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Quadratic forms and radicals of fields*
by

JosEPH L. Yucas {(University Park, Penn.)

1. Introduetion. In [6] Kaplansky introduced the notion of a radical
for o field F as the set R = {a € | [a, b] = 1 for all b e ¥} where [a, b]
ig the Hilbert symbol for a, b. Bquivalently B = ﬂ D41, a>). Kaplansky

asF
showed that & field such that |#/R| = 2 was a formally real field in which

every element was the gum of two squares and B was exactly the set of
totally positive elements of F. Since then other authors have been investi-
gating the role of the radieal with respect to guadratic form theory. Tn
partienlar, Cordes [2] found that many results which held in terms of #®
could be strengthen to results in terms of B. In [1] Berman gives several
methods of constructing field with non-trivial radicals, i.e., ficlds with
FIRIP

In hlq paper we defined » sequence of radicals By (F) = Rl(F) < By ()
€ ... in which Kaplansky’s radical is B, (). It turns out that the entire
sequence seems 0 be ag rich ag I{aplfmskys radical, For example in
Section 2 we show that a ficld F with |F/R,(F)] =2 is a formally real
field in which every element is a sum of 2" squares and R, (F) consist
of exactly the totally posifive elements of 7. We also gshow that if a is
8 totally positive element of P and K =F I/Za_) then E,(F) < R,(K).
Thiz generalizes the gomg up theorem of Elman and Lam ([4], Theorem
4.5). ‘

In Bection 3 we give a generadization of most of the work done in
[2} and in Section 4 we show that [10], Theorem 4.2, and [5], Theorem
2.4, can be strengthened by replacing F* with R (F).

Throughout this paper F will be a field of characteristic not 2 and
the notation and terminology of [7] w111 e uged.

2. The sequence R, (F). The scquence of radicals for a field F is de-
fined by B, (1IN = ﬂD )} where ¢ ranges over all n-fold Ptister forms.

* Parts of this papor represent a portion of the author's doctoral dissertation
written under the direction of Roger Ware at Penn. Btate University.
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Remark 2.1. (i} Ro(¥) = F*, B, (F) = R(F) and By(F) = R, (F)
LeE R (e,

(i) B, (F)is a subgroup of D{2%).
(i) If D(2) € B, (F) then B, (F) = D(ce) (sce {71, Theorem 11.1.6).

ea

Prorosirron 2.2. For v e F ihe following statements are equivalent.
(1) r & B, (7).

(2) =1y @ay ooy 4,10 is hyperbolic for all a, e .

(8) {7, @y ...; 42> 18 universal for all a;  F.

Proof. (1)=(2). Suppose r € B, (F) and ¢ = Ky veny @y1Dde 19 g
since 7 € D(p) thus {1, —r>g is hyperbolic. Consequently, {{~r,a,, ..
ooy By >y I8 hyperbolie.

(2)=(3). Suppose deF and let y = {{—7r,ay,...,a,>>. By (2),
Ay =@y = =7, ag, ..., a,, —d>> is hyperbolic. It follows that P
== dyp and y is universal.

(3)=(1). Let ¢ = ({ay, .., 4,)). By (3), {7, aq, ..., t,_,>) is uni-
versal hence {({(—r,a,, ..., &,>> is hyperbolic. Consequently ro ~ ¢ and
thus » € D(g).

Levma 2.3. Zet re B, (F) and supposs ¢ = gy onny tyyyd>. Then
P ={Kayr, ay, .., By

Prooi. ¢—{ayr, a, ey Gy ==y, — a1y, ..., Gpp1)) =
= {82 {{~7, @y, ..., @, ;>> which is hyperbolic by Proposition 2.2 hence
@ 2ty @y, nly @y O

TEHEOREM 2.4. Let vy, ..., 7y, € B (F), m=n-+1, and SUPPOSE Oy, gy .+
ciiy Oyy ey @y €N,

(1) Kay, ey B ) o {Lagry, ooy W ¥ D2 5
(2) D(<Lyy vy a0D) == DKLy ey A FdD).

