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On differentiable solutions of some systems of functional equations
of p-th order

by Z. KrzEszZOoWIAK-DYBIEC (Krakéw)

Abstract. On the baasis of the results of [3], a theorem on the existence of a dif-.
ferentiable solution & of the system of functional equations

&(f? () = Gz, B(2), ..., B(fP~}(2))

is proved in this paper. Under some additional conditions, regularity of the solution @
at the fixed point of the function f is investigated. Moreover, an example is discussed.

1. Introduction. The purpose of the present paper is to prove some
theorems concerning the existence of differentiable solutions of the system
of m functional equations of order p

(1) ¢(F(w)) = G[wy‘¢(w)r ceey ¢(fp—1(w))]"

where @ c R x R™ is an unknown function and functions f ¢ Rx R
and G c R™*!x R™ are given.

The problem of the existence and uniqueness of differentiable solu-
tions of the system of functional equations

@;(@) = kt(wr @1 (fl(m))-’ ceey 'Pm(fl(w))’ ceey ‘Pm(fl(m))) veny ?’m(fu(w)))y

‘where ¢; are unknown functions, was investigated by Z. Kominek in [1].
Most of the results of that paper have been obtained with use of fixed-
point theorems. Here we are not able to apply these methods.

All the theorems proved in this paper concern the case of non-uni-
queness.

Section 2 contains & lemma on the equivalence between system. (1)
and a certain system (2) of functional equations of first order, involving R™?-
functions:

(2) ‘ o(f(2) = g(z, o(2)),

where ¢ is the unknown function and the functions f and g are given.
,This section contains also a theorem on the existence of a C'- solutlon of
system (1) in an interval (a, b).
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In Section 3 we formulate some sufficient conditions for a C"-solution
of system (2) in the interval (a, b) to be continuous at the point b.

The theorem on the existence of a C"-solutions of system (1) in the
interval (a, b) is the subject of Section 4.

Finally, in Section 5 we show an example illustrating the theorems
proved in the previous sections.

Our considerations are based on the theory of differentiable solutions
of equation (2) contained mainly in [4], and the results of [3].

2. (C"-solution in (a, b). The investigation of system (1) can be reduced
to the investigation of a certain system of equations of first order. This
is a consequence of the following

LeMMA 1 (cf. [4], p. 246, also [2], p. 54). If the function f maps some
number interval I into itself, then the equation

®(f? (@) = Gz, B(2), (f(2), ..., B(f*~ ()]

18 equivalent to the equation

'(f(w)) =g(‘”’9(w))’
where the function
9=(91--,9p)y g <E"'xRB" i=1,..,p,
18 defined by

3) 9@ Yy s ¥) =Yy 9@y Y1y, Yy) = G(2yYy, ..., Y,)y
zel,yeR", i=1,...,p—1.

This equivalence to be understood in the following sense: if a fune-
tion &: I — R™ satisfies in I equation (1), then the function ¢: I - R™
defined by

(4) ¢(2) = (®(x), ®(f(2)), ..., B(" ' (@), o€,

satisfies in I equation (2) with g defined by (3). Conversely, it a function
? =(P1y.eey9), i(¥)eR™, ¢ =1,...,p, satisties in I equation (2)
with g defined by (3), then the function & = ¢, satisfies in I equation (1).

We start with quoting a theorem which was proved in [3]. First
we remind the hypotheses of this theorem.

