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'l"HE ELLIPSOID METHOD FOR GENERATING
NORMALLY DISTRIBUTED RANDOM VECTORS

1. Introduction. Many algorithms exist for generating one-dimensional
normally distributed yandom numbers [1], but only two methods are
offered for the generation of n-dimensional normally distributed vectors
(see [3), [9] and [15]): the matrix diagonalization and the conditional
decomposition methods. The first one could slightly be changed using
the Crout factorization to decrease the number of multiplications. In
these well-known methods at least n(n-+1)/2 multiplications are to be
berformed to obtain one n-dimensional normally distributed random
vector,

The ellipsoid method presented in this paper is based on the multi-
Variate composition technique; the name indicates that mostly uniformly
distributed random vectors are needed in n-dimensional hyperellipsoids.
The density function ¢(x) of the multidimensional normal distribution
Iy given, as the mixture of some density functions e;(x) (¢ =1, ..., k)
and two correcting densities r,(x) and r,(x), by the formula

(1) p(x) = pe(x)+ ... +pkek(m)+pk+1"1(a’)+pk+27'2('1’),

\
k42
Where p, > 0, 3' p, = 1, the functions e;(a) are constant in hyperellipsoids

(2) (@) = (2m)~" R OXP{-——;—m’R“‘a:},

where R is the correlation matrix. Thus random vectors with density
?(x) can be produced by generating uniformly distributed vectors in the

hyperellipsoid E;. The detailed description of decomposition (1) is given
in the next sections.

Let the ellipsoid E be given as

E ={x|xR "x<c?}



96 I. Dedk

for some ¢, and let T be a lower triangular matrix for which 7T = R.
The random vector T'§ is uniformly distributed in E provided ¢ is uniformly
distributed in .

8 = {ml§w§<c2}'

t=1

The fastest method for generating uniformly distributed points in
a hypersphere is that of Muller [14] (for a comparison of these methods
see [6]) which works in the following way: Generate %; (i =1, ..., n),
i.e., » independent normally distributed random numbers; the vector

Al S

is uniformly distributed on the surface of

/_].:s
A

S, = {wi i <1 } .

Multiplying this vector by a random radius length (» = %'™, where u
i8 uniform in [0, 1)) we obtain the point uniform in S.

Thus, to achieve a fast sampling procedure for gcneré,ting normally
distributed vectors an approximate algorithm is proposed for generating
points uniformly distributed in hyperellipsoids. This so-caNed chord
method is presented in Section 4. Finally, in the last section the results
of the computer runs are given together with the comparisons and pos-
sible generalizations of the method for other distributions.

The ellipsoid method was successfully used in evaluating multinormal
probabilities by Monte Carlo when the probabilities to be computed were
high [7].

L

=1

]

2. The ellipsoid method for generating normal vectors. The compo-
sition technique for the generation of one-dimensional random variables
was described first by Butler [5] as follows.

Assume that our task is to generate random numbers with density
function f(x) written in the form

+00

(3) fl@) = [ g,(@)aH(y),

— o0

where g, is a family of densities depending on the parameter y. Here y
is also a random variable with distribution function H. First a value 5
is generated for y from the distribution H, and then a value £ is sampled
for x with density g,(x). This technique was used in [4], [12] and [2].
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The generalization of equation (3) for the multivariate case is nothing
particular and for the discrete distribution H it may be written in form
(1), where @ is an n-dimensional vector. The real difficulty lies in the
good choice of the density functions e;(®) (i =1, ..., k), r,(x), r.(x) so
as to achieve fast sampling with density e;(x) and to determine p,+ ...
«++ TP Dear to 1 without requiring many memory locations.

We have chosen the functions ¢; (i =1, ..., k) for the ellipsoid method
to be constant in hyperellipsoids. To put it in a more precise way, we intro-

duce some notation. Let us split up the interval [0, ¢(0)] into k+1 parts
by the numbers m; (i =1, ..., k):

0 =my<m; <...<my<my,, =¢0).

