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Regular fractional iteration of convex functions

by Marexk Kuczma (Katowice)*

Abstract. The existence of a unique 0" solution ¢ of equation (1) is proved under
the condition that f: I — I is convex or concave and of class 1 in I, 0< f(z) < =
in I*, and f’() > 0 in I. Here I = [0,a] or [0, a), 0 < a < oo, and I* = I\ {0}.

1. Let I =[0,a] or [0,a), 0 < a < oo, be a real interval, and write
I* = I\ {0}. Further, let f: I — I be a function of class C' in I such that
0 < f(w)<axinI*andf (z)> 0in I. Puts = f'(0) e (0, 1].

Several authors (cf. [1], [3], [10], [11], [13], [14], [15]) bave studied
the C' solutions ¢: I — I of the functional equation

1) ¢ () = f(=),

where N > 2 is a positive integer, and ¢" denotes the N-th iterate of
the function ¢. The solutions of (1) may be regarded as iterates of the
fractional order 1/N of the function f.

In [10] one can find the first indication that the C' solution of equa-
tion (1) might be unique. The uniqueness was then proved, under various
additional hypotheses, in [1], [13], [14] and [15]. (Cf. also [3], where the
author applies equation (1) to a problem in astronomy.) On the other
hand, as has been shown in [11], in the case where s = 0, C' solutions
of equation (1) are, in general, not unique.

The existence of a unique C' solution to (1) has been proved in [13]
under the additional hypothesis that the function f fulfils the condition

(2) f'(#) =s+0(), =—0%,
if s e (0,1), resp.
(3) f(@) =1—b(m+1)a™4-0(a™*), «->0%,

if § =1, where m, b and § are positive constants. In [15] M. C. Zdun
proved that the unique €' solution of (1) exists whenever the function f
is convex or concave and s € (0, 1). However, his proof cannot be adopted
to the case where s = 1.

* This paper has been written during the author’s visiting professorship at the
University of Marburg, GFR.
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Let us note that the convexity condition can be fulfilled although
condition (2) resp. (3) is not. This may be scen from the example of the
function

T

1
(4) (@) =sf (1+ E-t-)au

(cf. [6], [9]), which fulfils all the conditions imposed on f at the beginning
of this section provided a < ¢, is concave, but does not fulfil (2) resp. (3).
Therefore the result of Zdun is of a considerable interest.

In the present paper we give another, simpler proof of Zdun’s result,
which can be also applied to the case s = 1, not covered in [15].

2. In the present section we assume that the function f has the follow
ing properties.

(H) f: I -1 is of class C' and convex or concave in I, 0 < f(z) <z
in I*, and f'(x) > 0 in I.

Fix an z, e I". If s € (0, 1), then for every z € I there exists the limit

(5) () = lim f*(a) [f* (),

n—o00

and the function o: I — R is convex or concave (just like f), and satisfies
the Schroder equation

(6) o[f(®)] = so(x)

for all # €I (cf. [7] and [9], Theorem 6.8). Similarly, if s = 1, then for
every x € I* there exists the limit

ET " (@) — " (@)
. = P ) — )

and the function a: I* — R is convex and satisfies the Abel equation

(8) e[f(®)] = a(z)+1

for all € I* (cf. [8] and [9], Theorem 7.5).

The relevant properties of the functions ¢ and a are described in the
following

LEMMA. Let the function f fulfil hypothesis (H). If s e (0,1), then
the function o given by (5) is of class C' in I*, and o' () > 0in I*. Ifs = 1,
then the function a given by (7) is of class C" in I*, and o' () < 0 in I*.

Proof. If ¢ € (0, 1), then the function ¢ exists and is convex or con-
cave in I. Thus at every point z e (0, @) there exist the right derivative
o', (x) and the left derivative o’ (), and the functions ¢, : (0,a) >R
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and ¢_: (0, a) > R are monotonie and both satisfy the functional equation

’ 8 ’
(9) o @] =5 o @)
in (0, a). Moreover, o', and ¢_ may differ at most at denumerably many
points.

Suppose that o', (#*) = 0for an z* € (0, a). Then, by (9), o', [f(z*)] = 0,
and by induction o, [f*(z*)] =0 for n =1,2,... Since the sequence
f™(z*) decreases to zero ([9], Theorem 0.4) and the function a'+ is mono-
tonie, this implies that ¢’ vanishes and o is constant in (0, z*). But this
is impossible 1 view of (6). Consequently,

(10) o, (z) #0 for z€(0,a).

Since lim s/f'(x) = 1, monotonic solutions of equation (9) are deter-
fl‘—>0+

mined uniquely up to a multiplicative constant ([2] and [9], Theorem 5.4;
cf. also [5], [6]). Consequently, there exists a constant ¥ such that

o_(z) = ko' () for ze(0,a).
However, o, and o_ coincide at infinitely many points. Thus ¥ = 1 and
o (x) = o_(x) = o'(x) for all z e (0, a), which implies that o’ is contin-
w13 in (0, a). If a € I, then f(a) < @ in virtue of (H). Hence, by (9),
I (@) _ f(a)

lim ¢'(x)= lim o' [f()]

T—>a— T—a— 8

a'[f(a)]

exists, is finite and different from zero. Since the function ¢ is continuous
at f(a) € (0, a), and f is continuous at a, it follows from equation (6) that o
is continuous at a. Consequently ¢’ exists, is continuous and different
from zero in I*.