Let

g: B"' > Q->RY, Q ={y: (s,y) e},
(@,bp c {&: Q, #0}, I,=9g(=,Q), I= l(;Jb){‘”}xI‘z’

and let r be a fixed positive integer. We assume that:

Iy f: <a,b)—><a,b), f(a)=a, f(b) =0, f(z))x for ze(a, b);
feC (a, b)), and f'(z) > 0 in {a, b},
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(II) ge0(2)(*) and for every z e (a,b) the function y g(z,y)
is invertible,

(III) h eC'(I'), where h denotes the function inverse to the funection
y—g(,y),

(IV) there exist sets 4, «c R", i =1, 2, vy Bje R j=1,2,..,
where ¢ < N, and functions

u;: (a, by x A; > RY, u,eC'(¢a,byx4), i=1,2,..,
v;: {a,b)xB;~>R", ©;,eC'({a,b)xB)), j=1,2
such that

Io— ey = };Jl u(r, 4;), Quy—1I,= jL=le,(a;, B;);

g uee

moreover, the set QUIis a region in the space RV*!,

(V) there exist a point (%, #) € 2, @, € (a, b) such ithat n = g(zy, n)
and a g, > 0 such that
{Zyy f(%e)) X By = QUT,
where S, is the sphere
S ={yeR": ly—nl < e}
Then we have
THEOREM 1 (cf. [3], Theorem 2). If hypotheses (I)—~(V) are fulfilled,

then for every o with 0 < o < g, and for every system of elements I* € RY,
k=1,...,r, there exists a function @ with the following properties:

(5) ¢ € C"((a, D)),

(6) @ satisfies system (2) in (a,d),

(7) le—nl<eo for every x e {m,, f(z,)),
(8) o (2 =0, k=1,...,r.

Now we are going to formulate a theorem concerning the properties
of system (1) resulting from Lemma 1 and from Theorem 1. For this pur-
pose we accept some hypotheses regarding the function G.

We assume that:

(IIg) G: R™*!' > Q> R™, Ge(C(Q), and for every admissible
() Yay -++»Y,) the function y, - G(z, Yy, Y,,...,y,) is invert-
ible.

(IIIg) HeC'(I'), where H denotes the inverse function to the function
Y1~ G(2, Y3y ..., Yp)-

(1) In the whole of this paper we understand the notion of Cr-class of a function
in the global sense. :
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Here
r= U U @ x{¥ .., 4} x G, Dy Y2y -, U,),s
D) (yy,....p)e
where
2, = {Ys .- Y): (Zy Yy .00y Yp) € Q3

={y1: 3@y -, ¥p): Wy -y Y) € 2.},
and
Q=W ) Yt (Y-, Yp) € 2},
zela,b),y,eR™ ¢ =1,...,p,
are non-empty subsets of the spaces R™?, R™, R™P~1 regpectively.
As consequence of Theorem 1 we get the following
THEOREM 1g. If hypotheses (1), (Ilg), (I1Llg) are fulfilled and if hy-
potheses (IV) and (V) are fulfilled for the function g defined by (3), then for
every o with 0 < ¢ < g, and for every system of elements L* e R™, k =1, ..., 7,
there exists a function @ with the following properties:

{9) be C'((a‘y b))y

(10) @ satisfies system (1) in (a, b),
(11) @—nl<e for every x e <, f(@)),
(12) oW (x) =L*, k=1,...,r

Proof. According to Lemma 1 it suffices to find a solution of equa-
tion (2) with g defined by (3). Putting N = mp we see that hypothesis (II)
results from hypothesis (II;). The function h inverse to the function g
given by (3) is defined by

(13)  hy(zy 24y ...,2p) = H(®@,20,...y %), M2y2y,...,2) =2,_,
T =2,...,p.

Hypothesis (III;) and formula (13) imply hypothesis (III). Consequently,
the hypotheses of Theorem 1 are fultilled. As elements I* in Theorem 1 we
take ‘

= (ka L;" "'1L;)’

where LY, = 2,...,p,k = 1,..., r, are arbitrary elements of the space R™.
"By Theorem 1 there exists the function ¢ = (¢4, ..., 9,) With properties
(5)—(8) and hence it follows, by Lemma 1, that the function & = ¢, fulfils
conditions (9)-(12).

This completes the proof.

