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ACTA ARITIIMETICA
XXXIX (1981)

On the class number of @ —p) modulo 16, for
P =1 (mod 8) a prime
by

Krnvmra 8. Winrgams* (Ottawa, Ontario)

L. Introduction. Throughout this paper p denotes a prime congruent
to 1 modulo 8, and we set p = 81 +1. For such primes, the class number

h(—») of the imaginary guadratic field Q(I/_:Fg;) satisfies

(1.1) h{—p) = 0 (moi 4),

see Loy engnple [1], p. 413, and the class number 7 (p) of the real quadratic
field Q(yp ) satisfies '

(1.2) hip) =1 (mod 2},

see for example [2], p. 100. The fundamental unit s, (> 1) of the real
quadratic field Q(Vp) has norm -1 and can be written in the form

(1.3) & = T+ TV,
where T and U are positive integers such that
{1.4) Te=0(modd), U=1{modd.

Recently Lehmer ([8], p. 48), Cohn and Qooke ([3], p. 368) and Kaplan
{[8], p. 240) have proved that
{1.5) R(—p) =T (mod 8).
It is ony purpose to determine h{—p) woduelo 16.
W prove
Tumoruy. If p = 1 {mod 8) is a prime, then
(1.6)
h{—p) == T (p —1) (mod 16}, if  h(—p)=0(med 8),
h(=p) = T (p—1)+4(h(p)—1}(mod 16), if  A{—p) = 4 (mod 8).

* Remearch supported wunder Natural Sciences and Engineering Research
Council of Canada Grant No. A-7233. ’
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We st ¢ = cxp(2wi/p). The eyclotomic polynomial F{z) of index p
in the complex variable z is given by

-1

»
(L.7) Fe) = - [7 (e— o)) =1+ ... +2+1.
i
We have
{1.8) Fz) = F, ()1 (2),
where F, (2) and F_(z) are polynomiads of degree ¥(p —1) given by
p—1 p—1
(1.9) oo = [] =, T = [] z-e))

Fe=1 w1
» r

The method ured to prove the theorem iy completely elementary.
We sketch the ideas involved. In §§ 2—4 Dirichlet’s class number formulae
for h(p) and h(—p) arve used to evaluate ¥, (1) (Lemma 1}, ¥, (—1)
(Lemma 2) and F_ (1) (Lemma 3). From thcse evaluations cortain lmear
eongruences and eqm.tlons are obtained (Corollarics 1, 2, 3) for the cocl-
:flcwntb a, and b, of the polynomials ¥(z) == I'_ (z) + . (2) and Z(z}

1/19 (-
" ned to give further congruences (Lemma 4) which are required in § 6.
In § 6 the quantities ¥ (w), Z(w), ¥ {0), Z'(0) (0 =1 -]—4,[]/2 ), are given
in terms of the a, and b,,, and certain equations derived (Lemmas 5 and 6).
Finally in § 7 using Dirichlet’s elass nuwober formulae for k(—p) and h(—2p)
and. an identity of Liowville, h( —p) is cxpressed in terms of ¥ (o),
Z(+w), ¥ {+w), Z (o), and the theorem follows by appealing to
Lemmas b and 6.

s,

—F,{z )) In § 5 these congruences and equations are combi-

2, Evaluation of #', (1) and #_(1). Using Dirichlet’s clasy 1unber
formula for A(p), we prove
Lmyvea, 1. If p o= L (nod 8) 48 prime, then
Fo(1) = VB~ UVpI®,  F_(1) = Vp(L+ V).