Consider the varieties E; in the n-dimensional space determined by
¢(m) > m’i, i-e.’

B = (x|a' R e < —2In(m,(2n)"2|R™)} (i =1,..., k+1).

These varieties are centre-symmetrie hyperellipsoids in R* (Z, is. t.he
greatest one and E, +1 18 merely a point), since B is a positive definite
Symmetric matrix being the correlation matrix of the normal distribution.

Let- us define the multipliers u; (¢ =1, ..., k) by the aid of which we
can write

E,={®|x=pny,yck} (=1,...,k).

Let us put L
: 1/Vv, if ek,
e;(x) = .
0 if x¢E;,
where
V‘i = fd:l‘
E;

is the volume of the hyperellipsoid E;. Thus e,(x) is the density function
of the uniform distribution in E;. The probabilities p; can be determined
by the equations p,e;(®) = m;—m,_, if ® e E; (§ =1, ..., k). Hence and
from the condition '

k+2
2 P =1
i=1

we obtain

k
@) p=Vim—m_y) (6 =1,...,8),  Pryy+Prya =1— D Py

tml

7 — Zastosowania Matematyki 17.1
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Of course, we intend to determine the division m,, ..., m;, in such
a way as to make the sum p,4 ... 4+ p, as near to 1 as possible in order
to gain a fast sampling procedure (see the next section).

To make equation (1) valid the functions », and r, are defined as
follows:

k
p@)— Y pie(®) if ®e By,
i=1

0 if ®¢E,,

Piti?1(X) =

0 if ®ekB,

D pyeT2(®) = ol@) if x¢E,.

Since 7, has to be a density function, we calculate the constant

Prse = [ p@do = [ k,(0)ds,
Rn—El cy

where k, () is the density function of the y2-distribution with n degrees

of freedom, and ¢, is the constant of the hyperellipsoid E,, i.e.,

R 'e<ce if ®xek,.
The constants ¢; (§ =1,...,%k) can be computed by the formula
¢; = —2In (m;(2n)"*|R|").

Now the constant p,,, can be evaluated from the second equation
of (4). The constants p,,, and p,,, will be called the wedge and the tail
probabilities, respectively, because of the definitions of the functions r,
and r,. Observe that

pe=cle, (i=1,...,k).

The sampling procedure related to decomposition (1) consists of the
following three main parts:

1. With probabilities p,, ..., p; choose one of the multipliers u,,
then generate a uniform point y in E, and deliver & < u,;y as a final
sample.

2. With probability p, ., generate a sample with density r,(x), e.g.,
by the rejection technique (sampling from the wedge).

3. With probability p,., generate a normally distributed random
vector outside the hyperellipsoid E,, e.g., by inverting the y*-distribution
function.

For p,+ ... +p; near to 1 almost all the time, the first step is re-
peated. Since a multiplier u; has been chosen by the aid of a base 2
Marsaglia table, the speed of the ellipsoid method dcpends essentially
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on the speed of the generation of points uniformly distributed in hyperel-
lipsoids.

The above-described decomposition can be illustrated geometrically
in dimensions n = 2 as shown in Fig. 1. The volume between the surface

\\\\

~N

Fig. 1. The Cecomposition of the density function 2z = ¢ (v, y), where the correlation

coefficient ¢ is greater than 0, and the interval [0, (0, 0)] is divided into 6 equal
parts

z = @(r, y) and the plane z = 0 is filled out by prisms, one standing on
the other. Their bases are the ellipses B; (i =1, ..., 6) and their altitudes
are m;—m,_, long, each the same in this case. The function P, ,7:(Z, ¥)

gives the remainder volume above the ellipses and the function p, ,72(%, ¥)
is the tail.

