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On Linnik’s constant
by
H. GraumaM (Pagadena, Calif.)

Let ¢ be a large positive integer, (a,q) =1; and p(g, ) the least
prime p == a(modg). The celebrated theorem of Linnik ([12], [13]) states
that there oxists an absolute constant ¢ such that p(g, a) < ¢¢ forg
sufficiently large. The first to obtain an explicit value for ¢ was Pan [16],
who proved that 0 < 5448, This wag subvsequently improved to 770 ([2]), 550
([107), 168 ({31}, 80 ([11]), and 36 ([5]). In this paper, we show that one
may take O = 20, ,

TusoREM 1. If ¢ is sufficiently large and (a, q) = 1, then there is o
prime p = a(mod q) such that p < g*.

Our proof depends on several results concerning zeros of L-funetions.
Let p = p-+iy denote a generic zero of L(s, y), where y is a character
mod q. Miech [14] has shown that [] L{s, x) has at most one zero in the
region ]

.05
) ! loggflyl+2) sp<d
Schoenteld has informed me that the constant .05 may be replaced by
,10367. However, the following two theorems are superior for our purposes.

Tunorem 2. For » =1, 2, let

&, .
Oy = lniog'qPT_ + 2y,

bo @ zevo of L(s,y,), where y, s a character modg, |y, <7, c-a_ml T= 1
Suppose that if gy =y then gy # gay 07 #f 4 = Ta then o, # 02, If q 4%
suffictently large, then -

| £ 8E ¢
(2) £, _752 — (1_/._.£__?:J,_3)

and
(3) max(é, &) > 6/29.
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TuEOREM 3. For q sufficiently large and T > 1, the produot [] L(s, y)

has at most four wseros sabisfying amoda
18
¢ R <
() Fioggw <P <1 I<T
In {3), 6/29 may be roplacerl by
10w-”Vz)

35-V5)
for any e > 0, provided g > qﬂ(e). Under the same circumstances, the
constant 18/65 in (4) may be replaced by

20(2-¥3)

7(5—V'B)
Wenker forms of (3) and (4) were proved in the author’s thesis. The im-
provement comes from using a device of Stechkin [18).

We also requive a form of Linnik’s density theorem. Let ¥ (y, a, T)
be the number of zeros of L(s, x) in the rectangle

<h<L, T
Belberg [17] introduced the device of “pseudo-charactors” to prove that
(5) D Nixya, T) <, (gI)#+a0-a

xmodg
for every & > 0. The important feature of (5) is that it is sharp for o close
to 1. Selberg’s proof was further refined by Motohaghi [15] and Jutila [11].
To prove Tinnik’s theorein, it suffices to bound N{A), where N(4)

denotes the number of characters modg such that L(s, ) has a zero in
the region .

b A
’ et e e
Y Togg <L, lyl=logy,

Jutila, for his proot of ¢ == 80 ([113), proved that if = = 0, a o~ ay(e),
b > by(e), g fole, @, b}y, A< logloglogg, then

. 2

N(A) << (L+8) m.,(ﬂ{ -9k b) 24 fiat-26)4

Sab )

If we sef ¢ = Ga-~2b and choose « to minimize the right-hand side we
obtain :

N (L) S @rﬁﬁlﬂwm*

¢

for ¢ > g,(s). In Section 6, we prove the following sharper vesalt.

%
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TEsorEM 4. If 0< e <1, 0> 488, A< logloglogg, and g > g.(e, ¢},
then..

N < (1+¢) (44— 12 + ) 3+

Jutila’s: proof nses Haldsz’s method, psendo-characters and an asymp-
totic formula duc to the author [6]. We follow the general outline of
Jutila’s proof, but we have made » number of minor modifications. We use
the coefficients 8, (introdneed in Seetion 5) instead of psendo-characters;
this is teehnically simpler and allows us to save a factor of #2/6. We also
use Burgess’ estimates for IL-funections; this allows us to replace 2+ o
by 3/2-¢ in the exponent,

We also require o guantitative form of the Deuring—Heilbronn pheno-
menon. Jutila, in his proof of ¢ = 80 ([11]), proved a very strong form
of this. His result is suffieiently strong for our purposes; we quote it as
Lemma 4.

