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(lass number formulas for quaternary quadratic forms
_ by _
PaUL PoNOMAREY® (Columbus, Ohio)

Tutroduction, This paper may be regarded as o sequel to [4]. Unless
otherwise indicated, the notation and terminology are taken from [4],

" especially §1, §3 and §5.

We recapitnlate some of the results on class numbers derived in [3],
[4]. Let V be a definite quadratic space of dimension four over the field
of rational numbers Q. Let I be an idealcomplex of maximal lattices
on ¥V {cf. [4], §3). Let 4 denote the reduced discriminant of Jand H
the number of proper similitude classes in. 3. In the case where V has
square discriminant iy uniquely determined, and an explicit formula
for H wag given in [37 (Theorem, p. 297) .

1f the diserimivant D () of ¥ is not a square, we pub K == Q(V D(VY),
and denote the diseriminant of K by Agx. It was shown in [4] (Prop. 7)
that '
' A = Ag(Py. P (s )
where gy, ..., ¢; are the anisotropic finite primes of V; qq, ...y gy splib
in X, and 9y, ..., P, are distinet rational primes which remain prime in
K. In §6 of [4] explicit formulas were obtained for H (Theorems 1, 2)
under the following conditions:

@) f=0,

(if) The fundamental vynit of K has norm w1, :

In this paper wo obtain such formulas for H without making either
of these restrictions. As o result, we completely solve the problem of
determining  the proper clags number of an arbitrary idealeomplex of
maximal quaternary lattives (of. [41, Prop. 11, for the indefinite case).
As o special ease of these formulas we obtain, in the clagsical language,
a Formula for the number of proper clagses of positive definite integral
quaternary forms of discriminant dg. L

By scaling, we may assume that I contains the maximal integral
lattices of V. When D(V) iy & nonsquare, there is a unigue quaternion

* Partially supported by NSI' grant MCE 76-08746 ADL.
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algebra 9 over @ sueh that V is sometrie to {a e Wla™ == a} ({1], Prop. 2).
Then Pry ..oy Poi Gy +- -5 §, MAY be characterized as the set of all rational
primes which ramity in 9 but not in I ([4], Prop. 6(b)). We set d; = p, .

Doy Oy = Gyl 6 = 8,0y, Then H may be identificd with o gen-
cralized type number I, (£2), where 2 is an Bichler ovder of 9, of level §
([4], p. 22). T 8, = 1, then (L) = ${L), the nsual type number of £,
Thus the formulags we obtain are also formmulay for the type nunmibers
of ecrtain Bichler orders assoeiated to W, . TUnder the fnrther restriction
that & =1, Vignérag [5] stated a fornmia for #(£2) which is ineorvect,
in general. The correct formula is the special ¢ase ¢ = F - 0 of our {op-
mulag in Seckion 3.

1. Let arsa® be the canonieal involution of Wy and N: M-I the

reduced norm. The eonjugation map of K extends to a Q-automorphism

a3 of Uy having A ag its fixed ring. These mappings extend in the
obvions manner to the completions of Wy and to ity idele group oy
Let Jgy, J%, Jur, denote the norm 1 idele groups of Q, IT, U, 1(*51)0011»01}7
Let £ be an Kichler order of 2, of level § which is symmetric, in the
sense that & = Q. The synmetric normalizer 9t ({) is defined to De
the gronp of all v e Jy, such that v = ngd for some n e Jo (et [4],
P. 21). The usual normalizer M (D) is detined to ba tho group of all re Jﬂl
such that wv™! = Q One casily sces that N is & normul Mlhcmmp
of MY (D) and ND)M(B) ix an elementary abelian 2-group of ovder
27 ([4], p- 22). Set

G = ARIES, Gy = Ty Tk, G(Q) = M)
The generalized type winber 3,(82) 18 delined hy
ty{ ) = card{GNGY /G (D).

It was shown in §4 of [4] that I = ¢ ( Q) (Prop. 9).

