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Norms from certain extensions of 7, (T)
by

StpesH K. Goa1A and INDAr 8. LurHAR (Chandigarh, India)

In 1908 Landau [2] gave an asymptotic formula for the number
“B(z) of integers < # which are representable as sums of two squares of
integers. The number B(x) may be interpreted as the number of integers
<& which are norms of (totally positive) elements of ¢(V ———1). In thia
form the result was generalized by Luthar [3] to arbitrary gquadratie
extensions of Q.

In this paper we consider the analogous problems for eertain types
of extensions of F (T), F, being the finite field with ¢ elements and 7T
an indeterminate. In §$1, we determine the number of non-zero poly-
nomials in F,[T] of degree < which are representable as norms (of
polynomials) from & constant field extension ¥, (T) of F (T). In §2 we
consider the number of non-zero polynomials of F [T of degree <<=

which are norms of elements of a quadratic extension F (T VD(T})
of F (T), D(T) being a non-constant square free polyncmial in F,[r
'I‘hese results are deduced from the following theorem.

THEOREM 1. Let # be a complex number of absolute value > 1 and let
A be a positive real wumber < 1. Let w(u) be any holomorphic function of u
in Jul << |27 with w(z™") % 6. For |u| < |27, write

Zbu -,'

where the power seriss empansion of (1 —zu) >

Then
P

(L —2m) P (u)

around u == 0 begins with 1.

£ 2eof]

with
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The proof of this result will be given in § 3.

1. Norms from constant field extensions. Lot & = I (T') be a 00].181]&1:]11}
field extension of k = F (T} of degree I, so that ¢ = q'; here 1 is ANy
integer > 2. If #(T) is a monic irreducible polynomial in #,[T] and if

2T = (L) oo m (T

i its factorization into monic irreducible polynomials in [T, then
all the m,(T) are distinet; moreover they arve conjugates of each other
with respect to the extension &'/k. We put

- Nypfre(T)) = m(TY
so that
. o fe=t
When we wish to be more esplicit, we shall denote the integers f and ¢
by f, and g, respectively. The product

. ” (1— qwladugnmn)'l-}-uﬂ

b

extended over all monic irredueible polynomials « (1) in F,[T'], represents
a holomorphie function of s in o> % which is never zéro there. Putting

TR g—*«la

we see that the funetion

{1) COG{u) = H (1, — gy le87/0m)~1+0n

11

is holomorphic and never zero in |u| < ¢~%. Consequently there is o 1*1.111%
que funétion w{®) satisfying

(2) yz(u). = Lo .,
and
(3) plu) = G(u).

With fhe above notations, we have

THEOREM 2. The nuwmber B(n) of non-sero polynomials in F,[T] of
degree < n, which appear as norms from &' to & of elements of Fy.[1'], is
given by

f— i3 1

)] (=0, 0<r<1)

icm
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where

- 1 q’ Ty Co1y 11 1 1
I | R — R b e —_ | = — ] — g ——
B Py g lﬂ(q’)’ ‘ ('1 6) q’[w(q') ‘q(-?l q’—l)]

Al ?p is defined by (2) and (3).

Call G{n) the number of monie polynomials in F,[T] of degree < n
whicl appear as norws from & to & of elements of B, [T]. As cach element
of I, is & norm from #, to #, and hence a norm fmm kK to k, we see that

1
(} | T e ‘_ Vi
(‘H:) q—1 'B(n);

honee (4) is cquivalent to

| » [Togn
() O+ =;@-1—‘£1—,[[1+~-?+o(~°£"i)] O<r<i.