Proof. (1) We induct on m. If m = n -1 just apply Lemma 2.3
(n+1) times. Supposem > n+1. {(ay, .. oy Oy 02 Ly ey g DY LD
= Py ey Gy Py DD (0,55 by induction. But again by induetion
<<a2’)"2, e am—l,r —1? a’m>> e <<ﬂ$24"2, " : amrm>> hence <<0]1, re) a‘m))
= <<alrli Tt am'rm>>‘

(2) It suffices to show that D(<(<a,, vy QD) S Dy, -y Ayt
If deD(Kay,...,a,>>) then &, ..., @,, —d>> is hyperbolic. By (1),

KTy ey Gy, — @D o (Kay, vy @y, —d)). Congequently d e D{({{a,ry,
R AR
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ToEOREM 2.5. There are no awisolropio (n -+1)-fold Pfister forms killed
by 2 in W) if and only if

D(o0) = D(@") = By(F) = Ry (F) = ..

Proof. Suppose there are no anisotropic (n--1)-fold Pfister forms
kiiled by 2 in W(F). In view of Remark 2.1 (iii) it suffices to show D)
€ R, (F). Let a € D(2) and suppose ¢ is an n-fold Pfister form. a, —ady
is an (n-+-1)-fold Plister form killed by 2 hence {1, —a>g must be hyper-
bolic. Consequently a € D{g) and a e B, (F).

To prove the converse suppose ¢ is an {n--1)-fold Pfister form killed
by 2. By [3], Corollary 1, we can write ¢ =~ ({ —w, ay, ..., @10y Where
w €.D(2). Consequently w eR,(F) and ¢ is hyperbolic by Proposition
2.2(2).

OoROLLARY 2.6. I*(F) is torsion free if and only if Bo(F) = D(4) and
we have ‘
B, (F) =D(4) = D(w) for all n=2.

Proof. This follows from [3], Corollary 3, and Theorem 2.5.

Using the technique of [4], Theorem 4.3, we prove the following:

THnoREM 2.7. If acD(oo) and K = F(Va) then R (F) < R, (K).

Proof. Let s: K—F be the linear functional defined by s(1) =0,
s(Va) =1. Let re R (I) and suppose ¢ is an x-fold Plister form over K.
Write ¢ = {((—)>¢. We first show that the transfer s, (y) is hyperbolic.
By [3], Lemma 2, we can write ¢ = {({z)>g, where 2 ¢ K and ¢, is an
{(n—1)-fold Pfister form over I,

8 () = 84 (KC=00 @1 (8DD) == (=100 pr8u({(2D))

since s, iz W(F)-linear. Now, £,({{D>)sI({F) hence we can write
8 (E0)) = ayyy -+ ... Fa,y, for suitable &, & § and 1-fold Pfister forms
; over F. Bub si(y) = {(—mdplap+ ... +a,p,) =0 in W(F) by
Proposition 2.2(2). By [4], Lemma 2.1, y o~ ({{—)>p, {B>))gy, Where
b e F and y, i3 a Pligter form over K. Now ({—7>>¢, (I35 =0 in W
by Proposition 2.2(2) hence rp ~ ¢ and r e R, ().

Notice that the going-up theorem ([4], Theorem 4.5), is just the special
case of Theorem 2.7 when B, (F) = D(co).

Lemma 2.8, Let a,b, by, ..., b, e . In W(F) we have
o BBY = —ay —b, —byy —bay ey =B
={{~a, —ab, —aby, ..., —ab3>.