3. Details of the sampling procedure. The main difficulty in preparing
the program arose in connection with the division m,, m;. We had
the following three aims:

1. The sum p,+ ... - p, should be near to 1 to allow fast sampling.

2. The number k should be possibly small because of the storage
requirements.

3. The sawmpling from the wedge function r,(x) should not be too
slow.

After some compﬁter experiences the following scheme had be'en
decided upon for determining the constants m,, ..., m;. Hyperellipsoids
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are divided into classes, hyperellipsoids in the same class have the samo
distance, i.e., m;—m,_;, = m;—m;_,, if E; and E; are in the same class.

Let us determine an initial division number k,;, and two controlling
constants ?, = 0.5/k;, and w, = 0.3/k;,. Divide the interval [0, ¢(0)]
into k,, equal parts and compute the corresponding p; (+ =1, ..., k;,) if

my = @(0)(1—1/ky), m, =@(0)(1—-2/k;),

(the division is going top-down). Let j be the index for which p, < w
if i<j and p,>w, if ¢>j. Then the ellipsoids with indices ¢ =
j+1,...,k,—1 are deleted and the ellipsoids E; (+ =1,...,5) form
the first class. The remaining part of the interval [0, ¢(0)], i.e.,
[0, p(0)(k;, —j—1)/k;,], is next divided into k;, equal parts and the
whole procedure is repeated until the remaining tail has a probability
less than %, (i.e., ?,, = i ,)-

Let us introduce some notation. The length of the interval to be
divided in the g¢-th class is denoted by h,, the number of the ellipsoids
in the ¢-th class is 8, and the number of classes is ne. A special care should
be paid in computing the values h; (j = 1, ..., ne), since the ratio h,/h,,
is of range 10%-10" in cases m > 10. (The values h; (j =1, ..., ne¢) and
m; (t =1, ..., k) are to be computed in double precision.)

Let V, be the volume of the unit hyperellipsoid {x |x'R 'x < 1},
1.e.,

Vo = 21 . Yo (7)™ (nD(n]2)},

where y,, ..., 7, are the eigenvalues of the correlation matrix; then
P;: -‘= C? Vo(’m,-— ’m,-+1).

The yx2-distribution function with n degrees of freedom is denoted
by F.
For ¢ =1,...,nc the following nc-dimensional vectors cp, cw, pw
are to be stored:
ep(i) = pr+ ... +py, ow(@) =6, (K =8+...+s8),
pw(i) = Flew?(i))—ep(i).
This division procedure performs as shown in Tables 1 and 2. In the

first case we chose k; = 50, in the second one — k; = 100.
In Tables 1 and 2 the following notation is used :

Pg =P1+t oo +Pry P =DPW({A)+ ... +pw(ne) = Pryyy Pr = Prsa-

The last columns show the maximum probability of rejecting a vector
in the wedge sampling algorithm described in the sequel.
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TABLE 1
Maximum proba-
n .
PE Puw ‘ pr " k bility of rejecting
5 0.973 0.019 \ 0.008 11 203 0.81
0 0.975 0.020 |  0.005 10 310 0.57
‘1’0 0.968 0.023 0.009 10 354 0.47
20 | 0.971 0.024 0.005 11 420 0.40
TABLE 2
n I . Maximum proba-
Pr | Pw pr " k bility of rejecting
5 0.984 0.011 . 0.005 11 399 0.80
10 0.985 0.011 0.004 10 616 0.57
15 0.987 . 0.011 0.002 11 794 0.47
20 0.982 0.015 0.003 11 | 834 0.41

WEDGE SAMPLING ALGORITHM.

1. With probability [pw(i)—(pw(1)+ ... +pw(i—1))]/p, select one
of the classes, say the i-th one.
. 2. Generate a uniformly distributed random vector @ in the hyperel-
lipsoid with constant cw(i). If @ is inside the smallest hyperellipsoid of
the i-th class (i.e., ® R ' < (cw (i —1))?), then reject & and repeat this
step from the beginning.