Finally, we remark that we will use Selberg’s result (5) in an auxﬂlary
capacity. :

2. Notation. The letter g dehotes a posmwe integer, which will
heneeforth be assumed large enough for the purpose at hand. & denotes
loggq, x is a Dirichlet character modgq, and x, is the principal character
mod g. As noted before, p = §+1iy is a generic zero of L{s, y). We use
§ = o-+14t to denote a complex variable, and we let v = [#]-+2. The letter x
denotes the constant (5 —1/5)/10. The letter & denotes a positive constant
less than 1, and ¢ is a positive constant such that o > 48s. The constants
implied by * «” and “0” symbols depend at most on ¢ and & In Section 7,
we choose specific values of ¢ and e, so the implied constants there are
absolute. '

3. Lemmata for Theorems 1,2, and 3. The first two lemmata will
be used in the proofs of Theorems 2 and 8. Tiemmata 3 and 4 will be nsed
in the proof of Theorem 1. '

TuMma 1. Suppose that y is non-principal, and let @y, 05, ..., 0 be
zeros of L(s, x) such that Reg, 2 1/2. If 1< 0 < 2, then

r : 1
(7 ”R@‘l‘f (3, 1} < xloggr_—ZRes_g +O(k+loglogg),
f=1 i

where # = (5—VB)/10 and v = |1 +2.
If a>1 and yx is principal, then

L 1 loggz )
: ~Re— < 0 .
(8) Re L 8, %) < Re §—1 + _(loglogq
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Proof. The inequality (8) is due to Miech [14], Lemma 5.
To prove (7), we first suppose that y is primitive. By a classical
partial fraction formula ([4], p. 85),

z 1ioed LT fsday oo "“’(_,L MJ:)

where the summation is over all zeros of L(s, x) with § > 0,

ReB(y Z Ro e

and @ = 1/2(1—z(—1)). Since
' I {s+e
T\ 2

I
for L< oo it follows that

) = logz+0,(1)

!

L (s,x) wwloggr—-— vRe
: Q

+ 0,(1).
If o is a zero of L(s, ), then 1 —7 is also a zero. Therefore

"1 ! 1 1

- Belfa

where the dash indicates that those terms with § = 1/2 are counted with

weight 1/2. Let oy = V1t 40® and 8 = o, +it. Define, for complex 8
and z,

(s, 2) =Re{s——z)" (8 —1 -7 }.
If 1<o<?, then
! 1 Lf
RG"E“(S:%H" ‘]‘]—ERGT(%:%) |
= xlogqr — 21{17’(8, o)~ V1[BE (3, )} -+ 0 (1)
fife

By a result of Stechkin ([187], Lemma 2)
F(s,z) »-]/iTBF(sl, ) =0

whenever ¢ >1 and 1/2 < Rez< 1. Bince ¢, > > Vs, B, it- follows that

L 1
“1“-;'(31:%) <.

icm
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and
F(s, ¢;) = Rels—p) ' +0(1).

This proves (7) for primitive y.
It y ig induced by o primitive character y, mod q, and if ¢ > 1, then

L T 1p)ogp I 1o
A (8, x) '"‘—L— 8, 1)+ y “53—___"]*— M—f(‘?,zj)-%—() (%\__gp).

Since we have already proved (7) for primitive y and since

1
2

Pl

thiy eompletes the proof.

Levma 2. Suppose a, b, d are positive real numbers such that bd <
Then for all real a,

¢  at+b  a4d
o*+at  (a+b)E+ar  (a+d)P+od

Proof. If we multiply the left-hand side of (9) by
(@ + 2% {{a+ )2+ o) ((a -+ d)% + 27),

(9}

it becomes
—(a-b--d)a* —
— {(a-Db){at+ ad 4 bd) + (o -+ d) (a? + ad + bd)} w2+
+(bd—a)a(a+b)(a-td),

and this i8 clearly < 0 for all =.