Proof. We induet on #n. If 2 =0, 1, —ad)~<{—a, —b>)
={,1, —a,—a, ~1,0,b,—aby =1, —a,b, —ab) = {({—a, —ab}).
In general,

<<1; — &, bbl: bba; .
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<<17 —d, bbl: e bbn>>_<<”a: _"bﬂ _blx (KRR ""bn>>
=Ly =@y bbyy o B —~ L —ay ~b, —byy iy —B, 1, BB
=5 (<<1: — &, bbl! sery bbn—1>>_<<ma’5 ""'b: _blﬁ ey _bn—1>>)<17 bb4z>
=L{—~a, —ab, —aby, ..., —ab,_>><{1,bb,> (by induction)
= << —a, Wa‘blﬁ reey —abﬂ.'—1>> <<—“ ab! bbﬂ>>
={{—a, —aby, ..., —ab,_3>K —ab, —ab,>>
= —a, —ab, —aby, ..., — 0l gy - abp))
ag desired.
Proposition 2.9. If (¥: B, (F)] =2, n > 1, then D(2) < R, (T},
Proof. Let o € D(2) and agsume o ¢ B, (F). By Proposition 2.2 (2} it
suffices to show that the form ¢ = ((—a, Ugy veny Oy I8 hyperbolic
for all o, € ¥. Bince [#: R,(F)] = 2, any clement in § i of the form — s
or —ar for some r € B, (F). If a; = —r e —R, (F) for some i we are done
by Proposition 2.2(2) so we may assume that for all §, @ .= — ar,; for sone
7, € B, (). By Lemma 2.8,
¢ =< —a, —ary, ..., — 10>
= (L =0, Falyy Pty vy Pl DD — L — @y — 7y, ~Tayeeny —Tpr)).
Since a € D(2) and r, e B, (¥),

Ly =@y 1a7yy oy 113D = K —a, Ty —Fyy ey —Vpp) =0
in W(F). Consequently ¢ = 0 in W(F) ag desired.

TEuoREM 2.10. Suppose [F: B, (F)] =2, n > 1. Then F is a formally
real field with R, (F) = D(2") = D(o) and there are mo anisotropic
(n--1)-fold forsion Pfister forms in W(F).

Proof. By Proposition 2.9, D(2) s B, (F) thus R, (F) = D(2")
= D(o0) by Remark 2.1 (iii). By Theorem 2.5, there are no anisotropic
torgion (n-+1)-fold Pfister forms in W(F). To show F ig Tormally real
suppose —1 &.D{oo). Then D(oc) = F henee F = R, (¥). This contradicts
the fact that [#: &, (F)] = 2.

We eonclude thiz section with examples of ticlds satistying Theoreu
2.10. Let % = w(F) denote the maximwm dimension of all anigotropic
torsion forms over I

ExAwrLn 2.11. For any # & N there exist a field XK, and m > % such
that [K,: B, (K,)] = 2.

"Proof. Prestel ([8], Theorem 2.1) gave a construction of a sequence
of fields K,, Ky, K,, ... each having a unique ordering such that P(K,}
= 2" (P(F) is the smallest integer % <¢ oo guch that every sum of squares
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in F' equals & sum of at most k squares). Using [8], Lemma 1.5(d), it is
eagy to see that for each K, , 2" < u () < oco. If 2™ = % (K,) then I™(K,)
is torgion free. By Theorem 2.5 we have By (H,) == D{o0). But since K,
has a unique ordering we must have [Knt Bya(E,)] =2 as desired.

3. Radicals of non-real fields, Throughout this section F will be a non-
real field of characteristic not 2. We will need the following lemma of
Kneser.

Lovnia 3.1 (Kneser’s Lemma). If ¢+ <ad is anisotropie, then D(p)

= D(g+Lap).

Let ¢ be an s-fold Pfister form (s> n). SBince D(g) is a group, ¢ re-
presents coset of &, (¥). Note also that if ¢ & I*(F) and ¢ has a simple
decomposition (i.e. ¢ ~ a,¢,+ ... +a,p, where g, are s-fold Pfister forms)
then ¢ also represents cosets of R, (F).

Lmaaa 3.2. Suppose ¢ = (ay, ..., ¢,>, m>= 2 and let y be an {m-—1)-
fold Pfister form. Then gy represents cosets of R, (F).