3. Generate a uniformly distributed number « in [0, 1). If

p(x)— ij < h;u,
=

th'en g0 back to step 2, otherwise deliver x as a sample from the wedge
with density r,(x). _
For tail sampling the y*-distribution function I is inverted [8].
TAIL SAMPLING ALGORITHM.

1. Generate « uniformly in [0, 1) and set u <« u(1 ;,pT)-I- pp. Gen-
erate a uniformly distributed vector y in the greatest hyperellipsoid and
Bet s — y'R7y.

2. Set r < (F~'(u)/s)'* and deliver & < ry as a sample from the tail
with density r,(ax).

4. The chord method for gemerating points uniformly distributed in
hyperellipsoids. First some theoretical results are cited, next the sampling
Procedure is described and, finally, some considerations are given on the
computer program.
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Let us denote by S, an n-dimensional hypersphere with radius r
and with centre at the origin. Let @, and @, be two uniformly distributed
random points on the surface of §,.

THEOREM 1. Let h be the length of the random chord Q,Q.. Then the
density function of h is
I'(n/2)
2734 [((n —1) [2) =1

(5) f(h) = B2 (dr? — RO,

The result is well known in the theory of the geometrical probability
(for a proof see [11], p. 53-54).

LEMMA. The expected value of o, = h*™" is hy = E{h*™"} = 4r*""/n.

The result can be obtained by straightforward integration.

The following theorem is the theoretical justification of the chord
method: .

THEOREM 2. Consider a random chord in 8, with length h. On this chord
generate uniformly distributed random poinis R;, the number of which is
a random variable v = h*~"[A, where A is a switable constani. Let 8, be another
n-dimensional hypersphere in S, with the same cenire and with radius o,
o < 7. Then the expected number of the points which lie in 8, is proportional
to o, i.e.,

E{v | R;e8,} = o"C(n,r, 1),

where C(n, r, 1) is independent of o.

Proof. Let us make some preliminary remarks. A chord with length
h < h,, where h, = 2(r2— o%)"%, does not intersect the hypersphere 8,.
A chord with length k> h, has an interval of length (A*—h2)"* in 8,.
Thus the expected number of points lying in S, equals to -

2r
pi—n (hz _ hg)llz
= — d
= | ) S,

where h*~"/A is the number of points to be generated on the random chord
with length & and the last factor of the integrand is the portion of the
points in §,.

Making use of the density function (5), introducing a new variable
y = (4 —h*)"?, then another variable ¢ and putting sina = y/20, we get

I~q _fh — BR)®=32 (32 — B2y dh

/2

2 n
20) f cos?asin® *ada,

f Jn 2 )llsz 0
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where C, is the constant in the density function (5). This equation proves
the theorem.

The chord method as described in the sequel is approximative be-
cause of two reasons. First, points generated on the same chord are cor-
related; the outcomes are not independent samples of the uniform distri-
bution in the hypersphere. (But the commonly used multiplicative pseudo-
random number generators produce points in a hypersphere which lie
on hyperplanes, thus this argument is not so strong.) Second, the chords
used in this procedure are not random because of making multiple use
of the terminal points of previous chords.

Before the description of the chord method algorithm for the case
of §,, some preparations are neecded.

Generate y™V, ..., gy, the so-called basic points uniformly distrib-
uted on the surface of 8;, and initiate the following counters: CP = 0,
I=1, ICH =1, s = b, = 4/n.

CHORD ALGORITHM FOR THE HYPERSPHERE S,.

1. If CP =1, then go to 4.

2. [Compute the (I, M)-th chord length.] Set w; < y{P—y{™)
(J=1,...,n) and CP <1.

3. Compute SQ « (w24 ... +wi)(4—n)/2.
4. If 8@ < s, then go to 6. !

5. [Generate a “sure” point on the (I, M)-th chord.] Set IG <1,
generate  uniformly in [0, 1), set #; < y$* +uw, (j =1, ..., n), decrease
8Q < 8Q —s and go to 13.

6. Generate v and set v < su.

7. [Test for an “additional” poiht.] If 8Q < v, then set IG <« 0 and
g0 to 9.