Since, for every n, the function f* is increasing and the constant f*(x,)
is positive, the function ¢ is non-decreasing in I. Thus, by (10), ¢'(z) > 0
in I*.

If s = 1, then the function f must be concave. The function a exists and
is convex in I*. The right derivative a’ : (0, ) > R and the left deri-
vative a_: (0, a) - R exist, are non-decreasing, and satisfy the equation

’ 1 ?
(11) a'[f(w)] = () a’ ().
Moreover, similarly as in the case of o, o/ (x) # 0 for z € (0, a). We have
a_(z) = ka'_(z) for z €(0, a), since o, and a_ are monotonic solutions
of (11), which implies that o) (x) = a_(z) = a'(z) for all z € (0,a). If
a € I, then

lim a’(2) = lim f'(#)a’'[f(#)] = f'(a)a’[f(a)]

r—a— T—ra—
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exists, is finite and different from zero. Consequently a is of class C* in I*
and a'(x) # 0 in I".

Since, for every =, the function f* is increasing and the constant
At (xy) —f*(x,) is megative, the function a is non-increasing in I*. Thus
a'(z) < 0 in I*.

The result of the present paper is contained in the following

THEOREM. Let the function f fulfil hypothesis (H). Then equation (1)
has a unique C' solution ¢: I — I. This solution is given by

(12) p(z) = ¢ (s o (w))
if s€(0,1), or by
1
0 forz =0,

if 8 = 1, where the functions o and a are given by (5) and (7), respectively.

Proof. It is easily seen that the function ¢ is well defined in I by (12)
or (13), satisfies equation (1) in I, and is of class C' in I*. For the proof
of the existence it remains to show that
(14) lim ¢’ (x) = s'V,

z—>0t

and that ¢ is continuous at ¢ = 0.

Let s e€(0,1). The function ¢’ is monotonic, say, non-decreasing
(if ¢’ is non-increasing, the proof is analogous). By (12) we have

(15) f(@) < gpl2) <w,
whence
(16) o' [f(2)] < o' [p(z)] < o' ()

for x e I*. Again by (12) we have ¢'(x) = s'V¢'(2)/0’[¢(z)], Whence
by (16) and (9)

1/N g1
s f (@)
SIIN < ‘P'(a") < "T—

for z € I*, and (14) follows. Relation (15) implies that
(17) lim ¢(z) =0,
z—0t
whereas by (5) o(0) = 0, whence we get in view of (12) ¢(0) = 0. Thus ¢
18 continuous at zero.
Now let 8 = 1. Then the function a’ is non-decreasing and (13) implies
(15) for z e I*, whence

(18) o' [f(2)] < o' [p(2)] < a'()
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for x € I*. Since, by (13), ¢'(x) = a'(x)/a’ [p(x)], (18) and (11) imply that

fe)<g¢'(@)<1

for x e I*, and (14) follows. Again (15) implies (17), whence the con-
tinuity of ¢ at zero results in view of (13).

The proof of uniqueness is based on the ideas developed in [12] and
does not differ from that given by Zdun [15] in the case s € (0, 1). There-
fore we are going to prove here the uniqueness of ¢ only in the case s = 1.

It has been proved in [10] that if ¢: I — I is a 0" solution of equation
(1), then it must satisfy the differential equation

(19) ¢ =G(z, ),
where

T £ 1 (@)
LL 7wl

On the other hand, it has been proved in [2] (cf. also [9], Theorem 5.4)
that if a’: I" — R is a monotonic solution of equation (11), then

O PAPAC)
L SV ENY

with a suitable real constant ¢. Hence we get G(z,y) = a'(x)/a’(y) for
x, y € I*, and equation (19) becomes

(20) a'[p(x)]e" () = a’ ()
for « € I*. Equation (20) can be easily integrated, and yields

alp(2)] = a(x)+0C,

G(z,y) =

a’(z)

whence
(21) ¢(z) = a”'[a(z)+C]
for # € I*. Inserting (21) into equation (1) we get ¢ = 1/N. Consequently,

fz) <gx)y<ax for xel®,

and ¢(0) = 0 follows by the continuity of ¢. Thus necessarily ¢ must
be given by formula (13), which proves the uniqueness and completes
the proof of the theorem.

Actually, in the above theorem it is enough to assume that the func-
tion f is convex or concave only in a neighbourhood [0, ) = I of z = 0.
Then the above argument yields the existence of a unique C' solution
¢: [0, b) — [0, b) of equation (1), and this solution can be uniquely ex-
tended onto the whole interval I to a C* solution ¢: I — I of (1) (cf. [10]).
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It is worthwhile to note that the solution given in the above theorem

need not be convex or concave (cf. [4], [10]); but if equation (1) has
a convex or concave solution ¢: I — I, then the latter is unique and is
identical with the C' solution given by formula (12) or (13) (cf. [12]).
Recently Zdun [16] has proved that if the function f (fulfilling hypothesis
(H)) is concave and so is its derivative f’, then the (unique) C' solution ¢
of (1) is also concave.
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