% 12

It »(T) is a polynomial in ¥,.[T], then N, /,(h (T)) has ity degree
a wmultiple of 1. Tt follows that for 0yl

in) = C{In-+r); ‘

consequently to prove Theorem 2, it suffices o prove (47) with » = 0.
For a monie polynomial #(T) in F, (T, define b, to be L or ¢ aceording
as k(T) ia or iz not the norm of some polynomial in F, [T']. Tt is clear that

H(in) = M'b,

where the summation is extended over all monie polynommls BTy in
F,[T] of degree < In. Tle series

) e bi (l—"ndcgh
extended over all monic polynomimlﬁ h( ) in F (1) oJ“. degreo = 0 rep-

is not @ nmltmlv nlﬁ I, it to]lan Lhwt @ is 8 Jlun_etwn of

- q-IH = Q’__B
ip{s). Thus, for |g'u| = 1,

(6) (u) == Zmdww Zbu”,

Pl

by, == ;' by

wao shall write e(u) for

whers
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% running over all monie polynomials of degree In, so that

ki

(0 O(ln) = Zb,.

pel)

One verifics easily that for relatively prime polynomials g(T) and k(1)
n F,[T]
b = bgbas

it follows that for o> 1,

(p(s) == H (1 -—wq"‘ﬁfﬂdﬁl}.‘z)m..l

n

where the product iz extended over all monic irreducible polynomials
m(T) of I,[T). Since f,g, =1, for lg'u] < 1, @{w) can be writlen ag

pu) = n R T

24

If (s} denotes the Dedekind zeta function of &', then we have for |g'uj < 1

P Ck‘(s) == (1—'u.)“l”(1__,“(1(\14'::/0”)“0“’

a

A —u)" (L—g'u)™"

80 that
plw) = (L—gq'u)" G u),

where G(iu,) is a8 in (1). Taking Tth roots, we get for |g'a] < 1,

(8) pla) = (1 —qu) Yy (u)

where the power-series expansion of (L—gu)™' around u =0 begins
with 1. .

In view of (6), (7) and (8) the desived result (4') with r = 0 follows
at once on taking # = ¢’ and A = 1/l in Theorem 1.

2. Norms from quadratic extensions. Lot k' == k(l/D(T)) bhe a quad-
ratic extension of & = F (T) with D(T) a non- congtant square free poly-
nomial in B, [T, If F, is of charact erigtic 2, thon one cagily proves that
the number B(w,) of non-zero ]mlyncmmM in ¥,[T] of degree = » which
are norms from & o & of clements of &' is given by

B(n) =

Throughout the rest of this section, we shall assume that the characteristic
of ¥, is different from 2. We sha,ll first find a formula for the namber

O(n) of monic polynomials & (T) in ¥,[F] of degree < n such that ¢ R{T)
is » norm from %' for some ¢ # 0 in I’ The estimate for B(n) will then
regult from the obvious relation

() B(n) = n0(n)

'nkl__ 1.
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where », is the number of non-zero elements of F, which are norms from
k'; we shall determine tho number v, explicitly.

Let o = F [T, 1/1) ] be the infegral closure in &' of F [T], and
let T and I’ denotc, respectwtly the group of (fractional) ideals of % and &
Let A’ be the subgroup of I’ consisting of all principal ideals and let G
be the subgroup of I' consisting of all ideals o’ of %' such that for some
E 0 in & :

Ny (a') = {'N.Ta','}c(‘fl))'

One verifies at once that an ideal o’ of %' iy in &' If and only if the clasg

of o’ is a square. It is also clear that for an element A{T) % 0 of F,[T],

¢'h{T) is a norm from %’ for some ¢ + 0 in ¥, if and only if there exists o’

in & such that '
Nyp(a')y = (b(T)).

