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Abstract. The problem of generalized orders of an entire function f, defined by
"a series of polynomials and coinciding with the partial sum of series at a finite number
of points, is studied. The same problem is considered when (i) the given function f
is continuous on a compact set such that its complement with respect to the complex
plane is connected and the approximation error tends to zero rapidly, (ii) f is holo-
morphic in the unit disc 4 and f € L2(4), (iii) f is entire and defined by a Newton series.

1. Introduction. In the first part of this paper, we consider the expan-
sion of an entire function f(2) in a series of polynomials such that the
n-th partial sum of the series coincides with f(2) at a given set of points.
Let

N
(1.1) p(2) = [[(z—2),
i=1
and let f(2) be entire. Then f(2) can be expanded in a series
(1.2) 1) = D)@ (p2),
k=1

where ¢,(2) is 2 uniquely determined polynomial of degree N'— 1 or less ([14],

n

p. 56). Further, §,(2)= 3 ¢.(2)(p(2))** coincides with f(z) at the points
z,i=1,2,...,N. k=1

Rice [8] and Juneja and Kapoor [4] (see also Winiarski [15]) have
studied entire functions f(2) defined by (1.2) and have obtained expressions
for the order [8], Lemma 3, type [8], Lemma 5, and the g-order and the
lower q-order [4] of f(2), analogous to those for entire functions defined
by a power series (see [1], p. 9-12, [10], [11]). In Theorem 1 of this paper
we obtain expressions for the generalized order ¢(a, £, f) (defined below)
for the function f(2) defined by (1.2). These results extend some of the
theorems proved in [4] and [8].

Let x be a non-negative number and let the functions a and g satisfy
the following:
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(H,i) a(z) and f(x) are positive, strictly increasing and differentiable
on [a, oo] (@ > 0) and tend to infinity as z > oo.

(H,ii) a(z) is slowly oscillating, that is, hm a(tz)/a(x) =1 for every
positive constant ¢.

(H,iii)  B(x)/=" is slowly oscillating for some x> 0. If 4 = 0, we further

assume that g (ry(z))/B(¢") tends to zero as z— oo for some
function y tending to oo (however, slowly) as ¢ —» oc.

(This implies that the growth of § is not “too slow”.)

(H,iv) F(z, t) = '(ta(x)) satisfies, for every positive constant ¢,
dF (z,t)

d(logz)
Let f(2) be any entire function and write

= 0(1), as x—> oo.

e(e, 8,f) -l supa(IOgM("yf))

Ma,,f) = int FU87)

Then ¢(a, B, f) is called the generalized order, and A(a, §, f) the generalized
lower order, of f(2) (cf. [9], [11]). Let I'y be the lemniscate

I'y={zllp(2)| = R} and |I'gll =length of I'g.

Then |{FPg|| = 2rR"¥(1+4-0(1)), as B — oo. Further there exists [8] a poly-

nomial @(z) of degree N —1, independent of » and R, such that for
R>c¢>0,

(1.3) 14, (2)r, < {IRNM (I'g, FIIQ(2)NI- (27 B™),

where f(z) is defined by (1.2), M(I'g,f) = max 1), 1@ (), =
max [Q(z)] and ||q,,(z)1|,. = max|q,(2)]. In what- follows we suppose
selp zel,

that ¢ > 1 is a fixed constant and write ||g,| for |ig,(2)| r,- Ve prove
THEOREM 1. Let f(2) be an entire function defined by (1.2). Then we have:

-1
(1.4) o(a, B, ) = N* limsupa(n)/ﬁ(Tloguq,,n).
(L5) i(a, 8, f) > N*liminfa(n)/p (— log nqnn)

(1.6) If {m,} is any strictly increasing sequence of natural numbers, then

Ala, B,f) = N*supliminfa(m,_,)/B((—1/m;)10gIigs,I).
1.7  AXa, B8, f) (my} koo

= N*sup {liminf a (my_,)[B((L /(m;— my._,))10g (ligm, 1)/ (Igm, 1))

{mk} k—oc0
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where supremum, in (1.6) and (1.7), i8 taken over all sequences {m,} and we
define gy, 1 /11Qem | equal to oo, when gm, [l = O and 1gm,_, || zero or otherwise.

