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Fields with non-trivial Kaplansky’s radical
and finite square class number

by

M. Kura (Katowice)

Let F be afield of characteristio not 2 and let g(F) == 7*/F™ be the
group of square classes of ¥ and g = [¢(F)| — the square class number.
C. M. Cordes [1] classified the Witt groups of anisotropic gquadratic forms
over non-real ficlds with ¢ = 8 and obtained 10 non-isomorphic groups
for this class of fields. A little later K. Szymiczek [10] clagsified the
Grothendieck groups of quadratic forms over all fields with ¢< 8 and
hig claswification in the cease ¢ = 8 gives T non-isomorphic Grothendieck
groups for non-real fields and 6 non-isomorphic groups for real fields.
Having classified Grothendieck groups he wag also able to classify Wikt
groups for all fields with g = 8 and for non-real fields he found the 10
groups confirming Cordes’ classifieation and for real fields with ¢ = &
he got 6 non-isomorphic With groups. Thus there are at most 16 possible
Witt groups for fields with ¢ = 8. Both authors algo supplied some exam-
ples of fields fitting the classifications. But there remained 4 cases (out
of the 16 possible) left without any example of field and it was not clear
whether the nwuber of different With groups ean be further lessened or not.
In this paper we constriet the four missing fields (ef. a remark added in
proof, p. 418). The four fields are charvacterized by the following values of
tield invariants(cef, [10], Th. 3.2).

(Ay g =8, s =32, ¢, = 8§, 4, =2 (the case (4.4) of Theorem 3.2 of
[101); |

(B) ¢ = 8, 8 = oo, @y == 4, uy == 1 (the ecase (0.2));

() g =8, 6§ =1, @y =28, 1, — 2 (the case (4.3));

D) g=28,8 =2, g, =1, uy =8 (the case (4.7)),
where s is the stufe (Jevel) of the field (the minimal number of terms
in a representation of —I1 as the sum of squares), ¢, is the number of
square classes whose elements are represented as the sum of two squares
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and w, is the number of equivalence classes of binary universal forms
over the field.

We shall use the result of Sy‘ymmzek ([11], Chapter VI) asserting
that & quadratic extension of a field' satistying (B) satisfies (A) and first
we construct a field satisfying (B). These two examples (A) and (B) make
complete the classifieation of Grothendieck groups for fields with ¢< 8
as described in [10}, Theorems 2.1-2.5, and also solve the problems pro-
posed in [12], p. 454 and in [11], Problem 9 at p. 61. Then we construct
a pythagorean field with ¢ = 16 and exactly 5 orderings and show that
a smitable quadratic extension of it satisfies (C). Finally, a field fnlfilling
(D} i8 constructed. )

Before going on into the constructions let us recall another context
where the fields satisfying (A}, (C), (D) are of importance. I, Kaplansky [7]
introduced the notion of radical of the field F to be the set of square
classes a 6 g{#) with the property that quadratic form with diagonali-
zation {1, —a)> be universal cver F. Thus u, is the number of radical
elements of g(#). In all known examples of non-real fields with finite ¢
cither w, =1 oru, = g, that is, the radical js trivial: {1} or g(F). Cordes [2]
congtructed a figld with non:trivial radical but the ficld has apparently
infinite square elass number ¢. It was shown by Cordes [2], [3] that,
when dealing with quadratic forms over fields, in many results the group
of squares F** can be replaced by the radieal of the field.

Our constructions produce the first examples of non-real fields with
finite ¢ and non-trivial Kaplansky’s radical. The method we use makes
it possible t6 construct auch flelds for a.ny g = 2" =8, Thla will be done
in another paper.

We uge the following notation and terminology. For a quadratie
form ¢ we write D(g) to denote the set of square classes represented by ¢.
Thus ¢, = |D{{1,1))| and s = min{n e N: —1 e D(nx{1>)}, provided
the minimum exists; if not, the field iz formally real and we write s = oco.
An ordering P of a real field F is a subfet of F such that P-+P c P,
PP e Pand Pu—P = F* Since F* < P, the group P/F? isa subgmup
of g{¥) and we also régard P [F*® to be the ordering of F. Let v: T — I'u {0}
be & valuation of the field # into an ordered group I O, myand F = O, /m,
denote the valuation ring, the corresponding maximal idesl and the
residue class field of the valnatiom ¢ For 2 e, we write  to denote
@w+m,e F. If B is an extension field of ¥ and w is & prolongation of v
onto F, wo denote by e(ww) = [w(E*): o(F)] and flwle) = [B:F]
the ramification index and the residue class degree, respectively. The
valuation wis said to be an immediate extension of v if e(w(v) = f(wy) = 1.
Tor a discrete valuation v we write F, for the completlon of ¥ with respect;
t0 v, In this case ¢ hag the umique extension » onto ¥, and we have & (wlv)
= f(wl) =1.
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We begin with the following

