ANNALES
POLONICI MATHEMATICI
XXXVII (1980)

Antisymmetric operator algebras, 1l

by WAcCEAW SzZYMANSKI (Krakéw)

Abstract. By an analogy to antisymmetric sets for function algebras we intro-
duce antisymmetric projections for subspaces of operators in a Hilbert space. We
prove an antisymmetric decomposition theorem which may be regarded as a non-
commutative generalization of the known Bishop decomposition theorem for function
algebras. Some sufficient conditions for the decomposition of an operator algebra on
antisymmetric parts are given. Finally, we consider some examples and applications
of previous results to algebras of normal operators and to dilatable representations
of function algebras. '

1. PRELIMINARIES

1.1. Introduction. Problems of the antisymmetry in the function
algebras theory were studied by many authors (see [4], [56]). In particular,
Bishop proved a theorem on the decomposition of a function algebra
on antisymmetric parts (Theorem 13.1, Chapter II, [4]). The investi-
gation of antisymmetric subspaces and algebras by using Banach algebra
and operator-theoretic methods has been initiated in [10]. Independently,
Conway and Olin in [1], [2] have studied ultraweakly closed antisymmetric
algebras generated by one subnormal operator. They used mostly the
function algebra technique in the proof of an antisymmetric decomposition
theorem, which is one of the main theorems of their works. In the present
paper we introduce, by an analogy to antisymmetric sets for function
algebras, antisymmetric projections associated with a given linear sub-
space of operators in a complex Hilbert space.

In Section 2 we prove basic properties of antisymmetric and maxi-
mal antisymmetric projections. The antisymmetric decomposition theorem
is also proved.

We begin Section 3 with a simple corollary, that every reflexive
operator algebra, whose invariant projections commute, admits the anti-
symmetric decomposition. Next we prove a sufficient condition for the exist-
ence of the antisymmetric decomposition of a reflexive operator algebra.
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We conclude this section showing, how an antisymmetric decomposition
theorem of Conway and Olin ([1], Theorem 3.1) follows from some the-
orems of the present paper.

In Section 4 some examples illustrating previous theorems are given.
Moreover, we show the correspondence between maximal antisymmetric
sets for the uniform closure of the algebra of polynomials on a compact
subset X of the complex plane and maximal antisymmetric projections
for the norm closure of the algebra of polynomials in one normal operator,
whose spectrum is X.

Finally, we prove a theorem on antisymmetric projections for the
range of a dilatable representation of a function algebra. The geometry
of projections in von Neumann algebras and some methods of the
unstarred operator algebras theory are main tools used in this paper.
We refer to [11] for the theory of von Neumann algebras and to [8] for
unstarred operator algebras.

1.2. Notations and definitions. Let H be a complex Hilbert space.
L(H) denotes the algebra of all linear bounded operators in H, I, (or
simply I) stands for the identity in H. By a subspace of H we mean always
a closed subspace and by a projection we mean an operator E = E? = E* ¢
e L(H). If E is a projection, then every projection F € L(H) such that
EF = FE = F (equivalently: F < E) is called a subprojection of E. For
two projections E, F € L(H) we denote by EAF, EvF the projections
onto EHN FH and onto the closure of {Exz+ Fy: z,y € H}, respectively.
A subspace M < H is invariant under a set ¥ < L(H) if every operator
T €& leaves M invariant. Projections onto invariant subspaces for &
are called invariant projections. Lat¥ denotes the lattice of all invariant
projections for & with the lattice operations A, v. ¥’ stands for the com-
mutant of ¥ and W*(#) is the von Neumann algebra generated by &
and I. If E € L(H) is a projection, then ¥5 = {ES|gy: 8 € &} is a subset
of L(EH). If o < L(H) is an algebra with I, then its weak and strong
operator closures coincide ([8], Corollary 7.2). If T € L(H), then LatT
denotes Lat {T}, «/(T) stands for the commutative algebra of all poly-