Proof. Suppose » € D(py) and r € B, (F). It m is even then @y has.
& simple decomposition in I*(#) thus we may assume m is odd. Leb
@ =, ..., 0, ;> Then gy represents cosets of R, (F). There exist
¥ € D(oy) and 2 & D(a,p) such that 2 € D({y, &d). 2 e D{{ry, r2>) hence
re ED(Q’P-H"“MD) = D(al"p“}_ te. Jrﬁm—ﬂ”‘l'“ —1<17 T“m“m—1>y)_) = D(QMP}
by Theorem 2.4(2).

1t ¥ is » subset of ¥ consisting of cosets of F° then we will denote the
number of those cosets by V().

TeroREM 3.3. Suppose p.is an m-dimensional form and y 28 an (n—1)-
Jold Pfister form with ey anisotropic. If R, (F) == ¥ then for m= 8,

Vigy) = mV (R, (F)).

Proof. It sutfices to show that gy represents at least m cosets of
F[R,(F). We induct on m. Suppose m = 2. Here we may assume that
¢ = (1, a). I pyrepresents only one coset of F/R,, () then D(py) = B, (F).
But then by Theorem 2.4(2) we have D(2) = Dipy) = B, (F) hence by
Remark 2.1 (iii) R, (F) = F, a contradiction. Now BUPPORe @ = {&y, .-vy Q>
with m > 2 and with gy anisotropic. By Lemma 3.2 both <a, g orey G 12
and gy represent cosets of F/R, (F). The result follows now from EKneser’s
Lemma and induetion.

If we denote |#/F*| by ¢ we have

CoROLLARY 3.4. Suppose ¢ is an m-dimensional form over F, m = 2,
and ot p be en (n—1)-fold Pfister form with o being an anisolropic u-dimen-
sional form. If g < oo and B, (F') = T, then

LU 2¥ gV (R, (F)).



icm

Scharlan ([9], p. 72) showed that if —e € B(F) and if s, is the smallest
number of squares of which a is the sum, then s, is a 2-power.
PROPOSITION 3.5. Suppose —a e R, (F) and 27 < 2" < 5, < 28, then
8, = 2F,
" Proof. ¥ —a e R, (F), then —a e D(2%) thus 281> o~ {—ad(2°LD)
~92%¢ —ad>. Consequently, 2°71¢1> o 2% (1) +2%(—ad. Since s,< g+l
OFH 1y ~ (1, @, ...) hence 2°71(1) ~ {{a, ...>)>. By Proposition 2.2(2),
2%+1¢13 i hyperbolic. It follows that 2¥{1) ~ 2%{a) thus S4 = 2%,
A proof similar to [2], lemma following Theorem 1, gives us
ProprosITION 3.6, Suppose —ac R (F) and 8,2 2% Then s, =g,
ihe lovel of 1.
From [2], Theorem 2, we sce that if E(F) s I then V(D('(l, .1>))
> sV (R(F)). A similar argument yields the following generalization,
THEOREM 3.7. If Ry (F) # F,n = 1,then V{D(2%) > (s/2) VR, (F)).
Proof. If s< 2" then V(D(2") =q and clearly ¢ V{R, (¥))
> (8/2" ) V (R, (F)). ¥ s = 2" then 2"(1) represents both 1 and —1,
Since 2" (1) represents cosets of F/R,, (F'} we see that ¥ {D(2")) > 2V(R, (F)).
L
Suppose s > 2™ Write —1 = > a} and let

qex]

Jan ‘

\ b

Yy = 2, @
§==(7—1)2%41
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i2

Note that #,, ..., Y € D(2%). Assumeo 4,9, ¢ E,(F). Then,

— 1Y = Y1+ Y1 1Yz = Zm%yz‘{‘yl“%ya

L
ajzh &2"
= DYy — Y = G+ D vt
f=1 i3

-Congequently, —u,9, eD([1+((s/2") w2)2"‘+2”]) thus  s_,, <s. Bub
Sy, =20 (1 mot —L = (y195){ —¥1¥s) eD(Z")). By Prol?oﬁltul)n 3.6‘
$_yw, = 5 & contradiction. Consequently ¥y, ¢ B, (F). In this nmnp?x
we seo that y R, (F), ..., Yy R, (F) are distinet cosets of D(2")/R, (I).