Remarks. (a) Let a(z) =logz, u =1, B(x) = z. Then conditions
(H,i)~(H,iv) are satisfied and we get an extension of Lemma 4 of [8].
Note that if the right-hand side of (1.4) is infinite, then g(a, §, f) is infinite
and conversely. ‘

(b) Let B(r) =« and a(x) =1,z (p-th iterate of the logarithm,
l,# = logz). Then we get Theorems 1, 3 and 4 of [4].

2. Approximation and interpolation. Next we consider, in Theorems 2
and 3, two approximation problems and, in Theorem 4, a function defined
by Newton interpolation series.

(a) Let F be a compact set of points in the complex plane C and let

K = C\E. We assume that K is connected and the transfinite diameter
d(E), of the set E, is positive. Let f(2) be continuous on F and write

(2.1) Ifle = sup If(2)l.

Let P, denote the set of all polynomials in z of degree not exceeding n.
Then for every f(z) continuous on Z, there is exactly one polynomial n, € P,,
such that the approximation error

(2.2) E,(f, E) = if||f—plg = If —7ylz-
pePy,
We prove
THEOREM 2. Let f(2) be continuous on E and suppose that {E,(f, E)}'"
— 0 as n— oo. Then f(z) has an analytic extension f (2) which ts an entire
function. Furthermore, the function g(2) defined by

(2.3) 9(2) = ) Eo(f, B)2"

n=0
18 entire and we have

e(a, B, 9) = ea, ﬂ’f) = o(a, B,f),
(2.4) _
Ae,B,9) = Aa,B,f) = Ala, B, f);

and formulae similar to (1.4) through (1.7), with N replaced by 1 and llg,ll
by E,(f, B), hold.

Remark. In (2.4) and the next theorem, we identify f(z) with its
analytic extension f(z).

(b) Let L?*(A) denote the class of functions f(z) which are holomor-
phic in the unit disc 4 and for which [f|f(2)|?dzdy < oo, z = x4 iy. Let
4

(2.5) D,(f) ={min [ [|f(z)— i’a, A do dy)'”.
a 4 0
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It is known that if f(z) e L*(4) and {D,(f)}'™ >0, then f(z) has
an analytic extension f(z) which is an entire function. (See [7] and the
references given there.)

THEOREM 3. Let f(2) e;l}’(A) and {D,(f)}™ —~ 0 a8 n— oco. Then f(2)
has an analytic extension f(z) which is an enlire function. Furthermore,

(2.6) G(2) = D' D,(f)2"
n=0
18 entire and we have
(2.7) e(a, ,6) = o(a, 8,f)y Aa,B,&) = A(a, B, f);

and formulae similar to (1.4) through (1.7), with N replaced by 1 and |ig,|l
by D,(f), hold.

(¢) In Theorem 1, we considered the expansion (1.2), where f(z) is
assumed to be entire and the number of points z; is finite. We now let {z,}°
be a bounded sequence of points and consider the series

(2.8) f@) = ) a,w,_,(2),

where |a,|'” — 0 as n — oo, and
{2.9) w,(2) =(2—2)(2—2)...(2—2,) (n=0,1,...), w_,(z) =1.

Then f(z) defined by (2.8) is entire. The order and type of f(z), when
logM(r,f) = 0(r®), 0 < p< oo, have been studied by Winiarski [15]
.and Neidleman [5]. We consider here the generalized orders of f(z). |

THEOREM 4. Let f(2) defined by (2.8) be an entire function and let h(z)

. ]
= M a,2". Then h(z) is entire and

n=)
ela, B, f) = ela, B, ), Ale,B,f) = Ala, B, h).

Further, the formulae similar to (1.4) through (1.7), with N replaced by 1 and
gyl by la,l, hold.

Remarks. (i) For the Newton series, with integer points z, = n,
:see [1], Chapter 9.

(ii) For the interpolation problem associated with an entire function
.and its derivatives, see [12].