nomials in 7, o/ (T) and &/ (T')° denote its norm and strong closures, resp.
Let # < L(H) be a family of projections. The set Alg¥ = {T € L(H):
F < LatT} is a weakly closed algebra with I. The inclusion & = AlgLat.s/
is clear for any algebra o < L(H). A weakly closed algebra & < L(H)
is called reflexive if &/ = AlgLat«. A family of projections # < L(H) will
be called a net if EvF ¢#, whenever E, F e¢#. Let now # be a von
Neumann algebra with I. For two projections E, F e ? we write E
~ F(mod %) if there is a partial isometry U e# such that U*U = E,
UU* = F. We use the symbol E < F(mod#) if there is a projection
E, € # such that B, ~ E(mo'%) and E, < F.




Antisymmelrio operator dlgebras II 301

2. ANTISYMMETRIC PROJECTIONS

2.1. Definitions and basic properties. Let us fix an arbitrary linear
subspace & of L(H). We assume that I € ¥ and we do not assume that &
is closed in any topology. Recall from [10] that & is called antisymmetric
if the only self-adjoint elements of &% are real multiplies of I. Define #
= W* ().

DEFINITION. A projection E € &’ is called antisymmetric for & if,
for each T €&, TE = T*E implies TE = rE with some real 7.

Comparing this definition with the definition of an antisymmetric
subspace we see, that & is an antisymmetrie subspace if and only if 1
is an antisymmetric projection for &. Moreover, a projection E €%’
(equivalently, F e#’) is antisymmetric for & if and only if ¥ is an anti-

_symmetric subspace of L(EH). Examples of antisymmetric projections
will be given in Section 4. Observe that if ' € & is a subprojection of an
antisymmetric projection E for &, then either ¥ = 0 or ¥ = E. Hence
if an antisymmetric projection for & belongs to &, then it is.a minimal
projection in &. It has been observed in [10] (Proposition 1) that a weakly
closed algebra o/ < L(H) with I is antisymmetric if and only if </ contains
no projections except 0 and I.

PROPOSITION 1. Suppose that E € Z' is an antisymmetric projection
for &. If F € ' i3 a projection such that E ~ F(mod #'), then F is anti-
symmetric for . Moreover, for T € R and for each complexr z: TE = zE
if and only if TF = zF.

Proof. Let U € #' be a partial isometry such that U*U = B, UU*
= F. We have then UE = U, U*F = U"* ([6], Problem 98). Suppose
that T € & satisties (T —T*)F = 0. This implies U*(T —T*)U = U"(T —
—T*)FU = 0, but U e #', hence (T —T*)E = 0. By the antisymmetry
of E, there is a real  such that (' —*I)E = 0. We have now: U(T —rI) U*

= U(T—rI)EU" = 0 and using again the commutativity of U with £
we infer that TF = rF. To prove the remaining assertlons we argue
similarily and the proof is complete.

PROPOSITION 2. Let E € 2’ be a non-zero projection. If F, G € Z' are
two antisymmetric projections for & such that E < F, E < G(mod#’), then
Fv @ is antisymmetric for &.

Proof. Take T €% such that T'(Fv@) = T*(FvG). Hence TF
= T*F, TG = T*@ and by the antisymmetry of F, G we find two reals r, s,
such that TF = rF, TG = sG. By the assumptions, there are projections -
E,, E;, € Z satistying B, ~E ~ E,(mod %'), E, S F, E, < G. Hence we
have TE, =rE,, TE, = sE, and, by Proposition 1, TE = rE = sE;
but E +# 0, hence r = s, thus FT = rF, TQ = rG@. Consequently, T(Fv @)
=r(Fv@) and the proof is finished.
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2.2. Maximal antisymmetric projections and the antisymmetric decompo-
sition. We will say that an antisymmetric pro’ection for & is maximal if
for every antisymmetric projection G for &, F < @G implies F = G. For
every antisymmetric projection ¥ for & there is 4 maximal antisymmetric
projection F for & such that £ < F. To see this, put ¥ = LUB#, where
F = {G €eA’': @ is an antisymmetric projection for &, E < @¢}. Since & is
a net (Proposition 2), F is the strong limit of elements of # ([11], p. 7)
and one easily proves that ' e #. Obviously, F is 2 maximal antisymmetric
projection for & and F < F. Denote by I the set of all maximal anti-
symmetric projections for &.