Lmyas 3. Let y be non-principal, and let H#(y) be the set of zeros
of L(s, y) sabisfying

loglog ¥
(10) 1 "_%;g <p<l, pl<e.
Then
. min (1, “““—:T"ﬁ.—?x) < (1 "{-']/Eﬁ;)z—l- 0 ((10g.‘?)4$—1) .
caR(x)

Proof. Let ¢ =1+ h.fﬁl, where b > 0 will be chosen later Ifhz
then

4 ) B2 1

< Re
lo—1["¢?

min(l, K e
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By Lemma 3,

. II’
ZRe . < ¥+ i—f(a, x)l +0(log 2+ 1% (2)]).
2

¢—g

By (5), 1#(x) < (log#)". Furthermore,

L ° 1 L/
T0 . ] I — O L .
EAL x)‘é }1 Afp)n™* = g ok O() =5 +00)

T o

Thus

me (1, Te_—%@’) < (h--2) (x-1[h) + O((log 227,

To minimize the right-hand side, we take b = V2/x; this completes the
proof.

The next lemma is the Deuring—Heilbronn phenomenon, and it is
o divect congequence of a theorem of Jutila ([11], Theorem 2) and Siegel’s
theorem ([4], Chap. 21}).

Lmynia 4. Suppose that x and y, are (not necessarily distinet) characters
modg, and that y, is real and non-prineipal. Suppose that f; = 1— &%
is o real zero of L(s, y,) such thal & < .08, and that ¢ =1 —§L ' +iy
is @ zero of L(s, y) such that |y| < L. If £ > 0 and g > go(e), then

(11) L e (j2—s)log (_835_)

We ‘rema.rk that Jutila does not appeal to Siegel’s theorem, but he
obtaing a somewhat more complicated inequality for § Furthermore,
the inequality (11) can be slightly strengthened. The author [6] has shown
that ' '

£ (23 s)log (%i)

but we will not need this result here.
4., Proofs of Theorems 2 and 3. We fivst prove (2). Since {{s) has
no zeros in the region '

A

= 1 e . -
pzt (longﬂglogT)sm ’ e

([19], eq. 6.1B5.1] we n'aa.y' asgume that y, and y, are non-principal. Tet

Thig proves (2), provided meither y; = gy nor ¥ = ¥z,
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o = 1+ a{loggT)™?, where a will be chosen later. Thén

02 Z {L+Re gy (n)n~ "1} {L + Rey; (n)n~"33 A4 (n)n=°
ol

(:f L’ . L
= —Re :—E {c) +f (U_—l- Y1y X1} +

T (0 +4yps a) -+

!

L
+3 (obinting ) -

o I ) I’ ) I ) ) )
—Re {F (o) +"E (o+4yy, 1) + FA (o —iye; Es)+ A (o +.7'7’l ““‘Q"J’zf ?les)}

= 8(%1; Xaj Qs 02) + 8 (%1 Tos 01 O2)s
say. If 4.y 18 mot prinecipal, then

' 1 1 1 '
(12} 8, 125 €1r @) < BuloggT+ —— s —0_ﬁ2+0(log$)
101
=1lo TIB -— — - o1 -1}
BUT L~ o, Tav g Ol

by Lemma 1. If x,%, is also non-prineipal, then

1 1 1
0<8x4+= — -
“t e etk iTh

+0((log2)™Y)..

If we take .
(13) a=1/2(V E+8E )
then :

i 1 1

a a+& 2
and

2 4

E > o) —a-+0{(log £)7").

To prove (2) when y, = x, OF ¥y = Fa, it clearly suffices to prove (12)
when y; =% and a is given by (13). Moreover, we may assume that

(14) 5:@2—"“5 -

since the negation of (14) is stronger than (2).
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It g, = 7, then g, is & zero of L(s, x») and 3, is a zero of L(s, y,).
Let @ = (p, +ya)logg?. By Lemma 1,

],
851y Xos QJ?QE)QZNIOgQT_FO,M.._ - +

— Re .
R T Ty e—p T it 7

1
A O (log &
o T Ty TOMRS)

1 1 1
- =R S 110 ..»,0*1}
loqu{Zm—a TTE TR + 0 ({log £}
& . €b+§1 . a“l‘Ea }
et (@ E)E et (ad- )]

‘We apply Lemma 2 to the expression in the second bracket. The hypothesis
of Lemma 2 i3 satisfied by (14), so this expression is non-positive. This
proves (12) when z; = 7., and thug completes the proof of (2).