For every rational prime p let K, = I @9 Q,, W, = AR K, I
IC, is a direct sum of two ficlds, then Q}, i identified wi t,h the dingonal
of . We denote the unit group of X, by Uy . From. the locul deserip-
tion o£ the symmetrie normalizer ([4], p. 22) it i roudily seen that M0 i)
is the seb of all » = (n,) e W(H) such that

(1) Nv) € QAR5 P U, for all p|a,.

The latter norm deseription can be used to define gJt‘( y 1(2) for any
chhler order of level 4, symmetrie or not. Sinco all Ihehlc»r orders of
level & arc locally coujugate, t,(£2) is independent of the choice of Q.
We denote this common value by 1,, and the usnal type nunber of Eichler
orders of level & by .
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We fix © and leb L(GNGY GH(@)) denote the space of all complexs-
valued functions on @ which ave invariant wnder loft wultiplication
by & and right multiplieation by G (@). Lot Fz be the charac-
teristie function of G(Q). X we normalize the Faar measure on @Y so
that G1{2) has measmre 1, then convolution with respect to Fg gives the
identity operator on Ly(GNG, [GA(2)). Applying the Selborg trace formula
ag in §8 of [47, we obfuin

(2) Ho-me(Pg) = 3 [ wlghdily),
L2 NG

where ¢ runy over a complete set of representatives for the eonjugacy
classes of &, ¢(r) is the centralizer of + in @, and

"/’1-(9'r) = Mg (y”?'!/): g€ GJII

A repregentative # makes o non-zero contribation to the trace sum
(2) i and only if g7 Tryg e GA(L) for wome g e @Y. Let a e Wy represent 7,
and y e Jy, represent g. Then

“lpg ¢ GL(D) « ay e NUDY <= v ay e M{D) and

N(W, tyye) € QF (KX F U, for all P8y a e MW (ply™y  and
N{a,) & @F (KU, &, for "all p|dy<en e R{pR2y™") and fthe principal
( (a)) ra il wherd s a Mumml integer dividing 4, and 1 is a
fractional ideal of A,

2. Weo proceed now to determine all o which give non-zero contri-
butions to the trace sum (2). Our approach is a modified form of the
argumment in §7 of [41. I &, & are algebraie numbers, then & = &, will
mean that, for some » e K™, #f and & huve the same minimal poly-
nomial over K. If a, f € Uy, the condition a =~ f# is equivalent o the
classes of a, § being conjugate in @,

Snppose a 4 1, which is te say o ¢ £. We may assume o is fntegral
over 0, the ring of integers of K. Then (N (@) = ni% where t is an integral
ideal of O and w is o rational integer dividing 8. From # = {n" ¥ (a))
it follows that i belongs to an ambiguous ideal clags of K. Let D denote
the square-free kemel of /g, Then one of the following must hold ([1],
. 190, Ihxs. 8-10)

*{a) i I8 cquivalent to an ambiguous ideal,

(hY I == g%--b% where a, b ave integers; every unit of O hag norm 1,
and i = wa, where » & I{ and o* = (b +l/11).

It {b) holds, then (N(a)) = (na?(d +VD)). Taking the norm of both
sides, wo obtain :

Nl W (@) = wnugg (2) (8* — D),

7 — Aetg Arithmetica XXXIX z, 1
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ginee all nnits have norm 1. This implics

gl N () = 0{Ryrgl@))(—a?),

contradicting the fact that N{e) is tobally positive. Sinee (a) is the only
possibility, the reagoning of § 7 in [4] is valid here, and we deduce that
(¥ (a)) = ni% whero j is ambiguous. Thas N (a) - s, whero m is & square.
frec rational integer dividing d4y, and 2 is o totally positive anit of O,

The minimal polynomianl of a over K must then be of the form X7 4
X 4 mu, where b eD. Arguing cxactly as in § 7 of [4], we huve
a* = o la, where o ig o primitive ath root of 1 for one of the {ollowing
values of n: 2,8,4,0,46,8, 10,12, If » - 2, then b = 0 and we have
a =2V —mu. .

