further Problems 15-65 and 1g-65 restriction (8) is additionally
imposed on the subtours {t,}.
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In addition to the above problems we can formulate the whole series
of other problems with many practical applications. For instance, we
introduce the following additional requirements:

1° Assume that the k-th salesman can visit no more than (or exactly)
P; nodes, i.e.

(9) INel <pp (or =p,) (K =1,2,...,m).

2° We are given matrices V¥ = (v}) of the times of travelling. Let T,
denote the length of #, under V*. Then T, < s, (k =1, 2,...,m), i.e., the
time of travelling the %-th salesman is bounded by s,.

For the sake of simplicity, the class of generalizations of the STSP
can be characterized in terms of a five-tuple GTSP(:/-/-/-/-), wWhere
the first parameter is the number of nodes, the second term is used to
define the number of the subtours, the third term defines properties of
Subtours {t,}, the fourth term describes properties of matrices {D*}, {V*}
and of the vector C, and the last one defines the optimality criterion.
For instance, the STSP can be characterized by GTSP(»/1/a tour/D/X),
and, in virtue of Theorem 1,

GTSP(n/l/a tour/D satisfies the triangle inequality/2)

Is equivalent to
GTSP(n/1/a Hamiltonian cycle/D/Y),

f%tc. It is easy to see that GTSP (n/ < n/(7)/D/Z ) is equivalent to P1 which,
0 turn, is equivalent to the STSP, and that GTSP (n/ < n/(7)/T /minmax)
18 equivalent to P2.

The STSP is an NP-complete problem, and so seem to be nearly all
8eneralizations of it. It is interesting to note that GTSP (n | < n/(6) and
(8)/D |Z) is equivalent to the assignment problem which has an algorithm
hat runs in polynomial time, but a slight modification of the form

GTSP (n/ < n/(6) and (8)/D, C/Z+ X)

hag no polynomial time algorithm, since the STSP is a special case of it,
Ramely the STSP is equivalent to

GTSP (n] < n/(6) and (8)/D, C = (¢;, %0, ..., 0)[Z+Z).

There are some papers presenting the polynomial time transfor-
Mations of some generalizations to the STSP for which many algorithms
ave been published. Unfortunately, these papers deal with problems
Which assume the same distance matrix for all salesmen.
The most wide class of generalizations of the STSP has been presen-
ted by Zak [12]. He has considered problems 1y-64 and algorithms for
Solving them by a branch-and-bound method.
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Some generalizations have found application to the problem of routing
when there is more than one method of travelling, so that it is apparent
that some generalizations are related to the multi-index problem.

Let us define one new notion to show the relations between some
generalizations of the STSP and special cases of the multi-index problem.
If problem P is to minimize ¢(X) subject to X € A and problem R is to
minimize ¢(X) subject to X € B, then R is called a relazation of P if B o A.
It is evident that if X} and Xp are the optimal solutions to R and P,
respectively, then ¢(Xg) < ¢(Xp). For instance, the AP is a relaxation
of GTSP(n/1/(8)/D/X). Problem GTSP(n/<n/(6) and (8)/{D*}/X) can
be considered as a generalization of the AP; the distance matrices arc
different for each subcycle of a solution, and the following problem is its
relaxation:

Minimize
n n n
k .k
2, 2 2, Hat
i=17=1 k=1
subject to
n n

vh=0 (4,5, =1,2,..,mn).
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is a relaxation of
GTSP (n/m(or < m)/(5), (7) and (8), ¢* is fixed | {D*}/Z).

These relaxations are special forms of the problem of transportation
by different methods, which, in turn, can be transformed to the multi-index
Problem.

3. Conclusion. Some comments on the STSP have been presented
and the family of generalizations of the STSP has been described in this
paper. It is rather unlikely that there exists a great number of generali-
zations which are not NP-complete. It would be of interest to find all
“eagy” generalizations and to find polynomial time transformations of
generalizations to the problems for which some algorithms have already
been developed.

It seems likely that the multi-index-like relaxations of the generali-
zations can be used in methods of solving in the way the AP is applied to
solve the STSP. This approach needs an answer to the following question:
how to eliminate unfeasible (for a given generalization) solutions of the
corresponding relaxation, i.e., solutions which do not satisfy requirements
imposed on the subtours.
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M. M. SYSLO (Wroclaw)

UOGOLNIENIA STANDARDOWEGO PROBLEMU KOMIWOJAZERA

STRESZCZENIE

Klasyczny problem komiwojazera (STSP) polega na wyznaczeniu najkrotszej
drogi zamknietej, przechodzacej przez wszystkie wierzcholki grafu, w ktérym kazde-
mu polgczeniu zostala przyporzadkowana liczba — interpretowana jako dlugodé
polaczenia. Jest to jeden z najtrudniejszych probleméw optymalizacji kombinatory-
cznej, dla ktérego kazda ze znanych metod rozwiazywania jest jedynie pewng odmia-
ny ogbélnego schematu postepowania, polegajacego na niejawnym przegladzie calego
zbioru rozwigzan dopuszczalnych. Problem komiwojazera ma wiele zastosowan do
szeregowania czynnoéci, do wyznaczania optymalnych tras dla pojazdéw czy wresz-
cie do komnstrukeji systeméw informacyjnych i zostat uogélniony na wiele réznych spo-
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sobow, tak aby moégl byé stosowany do rozwigzywania rzeczywistych probleméw z
dodatkowymi ograniczeniami. Wiekszodé probleméw, uwazanych za uogélnienia
klasyeznego problemu komiwojazera, polega na wyznaczeniu optymalnych tras dla
grupy komiwojazeréw przy zalozeniu, Ze trasy spelniaja pewne dodatkowe ograni-
czenia.

Jednym z celéw tej pracy jest zdefiniowanie do&é obszernej rodziny uogélnien
klasyc¢znego problemu komiwojazera, ktéra zawiera wszystkie dotychczas rozpatry-
wane modyfikacje STSP. Pewne uogélnienia sa redukowalne do innych, w szczegél-
noéci do STSP, ale tylko dla niektérych istnieja efektywne metody rozwiazywania.

Koficowa czeéé pracy zawiera relaksacje niektérych uogélniern STSP, bedace
wieloindeksowymi problemami transportowymi.