For a character y of I’ trivial on @', and for w mounie polynowmial k(T
in F, [T, we define b(h, g} to be g(a') or 0 according as (A(T)) = N, (')
for gome o in I’ or mot; it is trivial to check that b(k, x) is well-defined
and that the sum

Db, )
X

extended over all characters y of I’ trivial on @' equals the number of
characters of I'/6" or 0 according as some non-zero constant multiple
of A(T) is or iz not the norm of an clement of %'. Thus

(10) > X b(h, g) =r0(m)

deghsn z

where # ig the number of characters of I'/G¢. This number ig determined
elsewhere.
The series

(.1,].) (]’l(h‘, %) — Zb(h’ x)q—sdegh
)

extended over all monie polynomialy A (T) in 77 ,L4"] represcunts a holo-

morphic fanetion of & in o x> 1. 1f p’ and p’* are two distinet prime ideals
of %' lying above the same prime ideal {=(T)) of %, then p'/p” is in &'
and hence x{p’) = g (p'*). Thus for any menic irredueible polynomial »(T)
of I,[T7 we muay define x(n) a8 x(p’) where p’ is any prime ideal of ¥
ashove m{T); if '

h (T) = ﬂtl(T)ll g;m(_’[')lm

is any monie polynomial, we define

2 (h) = g(m)1

S IEMLS
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Let f, denote the modular degree of any prime ideal p" of &' lying above
the prime ideal (=(T)) of &, so that
N,.r’lk ! .b (75 11)1‘").

Clearly b(=l1 .
when that is &0,

am, ) # 0, if «.IIld unly ity f; = fa, divides I for 1 <0d < m;

bt L iy ) s g (L ).

It follows that for o> 1,
{12) w8, X) = [](1,,_2(%)(1—_31““‘1%::)-1

:H(l—x(n IY 1 — x{7)e —‘HlLL.n) I] (J.-—x(n)q”’“d“ﬁ“}”l

niD ( =, ' (:’i)l

—3 llLL,n

where m = =(T) runs over monic jrveducible polynomials of F,[T] and
DT o A
where the symbol (M(ET—)) has a meaning similar to  the TLegendro
2

symbol '
Let oo denote the place of %k characterized by |T7 1im< 1; we pud

== ku?; ?ﬂvi
Ve {50

where ¢’ rung over the places of %' and where #;7 denotes the group of
units of the maximal compact subring =, of the completion &y, of &'
at the place »'. The canonical map

it B -1

induces an isomorphism of &7 /E'* Q" with the group % =
classes of o', As ¢/H' = %%, it follows thab

I'/H' ofideal

x> xod

ja an isomorphisin of the ,qmup of characters of I' /G == € [¢"* with the
group of real chavacters of k¥ /6" £2'. Wo shall write y for xo4 and daote
by L(s, x) the I-funetion oi the field & with vespeet to the character
g = x0 4 of K} trivial on &=, Then for o= 1, wo have (with nsaal no-

tations)
[ g I |

Lis, g) =
#leo alli ( ) el

% [}' 1 —ylm --23_('l¢¢gf:y)*1
=-~1

1 '"'x( 7 -arlugn)m‘.! ]

icm
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no that by (12)

(s, x) = 8 ¥ H 1 x —sdegn) -1 ” (l;ﬁx(ﬂ)g_,-,sdegn)—l
D> (2)3—1
where
A = J]a-an
¥ oo
We pub
b == '_8,
and |
plu, 1) = @(8, 1), L(u, x) = Lis, x), A{w)= Als);
then for |ju] < ¢, '
(13) ¢*(%, x) = A{u)L{u, x)”( —x(m ) dagn I_I (1 x(ﬁ)uzéegn)

ntD Dy

n

Also ¢{w, ¥), in view of (11), iz given by

(14) O Zb(h y)udeE ——Zb
- y=0
with
b,(y) == b(k, ),
deg k=1

%0 that by (10) we have

(15) | -3 )_jb

where y rang over the characters of I'j6¥, i.c., over the real characters
of &7 /"™ £ and where 7 is the number of these chaa‘a.cters Thus, to egtimate

the number ¢(n), it sufficey to extimate the sum 2 b, (x) for each x. To do

va=f
thiy, we distingnish three casos: !
I. % does not lie in the principal sheet,
TL x is a non-trivial character Iying in the prmmp‘nl sheet.