PROPOSITION 3. M < # R’ and elements of M are mutually orthogonal.

Proof. To prove that M < #nR’, take F e M, E # 0 and a unitary
operator U € #'. By Proposition 1, the projection ¥ = UEU" is antisym-
metric for & and one easily cheks that F' € Jit. By the double commutant
theorem, it is sufficient to prove ¥ = E. Since £ ~ F(mod #’), Ev F is
an antisymmetric projection for &, by Proposition 2. Thus £ = Ev F
= F, because E, F €. To prove the second assertion, assume that FE,
F eIt and EF + 0. Since E, F are central in #, they commute and EF
is a non-zero projection in £’ such that EF < E, EF < F. Now our prop-
osition follows from Proposition 2.

Define now two sets of projections:

¢ = {E e #': E is a projection and there is an antisymmetric projection G
for & such that E < G},

N ={(PeR: P is a projection, P has no non-zero subprojection which
belongs to &}.

The family 9 is hereditary in the sense of [9], i.e. if PeN and Q € #’

-i8 a subprojection of P, then @ e M. Define B, = @ F = LUBS& (the
FeMt

last equality verifies easily) and E, = I —F,. It is immediate, that
E, eN, moreover, E, = LUBN. Indeed, take P e N and F M. Since
PF is a projection, PF belongs to £. On the other hand, PF is a subpro-
jection of P, bence, by the definition of N, PF = 0. Since F was arbitrary
in M, PE, = 0, thus P < E,. Summing up we get the following theorem:

THEOREM 1. Let & < L(H) be an arbitrary subspace, which contains I
and let M < W (L)nW*(#)' be the family of all mazimal antisymmetrio
projections for . Then:

1° E, =F(-Bm F is the smallest projection in W*(¥) containing all

€
antisymmetric projections for & as subprojections,

2° E, = I —E, 18 the largest projection in the family N,

3° the decomposition H = HDH, (H; = E;H, i = 0, 1) is unique in
the following sense: Suppose that H = H @ H,| (E; are the projections onto



Antisymmetric operator algebras 11 303

H; i =0,1), E;cR and E, has no non-zero subprojection which belongs
toN. Then H, = H,, H, = H,.

In this theorem 3° follows from (A) in [9] and 1° is a simple conse-
quence of previous considerations. Observe that, if W*(%) is a factor
(i.e. W*(&) has trivial center), then either & is antisymmetric or & = &E,
by Theorem 1. Theorem 1 gives, however, only the decomposition H
= (@ FH)DE,H of the Hilbert space H, associated with the sub-

FeMl
space &. Clearly, every subspace &, F €M is antisymmetric, but in

such generality one can not expect that

(%) ¥ = (@ LrDFa,
Feit

where &5 = g, l.e. that & itself decomposes on antisymmetric parts
and $g. If the decomposition () holds, then we say that & admits the
antisymmetric decomposition. The following proposition gives a necessary
and sufficient condition for the existence of the antisymmetric decompo-
gition, when & is assumed to be an algebra:

PROPOSITION 4. Let o/ < L(H) be an algebra with I and let I be the
family of all maximal antisymmetric projections for . of admists the anti-
symmetrio decomposition if and only if M < .

We omit the proof, because it follows from simple known facts.

3. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF THE ANTISYMMETRIC
DECOMPOSITION

In this section I will denote always the set of all maximal antisym-
metric projections for a given operator algebra o with I.