3. Continuity of a regular solution at the fixed point. Now we are
going to formulate some sufficient conditions for the continuity of a C'-
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solution of system (2) in (a, b) at the point b (b is the fixed point of the
function f). For this purpose we assume some additional hypotheses:

(VI) There exists a point d € £, such that g(b, d) =

(VII) There exist 4> 0, g >0, and points %, e(b—36,b), n = 2,
such that
. 9@, n) =97 and [g—d|< /2.
We are now in a position to prove the following
THEOREM 2. If hypotheses (I)—(IV), (VI), (VII), and

(VIII) <1 ()

og l
—_ d

are fulfilled, then there exists a C"-solution of system (2) which is continuous
at the point b.

Proof. The theorem will be proved if we show that the function g
fulfils a Lipschitz condition with respect to y with a constant less than 1
in a neighbourhood of (b, d). Indeed, hypothesis (VII) implies hypoth-
esis (V); thus Theorem 1 implies the existence of a C"-solution of system (2)
in (a, b) which, in particular, fulfils condition (7). Then, to complete the
proof, we may repeat the same argument as in the proof of Theorem 12.9
([4], p. 262, cf. also [4], p. 76, Theorem 3.6) in which an essential role
is played by the Lipschitz condition.

On account of hypothesis (II) and the continuity of the function

(14) (,y) —

o)

there exist 6 > 0, o> 0 and 0 < & <1 such that

(15) “ —— (2, y)‘l <& for (z,y) e VN,

where
=(b—=8>bx{y: |ly—d| < o} c QUI.

Further, we remark that we are not able to apply the mean-value
theorem to the function g (according to hypothesis (IV), a required seg-
ment need not be included in a correspondent part of the domain of g),
but we can omit this inconvenience in the following way:

(?) The norm of a matrix A = {a;], ¢, =1, ..., k, is to be understand as the
operator norm )
|4l = sup |Au|, where u e R¥.
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From hypothesis (II) it follows that there exist a neighbourhood U
of the point (b, d) and a function g: U — R" such that g € C"(U) and
Jlvne =9

We suppose additionally that V has been chosen in such a way that
V <« U. For a.rbltrary points (z,y) e VN2 and (v,y) e VNQ we have
the equality _

(16) gz, y)—g@,y) = My—y),
where

m = [3y (=, f{j)] (z, ﬁj)EV i,j=1,...,N.
b

In the sequel we make use of the set identity
(17) V =(Vadu(Vn(I\Q)).

On account of hypothesis (IV) and the Sard theorem ([6], [6], cf. also [3])
we have

Moy (T=2) =my (U U (@) x (i (@), A)) =0
i=1 zea,b)
(my,,(4) denotes the (N +1)-dimensional Lebesgue measure of the
set A); thus the set VN(I'\Q) has no interior in the set V. From this
by (17) we conclude that the set VNQ is dense in V. Hence, by the con-
tinuity of function (14) for every 0 < ¢ <1 —98 (¥ from (15)) there exists
a point (z, ;) € VNQ such that

1s) - MY < 19|+,
where

M = ( z,&y) = (97 &)y, Hi=1,...,N.

3?!1
‘By (16), (18) and the prOpertles of the matrix norm we have

9(z,y)~g(z,Y)| = Gz, ¥)~F(2, 9| = I My~Y)|
< IMy—yl <M+ ) ly—yI < (6+¢) ly—y
for (z,y)e VNnQ ind (z,y) e VNAQ,

where #+¢& < 1, because 0 < e < 1—4.

This means that the function g fulfils a contractive Lipschitz condi-
tion in y. This completes the proof.

Now we are going to formulate another theorem giving sufficient
condition for the continuity of C"-solution of equation (2) in (a, d) at
the point b.

Replacing in Theorem 2 hypothesis (VIII) by the hypothesis

(IX) 0<i<l,
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where 1, = max |4,|, and 4, are the characteristic roots of the matrix
1<x<N

7
a—: (b, d) we obtain

THEOREM 3. If hypotheses (I)-(IV) and (VI1), (VII), (IX) are fulfilled,
then there exists a C"-solution of system (2), in (a, b), whioh 8 conlinuous
at the point b.