III. y ig the trivial character.

Bstimates in Oase I As before, let x bo @ character of 1'/G';
suppose that g, regarded as a character of B R, does not lie in the
principal sheet. Then L(%, y) is & polynomial in » ([4], Chapter 7) and
liag no zeros in ju| < ¢! ([4], Chapter 13); consequently it has no zeros
in a slightly bigger disc. Also the produet [ {1--y(m)w’ ¥~ is holo-

(D=1
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morphi¢ and never zero in ]%\ < ¢~ On separating one of the factors
in the finite product ] ] {1 — y(m)u?e™)~" corresponding to a primo divisor,

say w, (1), of D{1, 11. now follows from (13} that for ) < g
g2 (u, ) = (L—0u") 7@ (u, x) (1= degree of my(T), 0 = x(no))

where G (u, ) is holomorphic and never zero in |u| < ¢¢ for some a > 0.
Taking sqnare roots, we have

(16} @(w, x) =

where the expansions around % = 0 of (1
with 1. We write

= (1~ Bty o ) )
— &)Y and of p(u, ) begin

i3

oo * o
(1— 6'”‘ = L+ Zm" alm ult == 2 oW
M=l i}
M
Sn = Za’w
i}
and
)= Dlow (] <g* )

vaf)

go that by (14) and (16) we have
n 1_?:1
(1n 2000 = D) 68
=} =0 .
Sinee lay ey | < 2, we have, by Stirling’s formula, on putting m = /1]
2H ¢
(18) Su = B € 2]~ e ]/m <2
We put
N ;[ ----- log'n]+1
and write (17) as
«ro N1
(a) - bix) = D o8, + Z 68,y = XA+ ¥,
frus ) L)) #em [

In wview of (18) we have

m) - ¥ < Dl < Z lengi~ < g’

=N p=N

(23) (o) =
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Similarly
N-1 N1
(c) X < D el =" < g*fn* 3] lejg < gt
pe=() r=0

Combining (a), (b) and (c), we obtain:

Eid
(19) Db(x) < g
yaaf
Iatimates in Case IIT. We shall denote the trivial character
by x, and the Dedekind zeta function of %' by £, (3). As before, we put
% = ¢"", 8o that

Lty o) = Go(w) = P(u)f(1—u)(1 —qu)

wheve £’ () i3 4 polynomial in % all whose zeros lic on the circle |u| = ¢
([5], Chapter II). One easily proves that in the present case relation (13)
gives:

—1/2

-]

(20) Do 0w = plu, 10)

P

=L —qu)Pyy(w)  (Jul < g™

where w,(u) is holomorphic and never zero in |uj < g%, v,(0) =1 and

(20') (% )::-"-—-_P )H — o8 my= ]Y (L g B0 )1

{(Dfn)y=—1

" Applying Theorem' 1 to the function p({u, y,) (with # = ¢ and & == 1/2),

we got
. N\ by ¢ logn. '
(1) Dbt = ﬁ-[w—qﬁo( 2]
where
; ISR S _ AT g g( “Q)]
U i O 2g[ po U dG)

Estimates in Case IL In this case y is a non-trivial character
of k7* and lies in the principsl sheet, so that it is of the fomn

2(e) = el (¢ In KJ).

Since the group {|s|,: # e %)} is generated by g, therefore ¢ is an odd
integral multiple of =/logg and hence

[zlmllugq — |z|-i;
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where 7 = n/logg. It follows that a non-trivial real character of B gy
which lies in the principal sheet, if it exists, is unique and it is given. by (23).
The necessary and sufficient condifions for the exisbence of such a x
are given in the following lemmaj the proof is easy and is therefore omitted.

LEMMA 1. The following conditions are equivelent.
(i) There exisis o nmon-trivial real character of B[R which lies
in the prineipal shect. . ‘
(ify If w is a placo of &' quq mbuw the place oo r)f ki, then the moduler
degree f-of Tyl 8 2 oo :
{iii) D(T) s an cven degree polymomial with dis Ieada,ng wejfmmt @
non-square . F,.