Tt y; € R, (F), then

&
~y; = D@ =y} 4 3 vt e D([L+((s/2) —1)2"]).
i=l tgsd
Bub 8 —2"+1 < 5 thus 5., < s and s_,, > 2" contradicting Propogition. 3.6.
It follows that there ave at least (s/27}-+1 distinet cosets of D{2™)/R, (F).
Bince |D(2Y/R,(F)| is a 2-power, |D(2™)/R,(F)| > s/2""". OCongequently,
7{DEM) = (/2" Y)Y V(R,(F)}.
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CororLuary 3.8. Suppose R, (F) = P and s = 2™, m> n. Then
q p 2(m—n+1)(m-—n+2)/2 V‘Rﬂ (F)) .

Proof, From the proof of Kaplansky’s Lemma (see [T], p. 3258) we
have [D(271:D(29)] = 2%, Tt follows that
[D(2™):D(2M)] = [D(2™): D (@™ )] ... [D(2**)): D(2")]

= 91.92., L. eonmm 2(m-«n)(m-—n+1),’2.
From Theorem 3.7 we obtain _
V(D(2™) = [D(2™)/D(2™)||D(2™[FY = gm—rin-nt )i, gm-nt L 7 (R, (F)).
Consequently,
q > ';7(1)(27):)) } 2(m—n+1)(m—n+2)/2 V(Rn(F)).

We conclude this section with examples of non-real fields having
a finite number of square clagses and non-trivial radicals.

ExAMPIE 3.9. For any n>3 and m < n—1 there exist a non-real
field K with |K/K*) =2" and K? < Ry(K) = ... = B, (E) K.

Proof. Lebt Fy = R{(®)) ... {(@)), t = n—m, and let F, be a Pytha-

gorean SAT field with | #,/F7| = 2™, Using the method of Berman, Brocker
and Craven (see [1], Covollary 6.15) there exist a field F such that I ()

a2 I(Fy) X I(F,) and such that X = F()V —1) has a non-trivial Kaplansky
radical. To show that R, ,(K) is non-trivial it suffices to show I*(K)
# 0. For any field L let Hj, denote the subgroup of I°(L) defined by
L ={pel’(L)| ¢ c2I(L)}.
Clearly I'(F) = I'(F,) x I'(¥,) and moreover
'F  INF) y I'(Fy)
B, = TE, T THE,

Now the form <(@,, ..., %) ¢ Hy . Oonsequently BY S I'(F). It follows
that the kernel of the surjection r*: I'(F)—I'(K) is not all of I*(¥F) hence
IHE) 3£ 0.

4. Radicals of formally real fields. The purpose of this section is to
strengthen [10], Theorem 4.2 and (5], Theorem 2.4, by replacing F*
by R(F). _

Let X(F) be the set of signatures on F. For ae ¥, let Wia)
= {s e X(F)| o(a) = --1}. Iu [10] Ware introduced the notion of effective
diagonalization of quadratic forms. A form ¢ = <(a,,..., a,> over a for-
mally real field F is effectively diagonalized if -W(a,) = W{a, 1)

2 -~ Acta Arithmetica 39.4
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i =1,2,...,5—1. F is said to satisfy D if every form over I has an

etfeetive diagonalization.

Throughout this section F will be a formally veal field. A forw ¢
over I ig said to be lotally positive i D(p) consists of totally positive
elements.

PrOPOSITION 4.1. Suppose ¢ is a totally positive form over I of dimen-
ston n = 2. If D(p) % D(oc) and if B(I) = D(co) then ¢ represents at least
n cosets of D{ o) B{I).