3. Proof of Theorem 1. If f(2) is a polynomial, then (H,ii) through
(H,iv) show that ¢(a, 8,f) = A(a, 8,f) = 0. Further (1.3) shows that
the right-hand side expressions of (1.4) through (1.7) are all zero. We
-suppose therefore that f(z) is not a polynomial. Let ¢ be a positive constant
‘not less than one and '
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(3.1) F(z) = D) lgale",

n=1
where |ig,l = llg,(2)llr,- From (1.3) we get for all large R, E > R, say,
lgn ()l < e, M (2R, f)/R""?,

where ¢, is a constant independent of » and R. Consequently for (2| < R/2,
R > R,,

0o (-]
D) llgall 2" < e, RM (2R, f) Y I2/R[" < ¢, RM (2B'7, f).

fi=] el
This implies
(3.2) F(R[2) < o, RM(2R'Y, 1),
Further

o o0
M(Tr, /) < D) Wellrp B < D) ligellr, B+
k=1 k=1
wherein we have used Walsh inequality ([14), Lemma, p. 77; [8]). Hence

for all sufficiently large E
(3.3) M(R"/2,f) < RN'F(R);
and from (3.2) and (3.3) we get

(3.4) o(a, B,f) = N*o(a, B, F), Ala,B,f) = N*A(a,B,F).

By (1.9) and (1.11) of [11] applied to F, we get first and second parts of
Theorem 1. The remaining two parts of Theorem 1 follow from Theorem 4
of [11]. We sketch here an alternate proof of (1.6) and (1.7).

LeMMA 1. Let a, € C and let {m,}° be any sequence of natural numbers.
Write a(m,) for a,, and suppose that |a,|"™ > 0 as n— oo. Write

—1
(3.5) Jo({my)) = liminfa(m,_,)/B (—— logla(mk)l),
k—co 7nk
T , a’(mk—l)l
8 hifmd) = liminta(m, ) 18( 5 —Tog|% 7).
Then
(3.7) Jo(fmy)) > Ay (fmy)).-

The proof is straightforward and omitted. Note the convention,
we made in the statement of Theorem 1, when a(m,) = 0.

4 — Annales Polonici Mathematici XXXVII,2
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LEMMA 2. Let H(z) = 2, a,2" be an entire functwn and let {n,} be the

range of the central index v(r H) of H. Let G(z) = 2 a(n,)z"*. Then G is
entire and k=0

(3.8) A(a, B, H) = A(a, B, @) = L{{n,,,}).
This follows from Lemma 4 of [3] and Theorem 1 of {11].

LEMMA 3. Let H(z) = Z a,2" be entire. Then for any sequence {m, )}

n=0
(3.9) Aay B, H) = A({m,}).
Proof. Write 4y({m,}) = 4,. We may suppose that 1, > 0. Given
£>0,let u* = 4y—eif 4, # oo, u*= T if 4) = oo, where T is an arbitrary

large number. By the Cauchy inequality
logM (r, H) > log|a(m,)| + m,logr
= mkl‘)g"—'mkﬂ_l(a(mk—l)/!")1 k> .
Choose R, = eexp (ﬂ“‘(a(mk_l)/p‘)) and R, <R<ZR,,,. Then
a(logM (R, H))/p(logR) > a(m,)/B(logR,,,) and (3.9) follows.

LEMMA 4. Let H(z) = Y a,2" be entire. Then

n=0

(3.10) Ae, B, H) = ?uplo({mk}) = SuPA ({mk})
m}

where the supremum is taken over all sequences {mk}
The proof f.pllows from Lemmas 1 through 3. The parts (1.6) and (1.7)
of Theorem 1 follow if we apply (3.10) to F.

4. Proof of Theorem 2. By our hypothesis, ¥ has an infinite number
of points. Following Winiarski [15] we write

f(") = {'fnoy 'Enl.! veey nn}
for a sytem of (n+1) points of E, and

VE)y = [T 16— &udls

0<j<k<n
AD(ED) =[] 16— Ewly §=0,1,..0im
ks

Let the system of points 7™ = {9,0, ..., 7.} of E satisfy the relations:
(i) V(5™) = sup V(E™), (ii) 49 (n™) < AD(y™), j = 1,2, ..., n. Write
dn)eE

LY (z, ™) =ﬂ(z—-n,,k>/<n,.j—nuk>, j=0,1,...,m
0

k%]



Entire functions 163

Then there exists a finite limit

(4.1) lim |L®(z, n™)|'" = L(z) > 1

n—»o0
for every z in C\F (see [15] and the references mentioned there). The
convergence in (4.1) is uniform on every compact subset of C\E, and L
is @ modulus of an analytic function ¢ in C\ E which has a univalent branch

(4.2) p(2) = y2+yot+wnfz+ ..., |yl = 1/d(E)

in a neighborhood of infinity. Moreover, log L(z) is the Green’s function
for K with singularity at oo.