8. [Generate an “additional” point on the (I, M)-th chord.] Generate
U, set IG <1 and z; <y +uw; (j =1,...,n).

9. [Change the chord.] If I ¢ M —1, then set I <~ I+1, CP <0
and go to 12.

10. [Generate a new basic point, if necessary.] Generate a point 2
uniformly on the surface of §,. )

11. If ICH = M —1, then set ICH < 0.

12. Set ICH < ICH +1, I <1, 0 « 40 o) 2 Tf IG =0,
then go back to 2.

13. Deliver ® = (x,, ..., «,) as a uniformly distributed point in §,.

The algorithm generates points uniformly on the chords between
the basic points 1 and M, then between basic points 2 and M, etc. After
M —1 chords have been considered, one of the basic points is replaced
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by y™, and a new y* is generated. The number of the chosen basic
points was equal to M = 30; the “scaling factor” s = hy (in Theorem 2
it was denoted by 1) ensures that one point is generated on one chord
on the average. In computer runs the choice s = hy/4 was also considered.
The algorithm shows significant instability for dimensions » > 15
in view of the following. The random variable A*~" (where h is a random
chord length) which controls the number of the points to be generated
on one chord has infinite variance for n.> 4. Chords with small length
are rarely occurring but they require a great number of points to be gener-
ated on themselves. To illustrate this phenomenon, in Table 3 we give the
probability of the event that a point generated by the chord algorithm
originates from a chord on which more than k points are generated.

TABLE 3

k . n=2>5 n = 10 n =15
32 2.-10-5 0.216 0.557
1024 1-10~9 0.044 0.286
3.2-10% 1-10—14 0.008 0.129
1.0-108 — 1-10-3 0.054
1.3-108 — 1-10—4 0.015
8.5-10° - 1-10-5 0.005

Our proposal is to use the chord algorithm only if the saniple size
is greater than 10° in the dimension #» = 10 and than 107 in the dimension
n = 15.

The modification of the chord algorithm for the case of the hyperel-
lipsoid is quite straightforward. Let us denote by T a triangular matrix
for which 7T = R; then

E={x|xR'e<l}={x|x=Ty,yes8,}.

If yis a uniformly distributed point in §,, then Ty is uniformly distrib-
uted in E. Since the points generated by the chord algorithm are of the
form y = ay'” + (1 —a)y™), we have

Ty = aTyD + (1 — a) Ty,

According to these equations it is sufficient to transform the basic
points and there is no need of transforming the generated points. The
following modifications should take place to gain an algorithm for the
case of a hyperellipsoid.

As preparation — the points yP* = Ty have to be computed and
stored. Steps 2, 5, 8, 10 and 12 should be replaced by the corresponding
modified versions:
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2°. Setw; < yif) —yd op*  yD*_ g% (5 1 n)and CP < 1.
5%. Generate u, set a; < M +wwy (j =1,...,n), 8Q < 8Q—s and
go to 13.

8*. Generate u, set @; < yi** +uw; (j =1,...,n).
10%. Generate a point z uniformly on the surface of 8, and compute
R* « Tz, .
| 12*, Set ICH <—IO’H+1, 1 «1, y(ICH) <_y(M)’ y(ICH)* <_.y(M)*,
Y <z, y* v 1t I = 0, then go back to 2.

. 5. Computer times and comparisons. The algorithms were written
In FORTRAN and run on a Honeywell 66/60 computer. Two subroutines
were written, in assembly language (GMAP): a uniform random number
generator which by two shifts and one addition generated numbers and the
algorithm FL; of Ahrens and Dieter [2] for generating normally distrib-
uted numbers (one sample in 24 psec and 60 pscc relatively).

~ In Table 4 we give the computer running times of generating one
sample from a given distribution. Each time is given in usec and is an av-
erage based on 10 000 samples. The algorithms considered are the following:
) (a) Chord, 4, 8. It generates a uniformly distributed random vector
Inside the hypersphere S, as described in the preceding section (1 = h,
= E{a*""}).