Let y be a8 in . (23) and let L{s, ) be the eorresponding L-funetion
of %'. Then (m v1eW of f, = 2), we have
Lis, 1) = Crar(H W)

tirstly for ¢ = 1, and then, by snalytic continuation, for all . Wo pub
u o= g ° 80 tha,t

Liw, g) = L (—w) = P{—u)J(L-Fu)(L--qu)

where P (%) is & polynomial in » with all its zeros Lying on the civele |u]
= ¢~**. One casily verifies that in the present case, relation (13} gives:

‘/_

(24) S (0w = gl ) = (k) Pyl (< g™

where w{u) is holomorphic and never zero in |u| < ¢, and the power
series expansions of (14 qu)~'* and of y(w) around % =90 begin with 1.

Thercfore Theorem 1 is applicable to the function e{w, x) (with & = —qg
and A = 1/2); so that :
ki3 .
. b gy v flogn
(25) b = A [:1. Lo (-Ji?- |
Lt Van " "

whore .
A " ~L ¥ 4(8-1-9)
0 ke Loy, o Y ey 160
g A E7 R A Vi
In view of (13), (20') and (24), it is easy to verify that for |u| < g,
wiku) = () '
Sinee 9o(0) = p(0) =1, it follows that for |u| < g '

o) = p(—u):

Norms Jrow cerlain oxtensions of T (P 335
q

Therefore b’ and ¢ arc given by

e v e Lo, ¢ = [ B - S0
Vr +L 2q 4(1+¢9)

The number v, and the numhber B(n). The following lemma
detormines the number v, of non-zero clements of F, which are norns
from &' to k. .

ToemMA 2. The mumber vy cquals (g —1)/2 or ¢—1 according as D(T)
has or has not an irredueible factor of odd degree.

Proof. Suppose fivst that D(T) has an irredneible factor, say R{TH
of odd degree T (say). If a non-squarve o in F, appears as & norm from i
to k, then we have ‘ -

(%) a (1) = a*{T) — D(T)B*(1)

for some polynomials o(%), b(T) and ¢(T) in F,[T] having the g. cd 1
The polynomials ¢(T) and D(T) are then co-prime. ‘Reading () mod h(T),
we gee that e is a synare in the tield F [T]/(h(T)) ¥, which is impossible
beeause I is odd. Hence an element ot F, is a norm if amd on}n;r if it is &
square in & ; therefore », = (g—1)/2.

Suppose now that ecach irreducible factor of DT is of even deg'rec
We have to prove that vy == g-1. In view of the Hasse Norm Theorem
{Ti], Ohd,ptm 7), it suffices to prove that for each place v of k and for
each place »' of &' above 'v, all elements of I, are norms from Tope 10 Ty
For this, suppose first that o’ lies above the plmw == p,, of & corresponding
to & monic irreducible polynomial = (T) of I, [X1]. If ={%) does. not divide
DT, then %, is an unramitied extension of k,. Hence every unit of the
maximal compact subring , of k, appears as a norm ifrom ke t0 k3 in
particnlar all non-zere clements nf F, do so. It =(T) divides D(I), then
{the module of %,, being ¢**™, iy a power of ¢*, and hence Fpis contained
in k,; congequently

By Fe) e N, (o).