- LevmA. Let F be a field with a diserete valuation v such that v(2) = 0
and v(F*) = Z. Suppose Eis an extension field of F and w @s ate a,:r'bv,tmry
estension. of v onto H.

a) If B = F(VD), where D e T, then e(wv) = 1 iff »(D) e 2Z.
27}

b If E 7 VD: w e N), then e(w|v) = 1 iff v(D "z 0.

( .
(¢) If B == F(VD), then f(w|v) = 1 iff o(D) ¢ 2Z or there is an elemem
ael with a“2D == 1 (mod m,).

(&) If D == 1 (modnu,), then there exvisis an extenston w of v onfo the‘
o

fidld B = F(VD: neN) such that flwv) = 1.
Proof. (a) The implication e(wlv) =1 = v{D) 221 is trlwal Conver-
sely, assnme that ¢(wv) # 1. Then there exist elements a, b € F' such that

w(a+bVD) =3 The element » = a--bVD satisties
' | @+ (a? —D2D) = 2am.
Since w(2ax) ¢ Z, 50 w(x?) = w(a?—b2D) and
20 (%) = w(e-+ bVD) Fwla—dVD),
ie., wiw) = w{a—b@)._Sinqe 2(2) = 0, we have |
v(a) = 9(2a) = wl(a+bVD)+(a—bVD)]
_ > min[w(a-bVD), wla—byD)] = 3.
But v(a) e Z, s0 v(a) = 1 and |
} = wia+ /D) > min(o(@), wEVD)) = w D).
From #{a) > %= w(bl/ﬁ) we get = w(a+bV/D) = w(bl/ﬁj hence
o(D) =1—20(b) ¢2Z. -

(b) Obviously, e(w|e) =1 implies that »(D) = 0. Let E,=F l/_)
and w, = = Wy From (a) it follows that 6(w,|p) = 1ﬂ g&ssume that ¢ (w,..,|v)
= 1. 8ince H, =T, (D" and w, (D7) =0, so by (a ) we
obtain e(w,|w,.,) = 1. Using the induction hypothesis and the equality

e (’wnw) =0 (wn {wn-l) & (wn»«lw)

we get e(w,[v) = 1. . K
The field B = (J{#,: n N}, so w(E*) = U{fwﬂ (B}): neN} =12

© This proves that e{wiv) == 1.
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(e) If flwjy) =1 and v(D) « 2%, we choose p € F such that »(p) = 1.

Then p *P1D & F*2. Hence there is an clement b e F* with 52 = P~ PD.
Thus for e = bp"™", ¢™2D =1 (modm,). Conversely, since (2) = 0,
the field & is a Galoiy extension of F. Therefore ramification indices and
residue class degrees of all prolengations of the valuation » onto F are
equal and [H: ] = s(w|v)f(w|v)s, where s is the number of different
extensions of v onto & (cf. [9], Chapter XIT, § 6, Corellary 2). If »(D) ¢ 2%
then from (a} we have e(wv) > 1. Hence f(ww) = 1. Now suppose a e If
and 270D =1 (mod nt,). Sinee F 1/5 ]/l? we can assume that
»{D} = 0. By Hensel’s Lemma the 1)olynomml a*—D has & root in the
completion I, of F. Thercfore one can embed the field # into I,. Hence B
has an immediate extension of the valuation v, and since F is a Galois
extension of I, every extension w of v onto ¥ hag f{wje) = 1.

(d) Let % be the unigue extension of valuation v onto the completion
F1, of the field F. By Hengel’s Lemma for every = = 1 the polynomlal

* —D has a unigue root g, in 7, such that e, = 1 (mod my)and o, = a,_,.

Therefore the field ' = F'{a,: n e N)is a subfield of the field F, isomor-
phic with the ficld B, Tet :: F — E' be the isomorphism, and w' = |y

be the valuation of the field B', then w = ¢ 'w's is a valuation of ¥ and

it fulfils f(wle) = 1.