By Bernstein—-Walsh inequality (see [15], p. 264, [13]) and our hypo-
thesis on E,(f, F), the function f(z) defined by

=]
(4.3) f@) = m@) + D (aa(e) — 7,1 (2))
n=2
i8 entire (see the details fo}lowing (4.5) below; see also [15], p. 269). Further
on E, f(2) = f(2) and so f(2) provides the analytic extension of f(2) to the
entire plane. By our hypothesis on FE,(f, E), g(2) is entire and we may

suppose that it is not a polynomial. Hence f(z) is not a polynomial. Let
r> 1and

(4.4) B, ={zeC,d(B)L(2) =1}, M(r,f) = sup|f(z)l.

z€E,
Then for all sufficiently large r [15]

(4.5) M(ri2,f)< H(r,f)< M(2r, ).
Now write n, = 0. Then
@< Y 1 (@) =701 (2]
n=1

Hence by Bernstein—~Walsh inequality we have for z € E,, r > 7,,

F @< D)l —m, gL (2) < 2 D) Epy(f, B)(rjd)"

n=1 n=1

wherein we have utilized (4.4), and ||p|l; = sup [p(?)|. Since
zeE

g(rid) = Y B.(f, B)(rld)",

we have for all sufficiently large r,

(4.6) g(r/d) > (2/2r)M (v, f) > (d/2r)M (]2, f).
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Now consider
L,(z) = D L9z, 1™)f (1)
i=0

Given ¢ > 0 weé have for all r > Ry(¢), n > n, [15]

. M
=Ll < o2 20T e,

where ¢, is a constant. Since

En(f’ E) < "f—Ln"E’
we have

de*’\»
9(2)] < |1B(2)| +¢5 2 it (r f)(lzl e)

n=n;+1

where p(2) is a polynomial. Choosing r such that |z|de® < r/2, we get
(4.7) M (r/(2de*), g) < (1+0(1))2¢, 0 (7, f).

This combined with (4.6) and (4.5) gives (2.4). The formulae similar to (1.4)
through (1.7) follow, as in Theorem 1. The auxiliary function is now g(z).

5. Proof of Theorem 3. Let

) = Nag, <1, feId).

n=0

We may suppose, as in Theorem 1, that f(z) is not a polynomial. Since

Di(f) = 2 ol

k=n+1

and (D,(f))""— 0, it follows that |a,|'* - 0 and f(2) is entire. From (5.2)
and Cauchy’s inequality we get for n >0, R >r1,,

D,(f) < M(R, f)/R".

Hence, taking 2r < R,

J M(r,G)<ZW ,

n=0

and so we have for all sufficiently large R

M(E[2,G)< M(R, ).
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Further

M(r,@) = 2’ nD,r"! > % an/-rr/(n+ P W Laas

n=1 n=1

1\
> Dlaanlr™ > 1+o(L)M(r, f)irt;
1

and so
M(r+1,G) > (1+o(1))M(r,f)/r2.

Relations in (2.7) follow from (5.4) and (5.5). The remaining statement
follows, as in Theorems 1 and 2.

6. Proof of Theorem 4. We may assume that f(z) is not a polynomial.
"Let

(6.1) h(z) = Zm:a,,z“.

n=0

By (2.9), h(2) is entire. Further, if L = sup |2,/,

n=0

M, )< ) lagl (el + D" < M(r, B) 2(I2I+L) _

r

n=0

Hence
(6.2) M(r,f)<2M(2r+2L, h).
Further [15] for r > L,

la,| < (r/(r—I)**' M (r, f)/r"

and so

Ml B < 3 a4 < (M (7, 1)) f(r—T— J2).
Consequently "
(6.3) M("; ,h)gzr—f[_("'l—’;ﬁ.

From (6.2) and (6.3) we get the required results.
- CorOLLARY. If |a,/a,, .| is a non-decreasing function of n for n > n,,
then
- -1
64) A, p, 1) = 2a, §,) = limintaen) g (- logia,).
This follows from Theorem 2 of [11].

Finally we thank the referee for pointing out that the regularity of the
set K, in Theorem 2, assumed in our earlier ms, is unnecessary.
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