Proof. From a result by A. Ostrowski ([7], p. 161, also [2], p. 67,

Lemma 7) it follows that for an 0 < ¢ < 1 — 4, there exists a non-singular
matrix A such that

AZ—Z(b,d)A“||<l.,+e< 1.

Now we consider the linear map T': RY — RY defined by y* = Ay
and the function ¢*(z,y*) = Ag(x, A~'y*). We remark that
og* 2 -
Gyr 01 &) = A5, A7
thus the function g* fulfils hypothesis (VILI).
Further, we see that equation (2) is equivalent to the equation

(2*) ¢* (f(z)) = g*(z, p*(x)), where p*(z) = Alp(2),

in the following sense: if a function ¢ satisfies system (2) in (a, b), then
the function ¢* satisfies system (2*) in (a, b), and conversely, if a function ¢*
satisfies system (2*) in (a, b), then the function ¢ — A~!p* satisfies system
(2) in (a, d). )

On account of hypotheses (I)-(IV), (VI), (VII) and the properties
of the map 7' the function g* fulfils analogous hypotheses involving the
sets Q*, I'*, 2%, I'’, respectively.

Finally, we may apply Theorem 2 to system (2*), which is equivalent
to system (2).in the sense just described. This completes the proof.

In virtue of Lemma 1 we may formulate analogous theorems for
system (1).

For example, hypothesis (IX) obtains the form

(IXq) 0< <1,
where 1, = max |4, | are the characteristic roots of the matrix
1< *x<mp
0 I
oG ’
—-— (b, d")

oy
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and 0 denotes the zero (p—1)m X m-matrix, I denotes the unit
(p—1)m X (p —1)m-matrix, d? = ((d,...,d): p times).

As a consequence of Theorem 3 we have the following

THEOREM 3¢. If hypotheses (1), (1Lg), (IIlg), (IXq) are fulfilled, and if
hypotheses (IV), (VI), and (VII) are fulfilled for the function g defined by (3),
then there exists a C™-solution of system (1) in (a, b), which i8 continuous at
the point b.

4. ("-solutions in the interval (a, b>. In this section we formulate
a theorem on the existence of a C"-solution of system (1) in the interval
(a, b>.

Because the k-th derivative of the function satisfying system (1)
is a solution of some linear functional equation of p-th order, we first
prove a lemma on continuous solutions in (a, b of the equation

p—1
(L?) & (f* (@) = F(2)+ ) a;(a)&(f'(2)),

i=0

where the functions F = R x B™, @, « R x B™ (the values of a, are square
matrices of rank m), ¢ =0,...,p—1, f « EX R are known, and the
function @ < R X R™ is unknown.

LeEMMA 2. If the known functions in equation (LP) are conlinuous in
(a, b), the function f fulfils hypothesis (I) with r = 0 and

O0<o<1,

where 0y = max |o,|, o, are the characteristic roots of the matrix

I<x<mp
o e
a(b) ... a, (D).

(0 and I as in hypothesis (IX)), then any solution of equation (LP) which
18 continuous in the interval (a, b) is also continuous at the point b.

Proof. Let & be a continuous solution of equation (L”) in (a,b).
Then by Lemma 1 the function ¢ defined by (4) is a continuous solution
of the equation

(L) a(f(z)) = a(x)a(x)+b(x),
where
e . 0 ol
a(x) = mp
a‘ia:) cor @y (@)

i

mp
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(0 and I as above) and

b(z) = [F?a:)]}m‘” z €(a,b).

m

On account of A. Ostrowski’s result ([7], p. 161) we choose a non-singular
matrix A such that
(%) lla* (o)l < 1,
where
a*(z) = Aa(x)A™*.
Now, the function
p*(z) = Ag(z)

is in (a, b) a continuous solution of the equation:

(L*) o*{f(2)) = ¢*(2) a* () + b* (),
where

b*(z) = Ab(x).