THROREM. If ¥ is a formally veal field with ordering P, and discrete
voluation v such that v(2) = 0, then there exists en algebraie, formally real
extension B of the field T with ordering P such that PnF = P, and with
a valuaiion w, which is an immediate extension of the valuation v. Moreover,
if acP and 5 e ™ then o e B,

Proof. Let R be a real closure of the field F, with ordering P such
that PAF = P;. Consider the family # of all pairs (K, w) such that
F'cK < 1? amd the valuation # is an immediate extension of v onto the
tield K. # is nen-empty because (F, s) e #. In the family #F we define
Y p.utmfl 01(101111 r < by putting

(g wy) & (K, w,)  If and only & K, < K, and Wylge, = Wy

We verify that every chain & in & is bounded. Namely, for the ficld

= | J{I: (K,w) e} we define n valuation % of the ficld L in the
following way. For a & L there is a pair (K, w) e % with o € K and we put
wi{a) = wia). Obviously (L, «) e F and produces an upper bound for 2.
By Ruratowski-Zorn’s Lemma we get a pair (F, w), which is
& maximal element of the family #. Since F is contained in real closed
field £, with ovdering P it is also formally real ficld and P = PAE i
an ordering of . Mo show that the triplet (B, P, w) fulfils the requirements
‘of the theorem wo need verify that if a € P and @€ F* then ¢ is a square
“of the field B. Let a P and a@e B*™. Obviouily, the field B(Va) < R.
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From lemma (a}, (c) it follows that if valuation «’ is an extension
of w onto E(Va) then e(w'|w) = f(w'|w) = 1, hence (E(l/a), w')e F
and (B, w) < (B{Va), w'). Since (E,w) is a maximal element of &, 8o
B = B(Ya) and o e B*, This finishes the proof of the theorem.

Now we use the theorem in constructing fields having the properties
deseribed in the introduction.

Examrrw 1. Les 7 be the tield of rational numbers @, P, be the natural
ordering of €}, and o let be the 5-adic valuation. According to the theorem
there existy an algebraic formally real extension B of €, with and ordering P
such that P ) = P, and with an immediate extension w of the valuation v.
Sinee the valuation w is discrete, every element a ¢ B* can be written
in the form

a = ( —1)5e

where 3, j are integers and ¢ € P, w(e) = 0. 8ince w is an immediate exten-
sion of v, the residue clags field & is F,. Thus from the theorem we conclude
that if & =1 or 4 (modm,}, then ¢ e B and if ¢ =2 or 3 (modm,),
then je € B*. Il follows that every element @ ¢ B* can be uniquely rep-
resented o

= (—1)'6%2",
where 4, k € {0, 1}, § is an infeger and » is o square of the field E. Conse-
quently, g(I) = {1, —1} x{1,2} x{1, 5} and ¢(&) = 8.
The form (1, 1) is positive definite in the ordering P, so it represents
only positive clements of the field, hence

g = [D({L, L) < 4

On the other hand, 2 and 5 are yoms of two squares, hence g, == 4. The
forms 1,2, <1, 5>, {1, 10> are positive definite, so they are not uni-
veraal. It is eagy to show that if one of the forms <1, —25, {d,—5>,
L, 10> is universal then wll of of them are universal, But the form
{1, —B> is not universal, becauso it does not represent 2 (otherwme,
2 would bo n square in the tield Fy), hence u, = 1. Thus I/ satisties (B).

Bxamprs 2. Tt B is the field from Example 1 then B(Y —2) smlsfles
(A), according to Theorem 1 of [117] {Chapter VI)

IxAnrrn 3. Let AcQ be an algebraic closure of the rf_mjional field Q,
and By, B; c AcQ Dbe two real closures of the field Q(|/2) that induce
different orderings on Q(¥2) and assume that B, = R, where R denotes
the real numbers. Then the field &k = R, \R, is & pythagorean field containeclﬂ
in R and it has two orderings (cf. [4], p. 1187), hence g(k) = {1, —1} X
X {1, V2}. Lot B = k(x) and suppose v is the valuation determined by
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the polynomial » € k(x) and

7, - {12 . e ~o]

E{x):
PE AT

is the ordering determined by the transcendental number =. By the the-
oremm, for {F, P, v} there exigts a triplet {8, P 'fw) with the properties
deseribed in the theorem. Therefore every element a ¢ B* can be written
in the form « = ( —1)'s where e eP, wle) = 0 and z § are integers.