Proof. By Dirichlot’s elass number formula for k(p) (see for example

[7], p. 287), we have
11 sm~——-/ ]Y sm-——

(g

(2’)_41

(2.1) M) =
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It is well-known (see for example [11], p. 173) that

p—1 x i . »—1 .
O
@2y o [[anl 1] §in 2. e f lzsinﬂ=p.
P F=l P Feal P

=1
(3=
n

I

Multiplying (2.1) and (2.2) together we obtain

p—1 .
S =

(2.3) peio)  gp 1{ [] sm—} ,
Je=1 p

where, here and throughout the rest of the paper, we use a prime (‘) to

indicate that the product or summation variable is restricted to quadratic

non-regidues (modp). Since s, >1 and each sin{njfp)>0 (j =1,...
.., p—1) we have

' p-1 . p-i
(2.4) ]/1_33;;(13) — olu—1f ” gin2 H 2 gin—o
=1 Poga P

Now, for § =1,...,p—1, we have

25111—2::— — do~I”(1— g%,

80, a8
zJ—1’
i =p@-1)/4,
i=1

(2.4) gives F_(1) = Vpei® = Vo(T+ UVp® as required.
Tinally, as A(p) =1 (mod 2) and the norm of g, is —1, we have

n
_FL P L _ 7o)
0 =y Vs — VIR

This completes the proof of Lemma 1.

It is elear from (1.9) that F (z) and F_(2) are polynomials in z of
degred §(p 1) with coefficients in the ring of integers of Q(l/E) (see for
example [10], p. 215). Hence we can write

(2.5)  F,() = 3T (2)—Z@Vp), F_(z) =4(T()+Z(EVD),

where Y (z) and Z(z) are polynomials of degree at most %(p—1) with
rational integral coefficients. From (2.5) we have :

(2.6) . Y(2) = F_(2)+F, (%), . ]/P( )= F ().

€ — Acta Arithmetica 3.4



384 K. 8., Williams

Tt is easily verified from (1.9) that for & =40

1
N (-z—) = I, (3),

go that by (2.6) we have
z(?’”l”2Y(£) = Y(2), z(”""”’zZ(-i—) = Z (7).
2

. (p—B}/4) in Y (z) (vesp. Z(2))
is the same ag th.at of z(f’ =t jn 1’( ) (10&1) Z(2)). Morcover, by (2.6) and
Lemma 1, ¥ (1) and Z(1) arc both even, so the middle coefficients of ¥ {2)
and Z(z) are both even, Hence we can seb

2F
= 2 an(ﬁn “‘l‘ z’““n) 3

]

27
= an(zﬂ ’l‘ gM—n),

ne=ll

(2.7)

where the a, and b, are integers. It is known (sec for example [12], pp.
210-212) that

Gy =2, a; =1, ay = }(p-F3),...,
by =0, by =1, by =1,...

Appealing to Lemma 1 we obtain
COROITARY 1. If p = 81--1 is a prime, then

Za = 1 —41 (mod 16), Zb :21'1110(116), if  h{—p) ==

neml nval

0 (mod 8),
and

al
Z &, =9 —41 (mod 16), b, = h{p)T (mod 18),
Rl i d)
i b(—p) s

—p) =0 (mod 8), by (1.5) we¢ have I’ = 0 (mod 8).
—pU? = =1 und U ==1 {mod 4), we have
(28) U == 4141 (mod 16).

Hence, working modulo 16, we have

4 (mod 8).

Proof. If R
Then, as 12
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21
Dla, =3T(1) (by (2.7))
=0
= HF_(1)+F, (1)) (by (2.8))
- _]/E?_{(T+ UYpYHo) — (T — TV py*®  (by Lemma 1)
= Rk R  (gq f(p) =1 (mod 2), T =0 (mod 4))
= (414 1) (81 4-1)Pm+ e (by (2.8))
= (4] +1) (81 1))
= (4] -+1)}{8l+1)
=1 —41,
and
2l
b, =32(1) (by (2.7))
A=
= 21/ (F_(1)—F, (1)) {by (2-6))‘

= 3{(T+ OVp)"® (T — TVpy"@)
= h(p) T UM 1P(h(p)—1)f»

= h(p) T {41 +1)MP)~1 (8] 1) (Mp)—1)2
= h{p) T (8L +1)"@
= h(p}T

{by Lemma 1)

(a8 T == 0 (mod 4})
(by (2.8))

(as fi{p) =1 (mod 2))

(as hip) =1 {mod 2))
=1 (ag T = 0 (mod 8)).

The cage h{—p) = 4 (mod 8) can be treated similarly. In this case we
have T =4 (mod 8) and U = 4149 (mod 16).