It n> 2, then K{a) = K(w) and o? = muw. It sullices to_consider
the equation «® = Lmuw in K(o) for o =3, 4, 5, 8, 12. Wo note that D
must be B it n =8, D =2 i n =8 and D =3 if n = 12. Put o =+
-y, 2,y & K. Tach possible o satisfios a minimal polynomial over K
having congtant texm 1. This iniplies o2 = @*—y? 420, 2 e K. Hence
2% —y2-|-2ow = twue, from which it follows that o —= g% @ = 4y I
@ =0, then ¢ ~ o, If @ 70, then o ~ 14w, We consider the various
possibilities :

Itn = 3, then a o= £, a primitive cube root ol 1, or a ~ 1 — & =3

I n o= 4, then a vV =1 or a =21 +V =1,

If % =3, let » denote a primitive 5-th root of L. Wo ohserve thot

means 1% cannot normalize an Hichley order of level 4. Let ' denote
another primitive 5-th root which is not conjugate fo n over Q(}/g}.
Then a ~=#% o o~
It n =8, then @ 214V —1, Since N(l+ o) = Yap for some unit
2 0f 0, 1-]- cannct normalize an Hichlor order of level 8 TTenee a o2 1 --
+V =1 is the only possibility.
If n =12, then a V=1 ov @ o218V — 1,
3. In the preceding section we determined the following list of
poseible «:
I a ml/:“w'a;, where m iy o square-free integer dividing 6/,
- and « i3 a totally pogitive untl of O,
IL. o =14V —1 provided 2| 84y,
IOT. a = f; g o ) provided 3(dg.
IV. ¢ ~EV—1 or a o 1-4-¢ Vi provided 0 == 3,
V. a =g, o provided D == §.
In thig section we determine under what eonditiony such, « netundly

icm

Class anmber formales for quaternaery quadratio forma 99

ocenr in the normalizer of an Bichler order of level 4. Our first step is
to reduce ease L

Proof. H o* =
Lennra 2.
divides Ay,
Proof. Pul w = a-- bV D, where a, b e 14, b # 0, Since a?—2D = 1,
we huave

(3) F 1.

—mit, put B oos alfii—1). Then 02 = —m{fru—2).
Assweme w ss L Thew the square-free kerael of tru—2

A1y (@ 4-1) == BED.

TE D = 2,3 (mod 4, then a, b e Z and {o -1, a-F1) =1, 2, according as
@ is even or odd, resp. I @ iy odd, then {3) implics b i3 cven and

((a—1)2){(a+1)2)- = (b/2)"D.

Henee «-—1 = ¢*d or (a—1)/2 = c*d for some eecX, d|D.
ey -2 = 2(a--1) = *(2d), or tru—2 = (d¢%)d, for some d|D.

T D=1 (mod4) and a, beZ, then taking equation (3) wod 4, wo
see that @ cannot be even, Henee (@ —1, a41) »= 2 and ttu—2 = (40%)d,
for sowe ceZ, AiD. I a, b ¢ Z, then 2a, 20 are odd, (trw—2){tru--2)
== (20320, and (tra -, tew-2) == L It follows that frew—2 = ofd, for
some ¢e &, d|L. '

Ag a congequence of the preceding two lemmas, we have V —mau

Then

eV —mn' for some square-free divisor ' of 34y . Thus case I reduces to:
I a2V -:;1_&-, where m is o square-free integer dividing 4.
We note that, in-enpely of the eases I-IV, K (a) is a bigunadratic exten-
sionn of . The matter of whether one of these a ovceurs in 2y is then
eusily  setiled by means of the Kronecker  symbol. Suppose K(a)
— K/ Zm). Let A(~m) denote the discriminant of @V —m). Then

(4) XE i = 0 solvable in Wy o ( A( ;j'-b)) # 1 for all p|d,.

1o partiealar, when £ -0, X% Lo~ 0 0y wdways solvable in 9.

Now suppose w ceciney in 9, and belengs to one of the cases T-IV.
Then, Iry the eritevion of Bichler (T21, p. 133), the only way « might not
oecur in the normalizer of some Bichka ovder of level 8 is if one of the
Pis § om L,y i, 8 TOMaing inert from K to K{a). Since K (u) is biquadratic
over O, this is impossible. We conclude that « will oceur in some nox-
malizer provided only that it ocenrs alveady in Ug. .