3.1. Algebras, whose invariant projections commute. Let & < L(H)
be a weakly closed algebra with I. Assume that elements of Lat o commute
each other. If F ¢ M and P € Lat ¢, then PF = FP, hence Lat & < LatF,
thus F € AlgLat «/. By Proposition 4 we get:

COROLLARY 1. If o/ < L(H) is a reflevive operator algebra, whose
invariant projections commute each other, then o admits the antisymmetric
decomposition.

There is a class of operator algebras, satisfying assumptions of Corol-
lary 1, studied by many authors, so-called nest algebras. & = L(H) is
called a nest algebra if o is reflexive and Lat .« is totally ordered. Nest
algebras are examples of those operator algebras, which have no non-zero
antisymmetric projections and in the antisymmetric decomposition
& = ofy. Indeed, if o is a nest algebra, then & is irreducible, conse-
quently W*(#) is a factor. Moreover, &/ contains always (in non-trivial
cases) a self-adjoint operator, which is not any scalar multiple of 7; namely
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the generator of the commutative von Neumann algebra W*(Lat)
(here we assume that H is separable). By remarks after Theorem 1 wec
have & = o/y.

3.2. Remarks on operator algebras. Here we collect some simple re-
marks needed for the proof of the main theorem of this section.
Let &/ < L(H) be an algebra.

Remark 1. If F € o/ is a projection, then F e (Lat «/)’.
Remark 2. If ¥ € &/’ is a projection, then

Lat(&/5) = {Fr = projection EH onto EFH: F € Lat «/}.

The proof is standard.

Remark 3. If Few is a projection, then {F|gy: F e Lat«}
< Lat(og).

Remark 4. If Fesna’ is 'a projection, then (AlgLat.«),
= AlgLat(+z).

The proof follows from Remarks 1 and 2.

Remark 5. If o« < L(H) is a reflexive operator algebra and E e
& N’ is a projection, then o7 is reflexive.

This is a consequence of Remark 4.

Remark 6. If & < L(H) is a reflexive algebra and E € & is a projec-
tion, then for every projection P € &/ there is a projection P, € &/ such
that P = Pylgg.

The proof follows from Remarks 1 and 3.

3.3. The theorem and corollaries. Let us fix now a weakly closed
algebra &/ < L(H) containing I. Take a projection F' € L(H) and define

Xy ={Ees: E is a projection, FF = 0},
2, ={E e«: E is a projection, EF = FE = F}.

Put K, = LUBXy, Dy = GLB92,. Since & is weakly closed, Kj
€ X py, Dp € D5, by [11], Lemma 1. Both K5, Dy are uniquely determined
by F and «. It is plain that E € X 5 if and only if I — F € 9,. Consequently
I-Kpe9yand I —Dpe Xy, hence I — Ky = Dy.

Now we are able to prove the following theorem:

THEOREM 2. Suppose that & < L(H) is a reflexive algebra such that
Dj. belongs to o’ for every F € M. Then o/ admits the antisymmeotirioc decom-
position.

Proof. By Proposition 4, it is sufficient to prove M /. Take F e M
We claim, that D = D is an antisymmetric projection for . Since
D es/ns’ and o is reflexive, &/, is also reflexive, by Remark 5, hence
o/, is weakly closed in L(DH). By the remarxs after the definition of
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antisymmetrie projections in 2.1, to prove the claim it is enough to prove
that the only projections in =7, are 0 and I ;. Let P € 7, be a projection.
By Remark 6, there is a projection P, e .o such that P,|,; = P. Since F
is antisymmetric for .o/, o/ can not contain any projection except 0 and
I, consequently, every projection, which belongs to &/, must belong
either to 4" or to 9. If Py € A 5, then P, << Ky, thus P,.D = 0, because
D =1—Kyg. Similarily, if P,e 9, then D<P,, thus P,D =D. It
implies that either P = 0 or P = I,,, which proves the claim. Since
FeMand F < D,wehave F = D (F is, obviously, assumed to be different
from zero) and theorem is now proved.