Proof. We induct on n. Note that {a, b represents the same number
of cogetis of D(co)/R(F) a3 does (I, ab> so to prove the n = 2 cage it suf-
fices to show that the form <1, a)> represents at least 2 cosets of
D{co)/R(F). Suppose not, then D ({1, ay) = k(¥F). By [2], Proposition 1,
D1, ap) == D{, 1) since a & B(F). But then D({,1%) = B(F. By
Remark 2.1 (iii) D(eo) = B(F), a contradiction. Now suppose g
= Oy, <y Gy, By induction <{a,, ..., a,_> repregents at leagt # —1 coset
of D{ec)/R(f). By [10], Lemma 4.1, D({ay, ..., @,_1») # D(ay, ..., &,>)
hence ¢ represents at least n cosets of D(oco)/R(F).

OOROLIARY 4.2. Suppose @ is a totally positive form over T of dimension
w2 If D(g) # D{oo) and if R(F) # D(ce) then V{D(p))= nV (R(F)).

TarornyM 4.3. Suppose I satisfies BD and u < oo, If R(I") 5= D{co)
then

w5 [ Do) L (F)|.
_ Proof. Let ¢ be a u-dimensional torsion form over F. By [10], Lemma
2.1, ¢ ~ ¢, —¢@, where ¢, and g, are totally pozitive forms of dimension
%2, D{p) " D(p,) 1 cmpty else ¢ is dsotropic hence D(p,) %= D(oc) and

D{p,) = D(o0). By Corollary 4.2, both ¢, and ¢, represent at least
(u/2) V (R(F)) square elassos of D(oo0)/F. Consequently

V(D (o)) 3 2(u/2)V (R(F)} = uV (R(F))
and
w < V(D (o)) V(R(F)) = |D{oc){R (I

OorRoLLARY 4.4. Suppose B salisfies BD and R(F) o D{oo). If gl o0
then w < (1/25) | F/R(I)| where s s the number of distinet orderings of M.

Proof. By [10], Corollary 4.3, ¢ == 2°V(D(ec)) and by Theorem 4.3,
u < V(D(o0))|V(R(I)) = (q/2%)]V(R(F) = (1/2°)| IR ().

If K is a subset of ¥ consisting of cosets of ¥/E (F) we denote the nwum-
ber of these cosets by V(H). Utilizing the f-decomposition of & form ag in
(B8], Theorem 2.4, we obtain

icm
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THEOREM 4.5, Suppose g<< oo and |F/R(F)| = 4. Then
< | PIR(F)—2.

Proof. First note that if % < 2, there is nothing to prove. In particu-
lar we may assume the torsion subgroup Wy (F) ## {0). Let ¢ be an aniso-
tropic torsion form of dimension u > 2. Tt suffices to show V(D (p)) > u 2.
By the proof of [5], Theorem 2.4, we can write ¢ ~ g4 ... -+ 8. +a,
where dimp; = 2, 2§,= 0, 4r = » and where D(§,), ..., D(5,), Dip,) are
mutnally disjoint subsets of D (g). Write 8, = <z, y,>. If &, R(F) = ¥y, B(F)
then @y, € R(F). But 0 = 28, = {@,><{1, 1, a,y;, 5,y,> thus —a,y, e D(2),
a contradiction. I —oR(F) = y,R(F) then D({l,xy,>) = F hence
¢ = fi; and v < 2. Consequently we may assume that for each i = 1,..., r,
g; represents at least 4 distinet cosets of P/R(F), o, R(F), 4, R(F), —2,R(F)
and —y, K(F). If 4 = 2¢ then

P> Y T(DE) > dr > uts.

Suppose « > 2r. Here ¢, is o non-zero element of W,(F) and hence ¥V (D(p,))
= 2, Consequently,

F(D(@)= D V(DB +T(Dipg)) = 4r4+2 > u+3,

i=1
COROLLARY 4.6. Suppose ¢< cc and |F/R(F)| = 4. Then
u< g VR

It has been conjectured by Elman and Lam that if g <C oo then w < ¢/2.
Notice that the condition that |#/R(F)| = 4 is needed only for the u < 2
case of Theorem 4.5, Consequently |F/R(F)} = 4 may be replaced by the
condition # > 2 in both Theorem 4.5 and Corollary 4.6, If u< 2 clearly
% < ¢/2. We now have the following:

CoROLIARY 4.7. Suppose ¢ < oo, If R(F) % F* then u < ¢/2.