Ag for case V, onc readily sees that 5 oecurs in Mg <> no g, splits

the samo as on p, 36 of [4], we sce that 4 occurs in some normalizer < g
ocenrs in Wy and e = 0,
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4. Tn this gection we determine the contribution o the trace sum (2)
of each & which oceurs in the normalizer of some Eichler order of level
8, Tf a o1, then its contribution in 2M(3), where M(J) is the weight
of 3, an explicit Tormula for which can be found on p. 206 of [4].

Now suppose o 4 1, so that K, - K(o) is an imaginary quadratic
extension of K. We say that an order @ of K, is admissible for a if e @
and, for soine Wichler ovder £ of level 8, 0 = DK, and w e R{L). Weo
let 1, denote the number of primes of K which divide & and ranity in
X,. Yt 1, is the number of p;, ¢ == 1, ..., ¢ and I, is the number of g,
§ =1,...,f, which ramify in K,, then it iy clear thut

fy oo byl

Proceeding exactly as in §8 of {41, we find that the contribution

of a to tho trace sum is

fo1-1, .
9 h IL,‘ Z [GLUNEY] i« is pure,

() W B By
5_f—£“‘ "
(6) YAl X FUL:UN@] 0w is not pure,

) [ m ] £

whera @ ranges over all orders of &, which are admissible for «, and the
rest of the notation iy as in § 8 of [4] (Wote: I, == I, of § 8§ as the conducter
condition in the definition of I, is superfluows).

If n is a positive integer, lefi i ( —n) denete the clags number of QY —n).
Let W, denote the gromp of roots of unity contuined in K. T e belongs
to one of the case I-IV, then K, == & (V —m) for some m| 8 wy and
Bachmann’s formula for the clags number of an imaginary biguadratic
pumber field shows that the confribution of « iy

B —m) h{ —onD) o
(7) o(a) 2’1"t he ?z?])ﬂb(.(w'r)n ) \”U},:U'((’))] il a is pure,
B —m) b ( ~and))
8 a(w)2r-ta L ”"d'(w ;” }1[11’,‘”(1’1 it w s nob pure,
- eard (W,
(?

where s(a) = 2 if fs’n e QU 1,V —2) and e{a) -
ranges over all orders admissible for .

In order to evaluato the contributions (7), (8) explicitly, one provecds
a8 in §8 of [4]. The firdt step iy to determine all the admisgible ordoers
for a given o. This is done by first computing sy (Agx) ([4], Prop. 13,
D. 37), where L = K, using this to determine A, snd then comparing
ﬂmx with 4(—m). In the preﬁent situation somo eaution must be exer-

1 otherwise, wnd @

icm
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cined, as Mgo(dy) ean he divisible by ¢f for some j, and 4, could
@ priovi be divisible by any produet of the two primes of K lying above
g;. However, in all our cases Ay is invariant under the conjugation
of K, which implies 4, is divisible by g; if its norm i divisible by g.
After all the admissible orders for a given o are determined, the unib
indices [UL: T ((fl‘)] are computed by means of Proposition 16 of [473, p. 43.
The final results ave swmmarized in the formulas of the next section.
Weo omit the details of the computations, as they do not basically dli;[er
from the ones earried out in § 8 of [4].

It cage 'V ocours, then D =5 and ¢ == 0. The primitive fifth rooty
n, 1" cach contribute 2//5, so thu term 27715 must be added to the trace
sum in thig case.

5. Lot m be a positive integer. Let A(m) denote the number of primes
of I which divide m. Define s, t0 be 1 if X*+m == 0 i3 solvable in g
and ¢ otherwise.