In particular, the assumptions of Theorem 2 are satisfied, if o7 is
reflexive and commutative (& < »/’). We have then

COROLLARY 2. Every reflexive, commutative algebra admits the antisym-
. metric decomposition.

COoROLLARY 3. If 4 € L(H) 18 an operator such that o (A)° is reflexive ,
then o/ (A)°* admits the antisymmetric decomposition.

3.4. Remarks on a theorem of Conway and Olin. Let (X, u) be a finite
measure space; put H = L?(u). By M we will denote the von Neumann
algebra in L(H) consisting of all operators L,f = uf, w € L*(u), f € H.
The map @: L®(u)—>M defined by &(u) = L, is a *-isomorphism of these
two algebras. If we endow L®(u) and M with the weak-star and weak
operator topologies, respectively, then @ is a homeomorphism. Conway
and Olin have proven the following theorem ([1], Theorem 3.1):

THEOREM C-0. Let o be a weak-star closed subalgebra of L™ (u) such that
1 e/ then there is a measurable partition {A,, 4,,...} of X such that:

(a) x4, € A for every n >0,
(b) for n=1, x, 18 a minimal projection in <,

(¢) |4, is a pseudosymmetrio subalgebra of L®(Ay, u) (see [1] for the
definition),

(d) for n>1, | 4, 98 an antisymmetrio subalgebra of L°(4,, u),

(e) & = JE/IA(,GBWIA D ..

We want to show, how thls theorem can be derived from our prev1ous
results. We preserve the notation introduced before Theorem C-O. Sup-
pose that o < L*(u) is a weak-star closed algebra such that 1 € /. Trans-
lating it into the language of operators in L(H), ®(«) is a commutative,
weakly closed subalgebra of L(H) containing I = &(1). Moreover, @ (%)
congsists of normal operators in H. Now we apply Sarason’s theorem ([8],
Theorem 9.21) to infer that @ (<) is reflexive. By Corollary 2, @ (/) admits
the antisymmetric decomposition. Let ¥t be the set of all maximal anti-
symmetric projections for @(s). By Proposition 3, M = W*(P(«)) = M.
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Therefore each F € ¢ has the form Ff= y.f, f € H, with some measurable
set ¢ < X. Since different elements of M are pairwise orthogonal, there
is a partition {4;: F e M} {4y} of X, where Ay (F €M), Ay are meas-
urable subsets of X and Ay corresponds to the part @ (2)q of (7). Since u
is a finite measure, the set {4,: ¥ M} must be at most countable, more-
over, the part @(«/)y of @ (27) corresponds exactly to the pseudosymmetric
part #/|, of o/ in Theorem C-O, by the definition of the set N. It is plain
that «/|,r (F €9N) are antisymmetric subalgebras of L™(A4y, u). By
remarks after the definition of antisymmetric projections in 2.1; every

F eI is a minimal projection in @ (/). Now Theorem C-O follows from
Corollary 2.

4. APPLICATIONS AND EXAMPLES

In this section sp(T) denotes the spectrum of an operator T € L(H).
If X is a compact Hausdorff space, then C(X) stands for the algebra of all
continuous complex functions on X with the uniform norm. If X is a subset
of the complex plane C, then P(X) is the C(X)-closure of the algebra of
restrictions of all polynomials to X. R denotes the real line.

4.1. Examples concerning the antisymmetric decomposition.

ExAMPLE 1. Let T be a self-adjoint operator in a separable Hilbert
space H, let {2,, z,, ...} be the point spectrum of T and let E, be the projec-
tion onto the eigenspace ker(T —zI) (¢ =1,2,...). It i8 clear that the

only maximal antisymmetric projections for the algebra & = &/ (T)° are

precisely FB; and /g = /g, where E, =I—(® E,). Since F, e/
i=1
(¢ =1,2,...), & admits the antisymmetric decomposition, by Proposi-
tion 4.
ExaMpPLE 2. Now we present a non-commutative example of the
antisymmetric decomposition. In & three dimensional Hilbert space con-

sider two operators:
000 0
={100], 8= 0
601 0

n a fixed orthonormal basis. Clearly, T8 # ST. Let < be the algebra
with I of all polynomials in two non-commuting variables T, 8. The projec-
tion F = T2 is the only maximal antisymmetric projection for & and
g = fy_p. Since F € o7, s/ admits the antisymmetric decomposition,
‘by Proposition 4.