From condition (%) it follows that there exists exactly one d* € R™?
such that
da* = a*(b)d* +-b*(b).
Putting
W* (b) = d*’

we prove as in [4], Theorem 2.9, p. 57, that the function ¢* is a ocontin-

uous solution of equation (L*) in (a, b), continuous at the point . Thus

the function ¢ = A~ '¢* is a continuous solution of equation (L) in (a, b).

Finally, by Lemma 1, we obtain that & is a continuous solution of equa-

tion (L?) in (a, b>. ‘ ' '
In the sequel we assume the inequality

(I1Xg) 0 <ALf ()] <1,

where 1, is defined in hypothesis (IX).
We aim at proving the following

THEOREM 3§. If hypotheses (I), (Ilg), (ITLg), (IXG) are fulfilled, and
if hypotheses (IV), (VI), (VII) are fulfilled for the function g defined by (3),
then there exists a CT-solution of system (1) in (a, b).

Proof. From the accepted hypotheses it follows that the assumptions
of Theorem 3, are fulfilled. In particular, from (IXg) we obtain (IX ),
because 0 < f'(b) < 1. Thus, by Theorem 34, there exists a function &
in (a, b) which is a C"-solution of system (1) and is continuous at the
point b.
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Observe that the k-th derivative of the function & satisfies the linear
equation of p-th order

(19) &% (f" (@)

o 2@, 0 (P @) H £ @)] e ()

+Fk[w, ®(2), ..., ®(f7'(@); ®'(2), ..., &' (P X(@)); ...
; 47N (@), ..y @FTV(fP N ()]
for every x € (a, b).

Now we make use of Lemma 2. For this purpose we have to study
characteristic roots of the matrix

|
@ R =g R T ST
WML @) ML ()]0 L ML ()]

where

oG .
9’:, =_(b’dp)9 1=1...,p,

oG
b,d?) =
B, 1) [

(b d d)]’ i,v =1,...,m,

mp

Y,

0 denotes the m(p — 1) x m zero matrix, I the unit matrix of order m(p —1).
We notice that if 1 is an eigenvalue of the matrix

® = [ o)

then A[f'(b)]”* is an eigenvalue of matrix (20), and conversely. This fact
follows from the equality

det(P—AI) = (f'(b))"**"det (I —A[Sf (b)1*I).

Writing
LI (0)]1* = max [A,[[f (5)]7%,
lsx<mp
from (IX7%) and by hypothesis (I) we obtain the inequality
(21) 0< A[f ()T *<1.

It is easy to observe, by (21), that the numerical system of equations

b4
d, = D Mf ()0, +ey,

=1
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where c, are defined by formulae
G o
¢, = —%(b,d")[f ()

C,H_l =Fk(b’dp’dlp’ooc,diz:_l)’ k=1, ...,1‘,

has exactly one solution.
Now we assume that

For k = 1, by hypotheses (I), (I1g), by inequality (21), from the fact
that & e(%(a, b)) and that &' satisfies equation (19), on account of
Lemma 2 we obtain lim &'(z) =d,. In the sequel we assume that for

z—b
fixed k¥ = 8—1 the functions &, @', ..., #*' are continuous in (e, b).
‘The function & satisfies equation (19) for ¥ = s. From the inductive
assumption it follows that the coefficients in equation (19) are continuous

functions. Condition (21) is also fulfilled; thus by Lemma 2 lim & (x)
z-b_
=d,. Consequently the function & is a C’-solution of system (1) in (a, b).

This completes the proof.

5. An example. Consider a linear equation of the form

P
(L) D) a,(@)(f(2)) = F(a).
i=0

We know (cf. [4], p. 259) that it is possible to reduce the order of
equation (L?) by the substitution
¥ = @(f(2))— A(2) P (),
provided that the function A satisfies the equation

D i—1
(NP1 a(@)+ D a(@) [[ 4(f (@) = o.
i=1 j=0

Then, for the function ¥ we obtain a linear equation of order p —1.