Finally suppose that v lies above the place o of k. Since D(_’[’) is of even
dogrev, it i cither o square i B = F((Z7") in which caso ki,

inm(]/ 1) T)) -~ Jogy OF I, 35 an unramified extension of kg (by Lomma 1),
[n cither eane eaeh non-zero clement of F, appears ag o norm from i,
to &,

Wu are now in o position to estimate the number B(n). Combining
relations (93, (15), (19), (21) and (25) with Lemmas 1 and 2, wo goeb

TumorsM 3. Suppose that the characteristic of o == F (L) 48 not eguaé
10 9. Let D(T) be a non-constant square-free polynomial in I/ (LT and Lot o

be the integral olosure in k' = L(VD(T ) )) of B [T]. Then the number B(n)
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of non-gere polynomiols in F [T of degreec <n which appear as norms
from k' 1o I is given by:

T bg" logn
LBy =4 [ Ta + (
Yy ]/qq, n*
in all cases eweept when D(T) is an even degree polynomial with its leading
cogfficient o mon-sguare i F,, in which case

7 R
l‘-B (9) =—= [b + (=1 bG F—(, l) b ¢ ;) (10{.',"??; )] ,
Yo 1/’1% [

here vy = (g —1)/2 or ¢ ~1 acoording as DT hes or has not an irreducible
Ffactor of odd degree; v is the number of real characters of the group of ideal
classes of the Dedelind domain v'; b, ¢ and b', ¢’ ave given by (22) and (26")
respectively,

2

3. Proof of Theorem 1. For the proot of this theorem, we need & few
results. .

LevMa 3. Let 2 be a non-zero complex number and let A be any positive
real number. Let ay =1, ay, ..., denote the coefficionts of the power series
expansion of (L—ezu)~* around u = 0; then

AAL) L (Aa-1) Mg A
@y, = - =

e (A PR A 1., 1
nl # = [ "““‘“’(’4;5)]‘

Proof. Thiz follows by applying Fuler-Maclanrin summation for-
mula to the funetion log(A--#) on the interval [0, n] and then applying
Stirling’s fornyula.

Lemma 4. Let 2 be a compler number of absolute value > 1 amol let ¢

be any positive real number. Then
= @ B e 1 ]ogw,
o‘ﬂ — ...0... [ . -u—-ﬂu. _]_ _}.. e s !_ O _..___. .
s B4 e—1 n 2—1 n n

Proof. Sinee [¢"n "”(fn +1)7¢ approaches the limit

1/z] < 1,
therefore

\ o, < |2 /nt,
We put

- 2)1
N = [_(wqj._z_f)_g_%] ~+1, n_’ = g —N -1

ginee

Oy € BRI < Jel"

icm
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thervefore it suffices to show that

S 2 2 1 logn
() L =:-—-—~—[1 + _3“_+0(_T)]_

v g~~1 n°
Hem L

Wo write the left-hand side of {a) ag ST, where

Loy, z " 2"
(1))1 = I.ﬁ‘ s z__l"m'*‘O(W)
and v
. ki w\¢ 2 # m—p\
o =350 () - ZFleT o]

with

=]

4
Since n' < » < n, we gee that

. ]og'rb 2 log'n
(@ z 0 (n e 1"
v
Noxt
n T
& (n—w L m—r (1 13
o S S
pe=q r=

the firgt term on the right-hand side of U is

2 & logn
ooy e T O )

and the second sum on the right-hand side of U is

n
?‘"’"1 g n— w\e ‘zly n—w\® lob n
K e B B R S e A b
,‘,Q I h , ']JQ e
[T r=R

(¢) U=

Combining (b), (¢), (d) and (e), we obtain the desired relation (a).
The following corollary follows immediately from Lemmas 3 and 4.
QoROLLARY. Let 2 be a complew number with || > 1 and lel A be any
positive real number < 1. Let ag =1, 8y, ... denote the coefficients of the
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power series ewpansion of (1 —ew)"? arvound 4 = 0, then

i Ion 3
SH = ato '|‘ ou ’“|“(Ir, - [j"——“" 1 "{‘ T —E () H

n*

where

1 o 1 A
27) =iy (—x) v = {4 [z—l “]

W are now in a position to prove Theorem 1. Write

plw) = Zma ([} = Jo] ™),

Ve ()

and ag in the above enro]lm'y, write

Zr,r/,,% {lul << |27Y),

Sn == ﬂ,,
=)
Then
T [
-l
Db, = Y8, =X+,
Pe=( pre=lh
where
M1 Cm
- X 3
=2 8., Y= oS
y=10 r=N
with