[—~B— N
[
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4.2. Antisymmetric projections for algebras of normal operators and the
Bishop decomposition. Now we want to give applications and interpreta-
tions of theorems proved in previous sections to algebras generated by
normal operators. Let 7 € L(H) be a normal operator with the spectrum
X <« C and the spectral measure E. For brevity, we will write simply:
“a normal operator (7', H, X, E)”. It is known that the closed support
of E denoted by suppZ is equal to X and the projections E(Y) belong
to the commutative von Neumann algebra W*(T) for every Borel set
Y < X. For v €e H we denote by m, the corresponding positive scalar
measure of the form m, (Y) = (B(Y)»,) (¥ is a Borel set, ¥ < X).
If Y < X is a closed set, we denote by E the restriction of £ to Y and
by T'y the normal operator T'|py)y;. The inclusion suppEy =sp(Ty) <= ¥
i8 known ([8], Theorem 1.13) and it may be proper, as we will see also
in one of examples. The Gelfand-Naimark theorem yields a *-isomorphism
¢: C*(T)—>C(X) of the C*-algebra generated by T and I onto C(X),
such that ¢(I) =1 and ¢(7) = 2zx — the identity function on X. Hence

¢(;7(T)) = P(X) and «/(T) is antisymmetric if and only if P(X) is. Let
now X be the Bishop decomposition for P(X), i.e. ¢ consists of all maximal
antisymmetric sets for P(X). Elements of & are pairwise disjoint and closed,
moreover, X is the union of all the members of . If ¥ € o', then Y
is a (weak) peak set for P(X), hence P(X)|y = {fly: feP(X)} < C(Y)
i8 closed in C(Y) and, consequently, P(X)|, = P(Y) (see [5]). Now it is
natural to ask, if, for given ¥ e o, F(Y) is a maximal antisymmetric

projection for &/(T) and conversely, if every maximal antisymmetric

projection for «/(T) arises in this way. We will show, that under a certain
natural assumption the answer is “yes”. But generally, the solution is
negative and the reason is, roughly speaking, that o depends essentially
only of the nature of P(X) and it does not depend on a special choice
of a measure on X. To be more precise, let us recall, that every cyclic
normal operator T with sp(T) = X is unitarily equivalent to the multi-
plication L, by zx in the Hilbert space L2(u) with a suitable finite, positive
measure u such that X = suppu — the closed support of x. Then sp(L,)
= X, the spectral measure of L, has the form E(Y)f = xpf (for any Borel
set ¥ = X) and corresponding to E scalar measures are m, = |f|®u,
f e L*(u). Now we show an example of a normal operator, for which our
problem has a negative solution:

ExXAMPLE 3. Let I = C be the unit circle. Choose a bounded sequence
%, € C such that |2, > 1 for all =, 2, has no cluster point 2, satisfying
[24] > 1 and every point of I' is a cluster point of z,. Let K be the closed
interval [0,1/2] < R. Define the compact X = I'u{z,: n =1,2,...}U
UK. The maximal antisymmetric sets for P(X) are exactly {z;}, {22}, ...
and Y= I'UK. Let 6, be the point mass at 2z, and let mg be the linear
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'Lebesgue measure restricted to K. Define the positive, finite Borel measure

0
p=mg+ 3 27"8,. It is clear that suppy = X and u(I') = 0. Hence

me=]
u(Y) = u(K). Put T =1L, in L*(u). Since suppu = suppE, we have
sp(T) = X. We claim that E(Y) is not any antisymmetric projection

for o/ (T'). Indeed, since E(Y) = E(K), we have for all f € L?(u):

—ro—

(TE(Y)f, f) = (TE(E)f,f) = [2Ifi*du = [z|fi*dmg.
K K

Thus TE(Y) is a self-adjoint operator, but TE(Y) can not be any scalar
multiple of E(Y). Let us point out, that sp(7Ty)= suppE,= K is prop-
erly contained in Y.