To prove (3), we let & = max (£, &). By cssentially the same argument
ag above, we gee that '

—Re

+log ¢ {

1 2
< 3%+ PRE +0{(log £)™)

&
when B
o 1002
3(8—V5)
Congequently
2a 1 6
E>3xa+1 ‘}_O(log.,?)>§w§)ﬂ'

 We make one further remark, which we will use in the proof of The-
overn 3. I g, =%y = y,, then we obinin

i B 1
< Dapd ot e o (P [ e
0ty - & K 0(10;;*54”)
for
. 1/2 —1)
B=Vs)
Therefore
| 5(Y2—1y 1 3
15 ‘ B .
6 ety > PR () > 5
when g, =% = Y.

icm
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‘We now prbva Theorem 3. Suppose [] L{s, x) has five zerog in the

3 xrmodyg
region s

— <
loggT <fg<1, vl < T

Ohoose three zeros in this region and denote them p,, g,, 05. Suppose
that they are zeros of L(s, xy), L{s, ), and L(s, ys) respectively, It is
easy to see that we can chooge these zeros in such a manner that if
% = 2 (J # %), then g; 7 o, and if gy = %, (j # k) then g; + g,. It suf-
fices to show that & > 18/65. As in the proof of Theorem 2, wo may assumne
that no y; ig prineipal.

Let o = 1--a{loggT)™", where a will be chogen later. Define

S{%1, %2y Xs3 01y Oy €3)

’ L’
= —Re{i (a)+m(a+w1, 1)+ (0'+’57’2: xz) +

r /

L ) L . .
+“f(“+"?’as %)+ A (o 4yy + iy, pade) +

L I

I , \ o .
+ T (o4 ips+tyay Xaxs) + f(“‘l""?n‘i“"'}’a: Aaxa) +

vy , o
—+ T {o+ iy +iya-t+iys, Zl?sz_a)} .
Then

(16) 0<4Zm/1'

n (1+Reyy(n)n~1)

= 81y L2 Xo3 01y 02) 09)+S (Xn, Xay To} 01» €ay Ba)+
4+ 8(x15 T2y a3 1y O 03} + 821y Fas Tni O 92:98)-

I any of the products y, (j k) is principal, then yyy.x; i8 not
prineipal. Thus the proof of Theorem 3 breaks down into five cases: (i) none
Of %yXe, XaXs XaXay ¥1¥eXs Principal, (i) exactly one the products xy,
prineipal, (i) exactly two of the produects yz prinecipal, (iv) all three
of the products y;, principal, (¥) xix.ys principal.

In cage {iv), we have f.xs = Xi¥s = Xe¥a = Yo smd therefore x, = 7,
== yy = F;. By (1B), &= 3/10 > 18/65.

In the other cases, it suffices to show that

. 3 1
U Sl a0 5 00 00 00 S Topg et T — 2 o))
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when

<Va = .6151...

For (16) and (17} combine to give

7 ;._§_ .+. 91 -
0< M——” log# |

In case (i), (17) follows directly from Lemma 1. In the other cases,
(17) follows from a routine applications of Lemmata 1 and 2; we leave
the details to the reader.

5. Definitions and lemmata for Theorem 4. Let ¢ and ¢ be as in the
ghatement of Theorem 4;i.e. 0 << << 1, and ¢ = 48s. Let a be a real positive
rumber satlsfymg

(18) e < a<(6—126)/6;

the precise valne of & depends on ¢ and will be chogen later, Let b
= 1/2(¢—6a) and & = s%/8,
Define

R qa-—-ﬁd
2y = qnla-l«m
2y = qs/a+2a+b~sa

¥ = qﬂ."l-i-ﬂa-f-b

,u
(l‘.G!)"'
G L A< ey,
- o log(zefd) . -
Aa M(d)m if :31<d.~.<,z,,
0 ' it d>a.

If d is s_qﬁarefree, (d,q) =1 and d{ R, we define

#(d)d 2 #”(T)

q;(&) reRid
(r agyml .

icm

On Linnik's consiont

Otherwise, get 0, == 0. Finally, we define

Bis, ) = > (X6 zmn=,
2 <Ny din .