TuroruM. Let 3 be an idealeomplexr of definile mawimaol Z-lattices of
rank four. Let H be the nuinber of proper similitude classes in 3. Assums
thal the reduced diseriminant A of I is not a perfect square and pub
K = Q1) s0 that 4 = Ay 6* with & square-free. Write & = 8,8, where
8, ©8 only divisible by primes which ave inert in I, and 0, is only divisible
by primes which split in K. Let f be the number af rational primes which
divide 8,. Denote the square-free kernel of 4 by D,

Y If D == 1 (mod B), then

(9)  H = 2H () )
42 (osk(-—dl)) + S 2"’1(”)“"(”‘”7&(w'nd)h(H%D,’d}),
niaD

where nd =1, 3; d< l/ﬁ,

e, if  at4,

g*‘a if 31d.,

fa 152 gy Af (| dy,
feg  if D s 3 (wmod9),

By 4f D =0 (mod9),

and
—2 4f m =3 (mod8),
4] if  wm =7 (mod 8),
g(m) = {2 if  m =2 (mod4),
2 i omo=1(mod4), 244,
4 if  m =1 (mod4), 2|d,.
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by If D =5 (mod 8), D)+ 5, then
(10) g =M () 2 {egh(—D) - —30) 4

I o oA an®) i (-
-+ 3 i f’( Het} "’( et I'(' s
-n.lFﬁ_,TiJ}ln
where wd 551,35 d << VD,
%“?1 if 24 4y,
s o 4l 81
%“x if 344,
; 83 if 310,
Gy = %a_,, i 3|dy,
%83 if D =3 (mod B,
&y i D =06 (mod b,

and

e 3 (mod 4},
9 df w3 (nod 4}
a(m) == o if om o= ’
lg if o= L

‘ 0 if w3
2

L (mod 4), 244,
1 (iod 4), 214;.
If D =B, then 2705 must bo added o (10) when &, - 1 and o vational
primo dividing 8, 18 == 1 (mod 5).

{e) If D =3 (mod 4}, then for every m|d, d|), either nd or wld
ig = 3 (mod 4); of D # 3, then

(1) H =2M() -+ e h(~D) b egh( =30} N7 2

ab|d ] 1Y
st
3 b ( —nd) b (—~mnD jd)-I- E RO OB f e D) B 2L /d)) )
wiiydii)
Vi

where

o fie, df D B (mod 8),
o loy  4F D w7 (mod 8),

‘16‘3.1 if 344,
Loy if  8l8,
ty = 'gj_sa if  3{dg,
Bey df D = 3(wod 9),
ey if D mt(mod9),
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for m > 5,
0 if m #3(mod 4),
Oy 53:% 7’f m == 3(1’110(1 8),
Em if o= T{mod 8},
and

L4 m o==3(mod8),
2 gf  m o==2(modd).
It D =3, theu &, == &, and the term 27eh(—D) ek (—8D)) in (11)
must Le replaced by 27(3e).
(@) If D = 2(mod 4}, then

O i wmo== Tnod8),
afin) = ;

(12) H = 2M(J) 27 (-galh( —D) -+ egh{ —3D)
0 Z 6,02 W=D gy o —ﬂD;’d)), _

w]d,d|.D
¢ odd

wheve nd > 3, ¢, t8 as i part (¢), and for m > 3,

Be, 4 m o ==3(mod38),
O+ 1€m if  m =T(mod &),
3e,, if m =1(mod4),

1 if m =3(modB),
ag(m) =40 if m =T(mod 8),
2 4f  m =1{mod 4).

Conchading remarks. The above formulas can be interpreted in the
clasgical langnage of quadratic forms (ef. [4], p. 32-33). In particular,
it 6 =1, then H = the number of proper classes of positive definite in-
tegral quaternary forms with diseriminant A.

. In [B] Vignéras obtained formulas for the arithmetic genug of cortain
Hilbert modular varieties, and claimed (Théordme, p. 212) that, ay a gpe-
cial case, one obtained a formula for the type number ¢ in the case § = 1.
Our results for the case d = 1 show that this formuls is sot, in general,
a formula for £, as it does not contain the contributions of all the elements
a =V —d, where d|Adg. The source of the difficulty is that the ideal
clags number of ¥Ax divided by the proper clags namber of K is mot the
type namber ¢, in general, oven if g is split at all finite primes of K.
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