3. Evaluation of F (~1) and F_(—1). A simple argnment proves
Lamara 2, If p = 1 (mod 8) s pm’me, then

Fo(—1) =F_(—1) =1.

Proof. From (1.9) we have

I

ol -
PoF_(—1) =[] (~1+¢%) _H
J=1 j=t

As j runs through the quadratie non-residues modulo p, so does 2j. Hence
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we have
p—% y_k ) ]
[[a-¢) =[] - =P,
i=1 Jeal
giving
F.(-1) ==1,
a8 F_{1) 5= 0. Finally we have
(1)
r,.{—1) j’_“(wl) G

This completes the proof of Lemma 2.
Appealing to Lemma 2 we obtain
COROLLARY 2. If p = Bl--1 is prime, then

27 2l

D(=1ya, =1, D(=1\*h, =0.
n=2{} n
Proof. We have
2!
Dl(—1ra, =X (=1)  (by (2.7))
= (P (—1) -+ Ty (=1)) (by (2.6))
=1 {(by Lemma 2),
and
2l
=18, = $7(—1) (by (2.7))
n={
21/— (F(—1)—T, (-1} (by {2.6))
=0 {by Lemma 2).

4, Evalnation of 7 (7) and F_(i). Using Dirichlet’s class nwmnbor
formuly for h(—p), we prove

LovMA 8. If p == 1 (mod 8) 48 prime, then
T, () = T (3) == (=LMoo
Iroof. As p =1 {mod 8), wa have

) -1 P*lf
(4.1) F_ig) =[] i=o’) =[] (1-+ie),
Jel Jaml
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go that
o =
Fo6) =[] a—igh = [T 1—ie™),
j=1 j=1
that iz
w1 _
(4.2) F_()) = J] (1—ieh,
F=1

since, ag j rung throagh the gquadratic non-regidues modulo p so does —j.
Henee, multiplying (4.1) and (4.2) together, we obtain

17—-1’ 'pmll
@)t =F_()P_(5) = [[ @+ e =[] @+,
Feal =1

sinee a§ § Tung through the quadratic non-residues modulo p 80 does 24.
Thus, appealing to Lemma 2, we obtain

(—l—pgf) =F_(—1) =1,

that is
(4.8) F_ ()] = 1.

An easy caleulation ghows that for j = 1,2, ..., p~1 we have

(44)  1+4i¢! =2cos ( + —m) exp {( 4 %)1},
go that
2= ®ow . ,
(4.5) F_(i) = 2% [T cos (Z + _p_) exp {E(P wl)nz}.
Fe=1

Let M, denote the nunber of integers j satisfying

P J
£ ] = —~1.
4:<.7<17: (p)

AS cos(n/d+rj/p) > 0, for 0< j< p/4, and cos(w/d-4nj/p) < 0, for p/4
< j< p, we have

0, if M, =0(mod2), p =1 (modls), or
. , M, =1 (mod2), p = 9 (mod 16),
(468) arg(F_() =1 4 ¥° —0(mod2), p =9 (mod 16), or
: )

M, =1(mod 2), p =1 (mod 16
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Now a formula of Dirichlet ([4], p. 152) asserts that

w-n =2 > (L),

D<f<n/i P
so that we have
I{—p)
(4.7) M, =E 1)+
Putting (4.6) and (4.7) together we obtain
0, it R{~p) =0 (mod8),
4. arg{T_(3)) =
(*) g7 (3) Lr, it R{-—p) =24 (mod 8),
that is
Gm‘mg(lﬁ‘"(i)) — (_l)h(‘—'j))fllu’
and hence
F_ () = B (i) g0 o (—1)HOR,
and
. B "
7 Sl LA I, 1Y o b 1L
. (9) 70 (—1)

This completes the proof of Lemma 3.
From Lemma 3 wo obtain

COROLLARY 3. If p == 8141 4s @ prime, then

! !
D (=1)"by, = 0.