G(3,2) = D) 0abox (14, e])[d, 6177,
d,e

M(s, z)

= 2 GdAex([d’t; 3]) Ld, B];s_
d,e )

< 1+2({loggr)~Y, then
Ls, z) < (g
Gs, x) < R*—gps

Ms, 1) < (Bey Yooz

Lemma b, If 12 < o

) "“loggz,

Proof. The first inequality iy due to Burgess [1], except that his
result was not uniform in ¢, An examination of his proof, however, yields
the above regult. The implied constant depends on 4, and thus on e.

The second and third inequalities follow -directiy from 164 <
([7], equation (3.1.8)), |43 < 1, and partial summation.

LuvMa 6. Suppose that y is non-principal and that o is a zero of L(s, 3)
sadisfying

: lmmglm%g<ﬁ<1: <.
Then
. 2 (Z;ﬂ)(z.as) yninTt = 14 0(_93—1)‘

#<n<y dln ejn

Proof. Let T=q¢° and & =1— ﬂ—{—.g’-l By the truncated Perron
formula ([19]); Lemma 3.12)

o ST Sepow
- %;f:jz(w 00 Ao+ 0, DY 2502,

We inove the line of integration to Res = 1/2 —f. There are no poles
of the integrand. By Lemma 5, the horizontal integrals contribute
. -

q]
<7

3/B+8rm 1-¢
(Q__E:’?ﬁ); do €~

172

173
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and the vertical integral is
SIB &,

Therefore the right-hand side of (19) is <£™* Since

ZA __H{l it on =1,
=~ Pl # l<a<a,
this completes the proof.
Lismwma 7. Suppose that
0 << o< 2(loglog2) % | < 2.2
Then
B ele) [
Bloyn) = —gmTb | om0,

1og #1

where B(x) = 1 if x is primijml and O otherwise.
Proof. Let T = ¥, k = —o -+ .21 By the truncated Perron formula
([197, Lemma 3.12)

k1T
Bis, 1) =5— |

2
k5T

. Iyw“_ztlu .
L(s+1 4w, @ (841 +w, %) ‘l""“‘WE”‘"“ dw -+ 0(Z).

We pull the contour to tho line Bew == —1/2--c. There are no poles of
the integrand if y is non-prineipal. If y is principal, there is a pole at w = —&
with residue
logy
G(1; %o f
log 2y

¢(g)

q

¢,

It is easily shown {([7], egquation (3.1.7)} that

— 0,0, 1
Gl = P
( H x()) - [d, 8] Gl

By Lémma B, the horizontal integrals contribute

5 Vet

<%~J'
12

2 58+ 42y 1~
) o
1 . :

icm
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and the vertieal integrals contribute

7
R2q3[8>]- JTE
oo (R
iy !

12
) dt <vr£“1‘

Lenaaa 8. Let & be o set of non-principal chamat@m mod g, For every

y e, let ¢ = 8(x) be an arbitrary point scmsfymg
0 < o < (loglog?) &

Let f, (2, < n<<y) be arbitrary complem numbers, and define

B, = 3 ful Y 0a)uln

s <y dln

B <Z.

-—s—-lfz

DFE <M DL,
e gr<n=y
where !
log(y/z1) ~
= Tog B ————+O0(FE.

Proof. By a well known duality principle ([8], Theorem 288), it
suffices to show that for arbitrary compléx numbers s6{y),

> | Dew (3 6) aimpnrw-nf < 2 letn)l
din P

gansy e

The left-hand side of the above is
N T romy
D o(0e(r) Bls(x)+3(x), %)

¥ g'aF .
-2 08U ST e 0 (g 3T et o).

e T xS

It is well known ([7], Lemma 3.1) that &> p(g)g"logR.
Furthermore, by Cauchy’s inequality,

ol <5 X (600P+le()) = 11

2% 6P P

|0_(x)E2 .

€5 e

' This completes the proof of Lemma 8.

Limuwa 9, If 1/2 < a<<'1, fhen

1°é' (y/#:)

2 2a 1 0 y_.j_
oglasy | OO

(20) 3 ,td)’n?-ﬂﬂ <

<nsy dn
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Proof. First we quote the result, due to the author [8], that

2 (24 <i

= log (#af2y) 5 O

gi<n<y dln
By partial summation, the left-hand. side of (20) is
yz—ﬂ.m z§-2a
=
(2 —2a)log(#,/%,)

{102}

Since
logy
Qe 2a A—2
1 —% —3a
L = [ ot < (togy sy
e 10&2;1

thiz completes the proof.