‘The elements of the seb 0= A, m—1, 9, (z—1)y} where Y= (~--——‘/~)
+l/2, are .pcmtlve in the, Ql_duung F. Moreover for every clement 1 & ¢,
o{r) =0 and the elements 1,2 —1,% (#—1)y €k represent all cosets
of the group g(k). So for a suitable » e € the element -+~ is a square
of the field E. Hence for ¢ & B* we can write ¢ == ( —1Ya'rn, where¢ = 0, 1;
jis mteger, r e and .y € B*. This shows that

B = {1, ~1} % {1, L, gl x {1, 21} and g =16

The form {1, —1> is positive definite in-the ordering P 'md the
identities

2 1__ 2 2

2

hold, so we conclude that |D({1,z—1>}| = 8.
It Py, Py ¥ = E are different orderings of the field %, them the
sets

P, = {t’sc B*: § e P}, i=1,2,
P, = {#e e B*: (—1)zeP)}, i=1,2,
are orderings of the field F. ‘ -

‘This shows, that the ficld F has at least five orderings smd bV Prop-
osition 1.12 of [10] it is & pythagorean field. Considering the sighs of el-
ements of the group g (#) it is easy to check that ¥ hasno further orderings,
sinee otherwige from Corollary 2.2 of (8] it follows that [D({1, v —13)] < 4,
contrary to the above arguments.

Thus F is a pythagorean field with ¢ = 16 and hag exactly five
orderings. We will uge the field in the next example.

BXAMPLE 4. We ghall show that the field K== E(V —1), where B
is the field constructed in the Example 3, satigties (C‘) -

Obviously s =1 and the form <1,1) is universal. Accordmg to
Corollaxy 7 of [6] or Lemma 4.3 of F10], . .

gE) = {1, 8} x {1, 2 =1} x {1, (l—u:;/i)z m—|—l/§}, 0 g=8. |
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According to the arguments used above in the Example 3, the form
{1,315 is & second wuniversal form, hence u,>> 2. Since the field ¥
has five orderings, so according to Corollary 1.3 and Theorem 4.1 of [8]

we gef 4y < 8. Using Lemma 1.8 of [10] we obtain uy =2, Thus K satis-
fies (0).

Modifying o little the above construction we can get a field, which
fulfils (D). "

HxaMpLE B, Take the field 7 = Q(VT: n e N), and the 3- and 5-adic
valuations #; and ¢; of the field Q. Of courge, vy (T)=,{7)=0 and T=1
in tho ficld ¥y, hence using lemma (b}, (1) we obtain some prolongations
1y and w0, of the valuations v, and v,, respectively, onto F, with e(w,lvs)
== flug|ny) == 1 and e{w;|v;) = 1. One can show that the residue class Held

) an_
of valuation w, is F (V2: « @N ). Using Corollary 7 of [6] or Lemma 4.3

of [10] we obtain that g(F, 1/9. neN)) = {1}.
TFix an algebraic elosure AcF of the field FF and consgider the family

_of all triplets- (K, uy, ;) such that F < K < AcF, the valuation «; is an

Immediate extengion of valuation v; for ¢ = 3, 5. We introduce the partial
ordering < by

(B, gy 105) (K, g, u)  if and only it K = K, wjlg = g, Wplz = -

Similarly as in the proof of the theorem ome ean show that in the family
there exists & maximal element (B, s, u;) with the property: if o e %,
g(a) == uy(a) = 0, and @ is a square in the residue class field F; then
a & B*. Since valuations u, and u, are discrete, so every element a ¢ B*
can be written in the form a = ( —1)13'5'% where 4, 4,1 are integers and
s € B*. Hence S :

g(B) = {1, —1} x {1, 3} x {1, 5}

and. ¢(&) = 8.
The form (1,1} is not universal (it does not repmﬂent 3, beeanse
otherwise the form {1, 1> would be isotropic over Fy) and the equalities

B o= 1240,  —1 =124V =29

ghow ¢y == 4 (I/W:TZ’_EE because ty{ —2) = #,( —2)= 0 and —2 is & square
in the residne class field of valuation u,). Hence we get g, =4, s = 2,
and u, < 8. e

From the identities 3* +5(Y —2)* = —1, (¥ —2)*+5-1% = 3 it follows
that there are two universal forms (1, 5%, <1, —1>, so that u, > 2. Uking
Lemma 1.8 of [10] we obtain u#, = 2. Thus & satisfies (D).
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Added in proof: After I had sent this paper to editor, L. Bzezepanik notice

o mistake in Theorem 2.5 of [10]. Actually, there exist exactly soven Grothendice
groups and seven Witt groups for formally real tields with 8 square classes. Compled
classification of formally real field with g = 8 can be found in: M. Kula, L. 8zczep:
nik, K. 8zymiczek, Quadratic forms over formally veal fields wilth eight square clusse
Manuseripta Math. 29 (1979), pp. 295-303.
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