Now we will prove the following lemma:

LevMA. Let (T, H, X, F) be a normal operator.

(a) If Y = X is a closed set such that Z = sp(T'y) 18 a maximal anti-
symmetric set for P(X), then E(Y) i3 an antisymmetric projection for .s?(f).

(b) If PeA(T) is an antisymmetric projection for .;f(—T), then V
= 8p(T|pg) 8 an antisymmelric set for P(X). Moreover, P < E(V).

Proof. First we prove (a). Since Z = sp(Ty) = suppFEy, we have
E(Y) = E(Z) thus Ty, = T, and the algebras C*(Ty) and C(Z) are *-iso-
morphie, by the Gelfand-Naimark theorem. By the assumptions and
remarks at the beginning of 4.2, P(Z) = P(X)|, is antisymmetric, hence
W) leyr = < (Ty) is antisymmetric, thus E(Y) is an antisymmetric
projection for .}aTT) To prove (b) denote by E, the spectral measure of

T|py. Then we have for all Borel sets ¢ < X: E,(0¢) = E(0)|pg and
suppE; =V =sp(T|py). If f € C(X), we get:

f(Dpn= [fdB, = [fdB; = f(Tlpy).
1 4

Suppose that feP(X) is real on V. The above equality implies, that
f(1)|pg € #(T)|py i8 a self-adjoint operator. By the antisymmetry of
P, f(T)x = rz with some » € R, for all z e PH. Using again the Gelfand—
Naimark theorem to identify C*(T|py) and C(V) we conclude that f = »
on V. Since ¥,(V) is the identity operator in PH, the inequality P < E(V)
is clear and the proof is finished.

The following theorem gives a positive solution of the problem con-
sidered in this section: '

THEOREM 3. Let (T, H, X, E) be a normal operator and let X" be the
Bigshop decomposition for P(X). Suppose that:

(w%) for every Ye X if E(Y) #0, then Y = sp(Ty).
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(@) If YeX and E(Y) # 0, then E(Y) is a maximal antisymmetric
projection for .sx’_(T).

(b) If P 0, PeA(T) is a maximal anlisymmeiric projection for
A (T), then there is Y € & such that B(Y) = P.

Proof. To prove (a) take Y € o such that E(Y) # 0. Since Y
= sp(T'y), we have, by Lemma (a), that E(Y) is an antisymmetrie pro-
jection for o/(T). Let F be the maximal antisymmetric projection for

& (T) such that E(Y)< F and let Z, = sp(7|rg). By Lemma (b), Z, is
an antisymmetric set for P(X). Then there is Z € & such that Z, < Z.
Hence E(Y)< F< E(Z,) < E(Z). We have now E(YnZ) = E(Y)E(Z)
= E(Y) # 0 and this implies ¥ = Z, because Y,Z € ) and different
elements of & are disjoint. Now we prove (b). Let P 5= 0 be a maximal

antisymmetric projection for &/ (T). Using again (b) of Lemma we have,
that Z = sp(T|pg) is an antisymmetric set for P(X). Now we find Y € o
such that Z < Y and we get P < E(Z) < E(Y). By (a) in lemma and by

(*=), E(Y) is an antisymmetric projection for o/ (7). Since P is maximal
antisymmetric, P = E(Y) and our theorem is now completely proved.