D (—1) 0y,

=0 e

Proof. We have

= (L,

(by (2.7))

(by (2.6))
(by Lemma 3),

11
D (—1ray, = $X(0)

= I (3} -+ T (3))
o= __1).72.(—'39)1'4

and
3T (<1, = 120 (by (2.7)
" 1
- Eﬁ«(ﬁ_(i) —~ K (3)) (by (2.6))
= () _ (by Tiermma 3

5. An jmportant lemma. By adding and subtracting the results of
Qorollaries 1, 2 and 3 ag appropriate, we obtain » number of congruences
which we put together ag Lemmsa 4. This lemma is essential to what fol-
lows in §6. -

On the class number of Q(l/?g;) modulo 16
Lovma 4, If p = 8141 is o prime, then
_[~204+1(mod 8), if A(—p) =0 (mod 8),
tan = ‘—214 5(mod8), if h(—p) =4 (mod 8),
_ ~21 (mod 8), if  h{—p) = 0(mod 8),
,1=o - l —2144 (mod 8), 4 R(—p) = 4 (mod 8),
[”3] _[~ttmed d), if  A(—p) = 0(mod8),
= [, Fan “I (mod 4), 4f h(—p) =4 (mod 8},
U1l [ ~1(mod 4), if  h(—p) = 0 (mod 8),
L Gant :l—z+3 (mod &), if h(—p) = 4 (mod 8),
EI . lT/z (mmod 8), if h(—p) =0 (mod 8),
S b(p) T2 (mod 8), i h(—p) = 4 (mod 8),

Mm .",M~

0
-12
EZ «wﬁl

6. _Evaluatlon of ¥(w),

= 2k, we define
k

4, = Z%m(—

i}

(6.1)

Fe=1
(6.2)
m=0
k
= Dby (~1)™,
M0
k-1

{6.3)

(6.4)

m=0

and, if p = 16k +9,

k
4, = Z%m-l-g(*“l)m;

(6.5)

M=l

I
(6.6) By = 3{ 3 tua
I

{6.7) 0y = me-i-z( —1)%,

n=0
(6.8) D, =3 z bi 3 (—1)'

=

T4 (mod 4), if
h(p)T[4 (mod 4), 4f
Z(w), ¥'(w

so that { == 2k -1,

h(—p) = 0 (mod8),
h(—p) = 4{mod 8).

B, = 3 Z (i1~ By} (—1)7,

Dl == % 2 (b4m+1—b4m+3)(—1)m7

we define

B—1 _
—1)" -+ Z Cypnta “'l)m}t

=0

'+‘ Zb4m+3 "'1) }

389

), Z'(w). Tt p = 16%+1, so that I
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Ag, 4y, € and O, ave clearly integers. B, By, Dy,
Lemma 4. ~

Setting o = exp{2wi/8) = (1) )| Ve
wt =1, o+ o’ —z]/2 w - ¥ == I/2
that, for p = 1 (mod 16), we have

(6.9) 24,-F2B, V2 = Y(w),

and, for p = 9 (mod 16), we have

Dy are integers by

(so that w* =4, o= -1,
a straighttorward ealeulation shows

90, +2D,V2 = Z(0),

(6.10) 24,i+9B,iVE = ¥(0), 204i-+2DyiV2 = Z(w).
Our next lemma makes (6.9) and (6.10) more preeise.
LumMA 5. Let p =1 (mod 8) be a prime. Then, for p =: 1 (mod 16),
we have
B,=0, =0, A—2pD=1, Y(o)=24,, Zw)=2DV37,
if  k(—p) == 0 (mod 8},
A, =D, =0, 2B -—pC=1, ¥(a)=2BV?2, Z{o)=2(,

if  h{—p) =4 (mod 8),
and for p = 9 (mod 16), we have

By=0, =0, A1—2pD} = —1, Y(o)=2440, Z(o)=2Dsl2,
if  h{—p) = 0 (mod 8),
A, =D, =0, 2Bi—p0i=—1, Y(o)=2BiV2, Z(a) =20,

if  h({—p) = 4 (mod 8).
Proof. From {1.7}, {1.8) and (2.5) we have

(6.11) Y (2 —pZ (o) = AF () F_(2) = & (f::j)).
Taking # = @ in (6.11) we obtuin

(6.12) Y (@) pZ ()? = .