(b) Chord, s, 8. The same as in (a) but the resulting point is projected
to the surface of §,.

(c) NO, s, 8. Tt generates a uniformly distributed point on the surface
of §, by the normal approach of Muller [14] as described in Section 1.

(d) NO, i, 8. It generates a point y by NO, s, S and 2 uniform random
number % in [0, 1), and then delivers ® = '™y which is uniformly dis-
tributed in 8. _

(e) Chord, ¢, E. A point is generated inside the hyperellipsoid E by
the chord algorithm using the modified steps with asterisks (A = h,).

(f) NO, s, E. It generates a point y by NO, 8, 8 and delivers * = Ty,
Where T'T = R.

(g) Crude. This is the well-known technique for generating normally
distributed random vectors with correlation matrix R: generate normally
distributed, independent samples z,, ..., #, and deliver y = T'(2,, ..., 7).

(h) Ellipsoid,. It generates normally distributed random vectors
by the ellipsoid & chord algorithm (i = h,, i.e., one point is generated
on the average on each chord).

(i) Ellipsoid,. The algorithm works as Ellipsoid, except one detail:
the scaling factor 4 = hy/4 was chosen, thus on an average four points
were generated on one chord.
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TABLE 4
Algorithms n =2 n =3 n =4 n =25 % =10 n =15
Chord, i, 8 472 525 399 629 934 1413
Chord, s, 8 622 701 603 872 1316 1859
NO,s, 8 330 428 529 631 1130 1620
NO,1, 8 584 679 779 883 1383 1865
Chord, i, I 501 575 473 717 1171 1188
NO,s, I 438 598 802 1032 2615 4763
Crude 287 450 637 849 2267 4267
Ellipsoid, 697 802 704 998 1662 2760
Ellipsoids 403 461 467 585 897 1504

The first four rows show the chord algorithm to be competitive with
the fastest exact method. According to the last three rows we recommend
the ellipsoid & chord algorithm for the dimensions 5-15. When only a small
sample size is required, one should use the crude algorithm, but in the
case where a great sample size (100000, or more) is needed, the ellipsoid
method may be preferred.

The additional programming effort due to the complexity of the
ellipsoid & chord method, the storage requirements and the approximate
character of the chord method are compensated by its speed.

The ellipsoid & chord method is applicable in a natural way to ellipti-
cally symmetric distributions which have density functions depending
only on quadratic functions of the variable (see [10], p. 296, and [13]).
The only change in the above-described algorithm concerns the constants
¢; of the hyperellipsoids E;. The most commonly known among those
distributions is the multivariate ¢-distribution which has the density func-
tion

W) — — L m)2)

= (o 2 (R LT BT,

where » is the number of degrees of freedom of the corresponding x-variable.
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METODA ELIPSOID DLA GENEROWANIA WIELOWYMIAROWYCH
ZMIENNYCH LOSOWYCH O ROZKLADZIE NORMALNYM

STRESZCZENIE

Opisano metode superpozycji dla generowania wielowymiarowych zmiennych
losowych o rozkladzie normalnym. Algorytm oparty jest na rozlozeniu funkeji gestodei
wielowymiarowego rozkladu normalnego i wykorzystuje generowanie zmiennych lo-
sowych o rozkladzie r6wnomiernym w #-wymiarowych elipsoidach. Podana jest przy-
blizona metoda generowania takich punktéw. Program komputerowy jest szybki
Przy zalozeniu, ze moze on zajaé kilkaset slow roboezych pamigci. Do wygenerowania
jednego wektora algorytm potrzebuje 2n-3n mnozen i kilka mniejszych operacji.
Z algorytmu mozna korzystaé przy generowaniu wielowymiarowych zmiennych lo-
sowych, ktére maja symetryczne rozklady eliptyczne (np. wielowymiarowy rozklad ).