Equation (N?7!) (A is unknown) is of a lower order than (L?)
but it is not linear. The known theorems do not apply in this case. From
theorems proved in the present paper we get some information about
equation (NP~1) for complex-valued function of the real variable.

Let the functions a; map <a, b) into C, C — the set of complex number,
a; € (" ({a, b)), =0,..., p, and let the function f fulfil hypothesis (I).

We assume that a,(x) # 0 and a,(x) # 0 for every z € (a4, b>. Then

denoting
a, ()

b;(w) = “;p(w) ’

=0’-o|’p—1’

3 — Annales Polonici Mathematici XXXV11,2
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we may write equation (N”~') in the form

(14) A(fl’-l(m)) = Z_zb_"(_m)___I_bp_l(,;)_

i=0 :lj A (ﬂ(w))

On account of Lemma 1, equation (14) is equivalent to the system
(19 i(f(@) = gz, A(x),
where the known function ¢ is of the form

O bila)
g: Q3 (2, ¥y .-- yp—z) '—’(yu ceryYp_2y Zpi—z_-l-bp—l(w))’

Q ={a,b)XE,
and
B ={(yy:-oryYp-2): ¥4:6C, y # 0 for every i =0,...,p—2}.

Observe that Q, = FE, and

r,= {(za, ey ®p_y): 2,€C, 2, £0

223 b2
for every i =0,...,p—38, 2,_, # 2_;__3_+b,,_1(w)};

=1 ” z,
J=1i-1
thus we may write
I'z— 9](3) == u(w’ Cp—z)
and
gf(z)—ra: = (7, B)?

where the functions u and v are defined by
u: {a,b> x C*" %> (z, ¥, ..., Yp—3) > (Yoy -y Yp_3, 0) € cr

p-2
b(x -
v:(a,b)xBa(a;,yo,...,yp_,)»—»(yo,...‘,yp_s, pt_(a) +b _l(a:))ecp 1
=1 [l 9
J=i-1

and

B = {(4oy +-+y Yp_3): ¥; €C, y, # 0 for every i =0,...,p—3}.

In this case, ¢ = 2p—3, N = 2p -2 and, in fact, ¢ < N (¢, N from (IV)).
Moreover, u and v are of required regularity.
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Hypothesis (V) is fulfilled, as well, because the condition g(z,, #) = g,
7 = (7gy +++y 7p—,) I8 NOW equivalent to the condition

Y
D a,(@)nt = Q.
i=0

Thus from Theorem 2 it follows that there exists a function A of class C”
which satisfies equation (N”~') in (@, d). (In fact, there exist infinitely
many such functions.)

Consequently there exists a C™-solution of equation (N”~') in (a, b).

One can easily verify that hypothesis (VI) is also fulfilled. Further,
since the funetions a;,7 =0, ..., p, are continuous and since the roots
of an equation of p-th order depend continuously upon the coefficients
-of the equation (cf. [8], Theorem 76, p. 211-218), it follows that hypoth-
esis (VII) is fulfilled too.

Suppose, moreover, that the roots of the equation

og ) "1‘(". .),
det (L (b,d)— oI| = bd|w’ =0
(@) °(ay‘ )— o ,%,2;"*“ o

are less in absolute value than 1; here d satisfies the equation g(b,d) = d,

p *
i.e. ) a;(b)@ = 0. Then, on account of Theorem 3¢, there exists a C"-solu-
i=0

tion of equation (N?~!) in (a, b) such that lim A(x) = d.
Finally, if we accept the inequality *°-

0 < w [/ (3" <1,

where w, = max |w,|, w, are the roots of equation (w), then we may
I<xg<p—1

apply Theorem 37 to equation (N?~') thus obtaining the existence of
a C"-solution of this equation in the interval (a, b).
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