6. Proof of Theorem 4, For convenience, we write o = 1—1%"%
Let & be the set of characters y mod ¢ such that L{s, x) hag a zero in
the rectangle '

(21) <p<lo o

<.
wT 7l <

 We assume that 1 < loglog#. As we noted in the proof of Theorem 2,
all chaxacters in & are mon-principal, For y €%, let o(x) be a zero of
L{s, y) satisfying (21), and.define ¢ = 8(y) = o(y) —eo. Leb

= (Zld) e,

an

By Lemmata 6, 8, and 9,

i < S

plaf2-+e) 1
(6 —68)(b—60) : {1_+O(3’ A8

Now a>4s and s 1, 50
-3 3r

1—---—— e oo u ——

( ) (1 E) <l

Similarly, b = 1/2(¢ —6a) >

_65, 8O

(1—533) 414—%

b
Therefore
1402 o 38| lte
@ 68)(5=60) <oy )(”15)'_‘:“&‘5“.’

icm
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and
(34 4c¢—18a)?

(/24604
32a(c—6a)

N < (L-+e)

To minimize the right-hand side, we take

6(3 +40)
" 36+320°

note that (18) follows from the inequality ¢ 48s This completes the
prood.

7. Proof of Theorem 1. Let ¢ be an arbitrary positive number,

Cr, and
o\ (g —1.
w0 = ) (i)
(s gl \logqg

B=0-2 a~(¢
For positive integers n, we define

© 24ime
— f K2 (sn~%ds.
?’2-—-1'00

R{n) =

It iy readily seen that B(n) = 0 if n > ¢ or if n < ¢€%. A standard argu-

ment (cf. [10], Lemma 3} shows that if ¢ = 3, then
R{mlo
oo D -1 ZKQQ H+0te™),
D - 7m0c‘lq
pEamody

where the inner sum is over all non-trivial zeros of Ls, %)
To prove Theorem 1, it suffices to show that for € 20,

3 Yixte-1) <L,

xmodg ¢ .

where n > 0 is independent of g. We note that if o< 0, then
4

2 -BU .

(22) sl )

By (1) and (5), we see that if 0> 7, then

2 D 1B (g=1)| < (log2)™,

, 7 i) .
where #(y} was defined in Lemma 3 Thus to prove Theorem 1, 1t aufhces
10 ghow that _

(23) > 5K2(91—1)|<1+1o-ﬁ;‘
1 es(x) _
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We take & = 10~% and ¢ = 2 in Theorem 4, 80 we obtain

(24) ¥ < (L1079 o 6,

Let 8, be the largest ordinate of the zeros of [] L(s, x) for which

xmod g

lv| <.%,and let § = (1— p;)& . Buppose first that §; 2 .142. By Theorems 2
and 3, Lemma 3, (22) and (24), the loft-hand side of (23) in

< 967 P0 49670 (3.0808) [ ¢ PAN(2)

16/65
(3.04)187 B

g (B~ UNAIGY =y 18
16 B-T7[2

26f351+20—63/29+

"if B> 18 (ie. 3= 20). :
Now suppose that .05 < & <. 142. Then the lefi-hand side of (23)

is
3. 04)B 187 ;.
9B _“_( g \B T
<2 RN 16
where _
Y
E o= 752 — (K?fj,%iwﬂ)’

and it is veadily seen that (23) is satistied for B =
Finally, suppose &, < .05. By (1), there is at moat onezoro of [ Lis, )

2z moldg

satistying f > 1—.08%1, |y| <%, By Lemmy 4, with & == 107%

1. 1
250 )hg(ssl)

Thus the lett-hand side of (28) is

< 6—5‘81__]__ _E_(g 04) Pt ¢ <& mh‘é‘l f‘ (3 04)(85 )((' 1) . O, | |l
it B=18. '
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Added in proof: After this paper was submitted, Chen Jing-Run publighed
the vesult O < 17. (Sel. Binica 22 (1979), pp. 859-889.) In his paper, Chen borrowed

. gubstantially from the present work, but he failed to make any acknowledgement.

In a written communication, Chen has informed me that he has now proved < 14.
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