References

[17 L. Berwan, The Kaplanshy radical and values of binary quadratio forma over
Jields, Thesis, University of California, Berkeley 1978.

[2] C. Cordes, Kaplansky's radical and quadratic forms cver non-real fields, Acta
Axith. 28 (1975), pp. 263-261.

[3] R. Elwan and T. Y. Lam, Classification theorems for guadratic forms over
Jields, Comment. Math, Helv. 49 (1974), pp. 373-381.

[4] ~ -~ Quadratic forms under ulgebraic extensions, Math. Ann. 219 (1976), pp.
21-42.

[8] — — Quadratic forms and the u-invariant I, Math. 7. 131 (1978), pp. 283-304.



322 J. L. Yucas

[6] I. Kaplansky, Fréhlich's locwl quadrvatic forms, J. Reine Angew. Math. 239
(1969), pp. T4-77.

[7] T. Y. Lam, The algobraic theory of quadratic forms, W. A. Benjamin, Reading,
Massachusebts, 1973.

{81 A. Prestel, Bemarks on the Pythageras and Hasse number of veal fields, pro-
print.

[9] W. Scharlau, Quadratio forms, Queen’s papers on pure and applied mathema-
tieg No. 22, Kingston, Ontario, 1969,

[101 R. Ware, Hasse principles and the u-invariant over formally veal frelds, Nagoya
Math, J. 61 (1976), pp. 117-125.

PENNSYLVANIA STAIT UNIVERSITY
University Parl:, Ponnsylvanis 16802

Reoceivad on 27.7.1978

and in revised form on 9.8.1879 (1091)

icm

ACTA ARITHMETICA
XXXIX (1881)

Komposition
und Klassenzahlen biniirer quadratischer Formen

von

Hozst PFEUFFER (Mainz)

Die klassische Kompositionstheorie guadratischer Formen in zwef
Variablen von Gauss ([1], Artikel 234-261, 286-287) und Dedekind ([2],
X. Supplement) zur Bestimmung der Aﬂzahl der Geschlechter fester Dis-
kriminante kann mittels der Idealtheorie quadratischer Zahlkérper be-
griindet werden {efwa [4], 8. 261-292), wobei sich ein Zusammenhang
zwischen Klagsenzahlen quadrafischer Formen und Ringklassenzablen des
Zaohlksrpers ergibt. Bine direkte Ubertragung auf sndere Grundringe
als Z gcheint nur méglich zu sein, wenn man sich auf Ideale beschrinlkt,
die eine Modulbasis haben (vergl. [11] und [12]). Betrachtet man jedoch
quadratische Formen auf projektiven Moduln 4 vom Rang zwei mit
endlich vielen, aber nicht notwendig nur zwei Erzeugenden tiber einem
Dedekind-Ring o, so ergibt sich ans der Komposition von Moduln, wenn
der Quotientenkérper K von o ein algebraischer Zahlkorper ist, ebenfalls
eine Bezichung zwischen verschiedenen Klassenzahlen, die hier bewiesen
werden soll.

Die aunf den- K-Vektorranm V = kt%ui forbgesetzte quadratische

Form g kann durch einen Skalarfaktor, der Klassenzahlen nicht éndert, go
normiert werden, dafl es Elemente e in ¥ mit ¢(e) = 1 gibt. Da chark =
vorausgesetzt wird, ist damit ¥ bis auf Isometrie durch seine THgkrimi-
nante @V bestimmt. V gel keine hyperbolische Ebene, also § = —dV
kein Quadrat in %; dann ist K = k(V8) eine quadratizche E1we1terung,
und die Norm N = Ny, definiert auf dem zweidimensionalen %-Vektor-
raum K eine guadratische Form, welche 1 darstellt. Die zugehomge yymi-
metrische Bilinearform ist

(#,9) = N(s+y)—N@)—~N(y) = 8(=p)

mit der Spurd = S, ihre Digkriminante dK = —4. Man darf also
V=Kundg=N annehmeu