This theorem establishes one-to-one correspondence between the set
of all maximal antisymmetric sets ¥ for P(X), which satisty E(Y) # 0

and the set of all non-zero maximal antisymmetric projections for .« (T).
Comparing this result with Theorem 1 we see, that under assumptions
of Theorem 3 the projection E, of Theorem 1 must be zero and I

= @ E(Y). To see that assumption (**) is satisfied in many cases con-
YexX

sider the following example:

EXAMPLE 4. Take in the complex plane C two disjoint closed discs
X,, X, and put X = X,UX,. Let (T,H, X, F) be a normal operator.
Clearly, X,, X, are the only maximal antisymmetric sets for P(X) and,
since suppEy, = X; (¢ =1,2), E(X,), E(X,) are the only maximal
antisymmetric projections for .WT)

It may occur that if (T, H, X, E) is a normal operator and ¥ < X
is @ maximal antisymmetric set for P(X) (even infinite), then H(Y) = 0.
One can easily see this, modifying Example 3.

4.3. Antisymmetric projections and dilatable representations of function
algebras. To finish this paper let us lock at Theorem 3 as at a theorem
concerning representations of function algebras. Namely, if (T, H, X, E)
is a normal operator, then the algebra C(X) has a x-representation ¢:
C(X)—~L(H) given by the spectral integral ¢(f) = [fdE, fe C(X). In
particular, the restriction of ¢ to P(X) gives a representation (i.e. an algebra
homomorphism) of P(X) into L(H), which has a spectral measure. Assume
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now that X is an arbitrary compact Hausdorff space and 4 < C(X) is

a function algebra. Let X be the Bishop decomposition for A. Consider

a representation ¢: A-—>L(H) and suppose that there is a semi-spectral

measure F on X such that ¢(u) = [ udF, u € A. By the properties of
T

semi-spectral integrals, this representation is continuous and [jp(u)|
< |lull, w € 4, ¢(I) = I. Now one can ask, what is the connection between
X and the set of all maximal antisymmetric projections for m) (the
norm closure). It follows from a construction due to Mlak (in a more
general setting) [7], that if ¥ € ", then F(Y) is a projection in the center
of the von Neumann algebra W*(p(4)). It follows from Example 3, that
in general, for Y € &', F(Y) need not be antisymmetric for qT(Z). But the
following theorem holds true:

THEOREM 4. Let A = C(X) be a function algebra and lot ¢: A—L(H)
be a representation of A of the form p(u) = [ udF, u € A, with some semi-

z

spectral measure F. If P € p(A)' i8 an antisymmelric projection for ¢(4),
then there 18 a maximal antisymmetric set Y = X for A such that P < F(X).

Proof. For x € H we denote by m, the positive scalar measure as-
sociated with F' of the form m_(s) = (¥ (0)=, z) (o are Borel subsets of X).
Let Z denote the union of all suppmp,, where z runs over H. We will
prove that Z is an antisymmetric set for 4. Let f € 4 be a function real
on Z. Then, for every = € H, f is real an suppm,. Since the semi-spectral
integral preserves the involution, we have

_((qv(f)"—tp(f))Pw, a) = [ (f~F)dmp, = 0.

Hence ¢(f)P = ¢(f)*P and, by the antisymmetry of P, there is » € B
such that ¢(f)P = rP. Since ¢(1) = I, we have p(f—r)P = 0 and, by
the multiplicativity of ¢, ¢((f—7))P = 0. Now, for z e H:

_’.(f—r)zdmnc = (?’((f—?')z)Pa;, a}) —0

and f = r on suppmp,, because mp, is positive and f is real on suppmp,.
Hence f = r on Z. Now we can find a maximal antisymmetric set ¥ <« X
for A such that Z < Y. It remains only to prove P < F(Y). Let us recall,
that F(Y) is a central projection in W*(¢(4)). For every # ¢ H we have

(F(Y)Pﬁi 3}) = mPJ:(Y) = sz(I) = (Pd?, (B),
because suppmp, < Y and Y is closed. The proof is now complete.
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