[810"%] ,
- abll TR
log |2|

It iy an immedinte consequence of tho covollavy to Temnma 4 that

8, < Izlnmim”l < le|",

¥ < Zlm g 2 ol 1 <

y=N Pove N

and henee

I‘.‘l

thus to prove Tlne.omm 1, it will suffice to show that

(28) X = ;:z - [1 = .{o(l‘_’%ﬁ)]

icm
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By applying the corollary to Lemma 4, we sce that
(29) . X = ﬁz“(X’—!— X"+ O (X'
where g and » are as in (27) and where

(29") 2 o (m—v)",
(29”) : . ’.rr 2 Gz v __”_,”)A-2’
=)
(20" X = 2 io,] 12|~ (n —»)*"log (n —»).
' . va=it - :
Write
‘“" — ¥ 1
=WW%GZ +Zoz ( (n —w)t? —-',”}_a)
- 1 7 L op\ImR
— —1 - —¥ — 1_ _
v(z )crbli‘ ZJ;az +2 n—p) ’1( ( ' 'n) )
oy L
= y(z )W —S+ T (say);
now
(%) < Z‘ ) 7 €
. v=N '
andl ' ‘
= c,,z“" 1-—-4 |
223 (e oofg]- o
w=0 . .
where .
~ le,| 127" »* logn “ loga
T”'m g ('rbv_""a;)ltr"ﬂ*_ < %T_’l_,e G Wi
and
o e 1A - 1 1
= Z e WZ” '2 e ((ﬂ-—v)l""‘ - »W)
L I SR E’lf_ Lo )
IR mvo,z id {0 — Wy
o1 1 - e logs
:w(z ) nlml “]'0( A pr]ﬂ,,%””“)-i-@( z—a)
- Sz
e 1 logn
= -4 0 PEET
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Thus

(b) 1= (1~ A}»~—(:~D 13 40(1‘??).

Combining (a) and (b) we see that

B E =yl + D =05 )

Rimilar (and easier) calculations give

(81) X = (e

lo
(32) X =0 (7;{?; :

Relation (29) combined with relations (30), (31) and (32) gives the desired
relafion (28) and hence completes the proof of Theorem 1.
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On an extension of a theorem of S. Chowla
by

Tavasmiey Oxapa (Hachinohe, Japan)

1. Intreduction. In [4] 8. Chowla proved that if p is an odd prime,
then the (p—1)/2 real numbers cot(2rafp), & =1,2,...,(p—1)/2 are
linearly independent over the field @ of rational numbers. Other proofs
were given by IL Hasse [5], B, Ayoub [1], [2] and T. Okada [8].

The purpose of this note is to show the following theorem, which is
an extension of ¥, Chowla’s theorerm mentioned abowve.

TrmoruM. Lot b oand g be inteyers with k> 0 and ¢ > 2. Let T be a
set of p(q)/2 representatives mod g such that the union (T, —T) is a complets
set of vesidues prime lo q. Then the veal numbers D*'{cotinz)|, py,, a6 T
fwa linearly independent over Q, where ¢ is the Buler totient funetion and

----- = /de,
In the case k= 2, this corresponds to the result of Fl. Jager and
H. W. Lenstra, Jv. [6]. '

2. Preliminary results. We puf

ke e .
DF Ymcotwe) if 5 is not an integer,
ch(z) e (--ZTE’L)
0 if & is an integer and ¥ is odd,
B, il # i3 an integer and % is even,

where B, in the &th Bernoulli nnmber. Then we have the following partial
fraction decomposition of Fp(z):

1 T (2) = k! j" 1
) T (gmE (2 +my’
T 0
where the dash  meang that the term with » = —z iz omitted if 2 is an

mteger. (If & =1, we interpret the sum as grouping the corresponding
positive and negative terms together.)
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