Using (6.9), (6.10) in (6.12) we cbtain, for p - 16k -1,

i
[t

1+2B] —pCi~2pD] =1,
Ay By —p0, Dy =0,
and, for p == 16%+49,
| A3+2B;— p03—2p D
AyB,—pC; Dy = 0.

(6.13)

i
!
=

(6.14)
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Now, from (1.9), we have

F_{o)F_(—ow) =F_(i).

Hence, by (2.5), (6:9), (6.1.0) and Lemma 3, we have, for p = 16L--1,
A3 —2B} +p0—2pD} = (1),
AIG]_ —2.81:01 == 0,

and, for p = 16k-+9,

(6.15) ‘

A2 2B pCi—2pD} = —(—1)Me

6.16

"The result now follows from (6.13) and (6.15), if p = 1 (mod 16), and
from (6.14) and (6.16), if p =9 (mod 16). This completes the proof of
Lemma 5.

Next, for p = 16k 1, we define

Bl

(6.17) By =} ) (Bamss (4 41) + Gy (4m4-3 =8N (—1)™,

m=
k-1

(6.18) I, = Z‘ G2 (2M—2E 1) (—1)™,

MmO
k=1

3 Z (ﬂ4m+1 (dim —8F +1) + Gy 5 (400 +3))( —1)",

m=0

619 @G =

(6.20) H,=5h Zam 1y,

Hie=0
The numbers obtained by replacing each a, by b, in (6.17)-(6.20) are de-
noted by L, M,, Ny, P, respectively (eqns. (6 21)-(6.24)). Clearly F';,
H,, M, and P, are integers. ¥;, &1, L, and N, axe integers by Lemma 4.
By (6.1), (6.3), (6.20), (6.24) and Lemma 5, we have

(6.25) Hy = —kd,, P,= —k0,.

Moreover, from (6.2), (6.4), (6.17), (6.19), (6.21), (6.23) and Lemma b
we have

Fe—-1
— Gy =4 Y (841~ Gumys) (1) = 8RBy,
(6.26) mee

)

Ll —_ N1 = 4k 2 (b4m+1 — bq,m-l-.‘!) ( ~1

mmi)

)= 8kDy,
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go that
B, =Gy, Py =0, it

Hy=0,L, =N, i

h(—~p) = 0 (mod B),
h{—p) =4 (mod 8).

Also, working modulo 4, we have, from (6.18) and Lemma 4,

=1 k-1
Ty= 3 Gy (2m4-1) (—1)™ ~2k D Gy (1)
A=) A=)
fgem1 fe—1
\ 1
=5 Z Oy 20 Z Dgoniel-2 9
Hyw={) M=)

that 18
(6.27)(2) 7, = 2k (mod 4), if  h{—p) = 0 (rmod 8),
3 (mod 4, it R{(—p) =24 (mod 8).

Similarly we have

T4 d 4 i R{—p) =0 il
6.27)(b) I, = J4 (mod 4), * b (1) (mod 8},
(2k-+1)R(p} T[4 (mod. 4), if  k(—p) = 4 (1nod 8),
Next we note that
k=1 k-1
Byt By = 3 yga @m0 (=1 3 Gy (201 —48) (1)
M= =l
k:'|1 ﬁ::11
== 2, By o1, 1 Z Byppr 300 4)
m=i m=0
2h—1
= 2 Oyma (0 4),
Ml

that is, by Lemma 4,
B, -1I; = 0 (med 4},
and so, in particular, wo have by Lemma 5§
Ty w5 0 (mod 4), | if
Similaxly we obtain

B{—p) == 0 (nod. 8).

Dy - Ly =2 T2 (mod 4),
80

Ly =T2 =2 (mod 4), i
Finally an easy calculation shows that
20, 448 04264 @ --8H, 0? = X' (w),
2Ly +-4M 00 +2N, 0 8Py 0? == Z' (o).

h(=p) == 4 (mod 8).

(6.28)

icm
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For p = 16549, we define

[ k1
(6.29) By = 3{ Y Ga (@m0 (—1) 4 3 @y (8T +1—dm) (—1)"],
m=0 =0

&
(6.30) Ty = (2k+1) D) @y —1)™,

M=
I k=1
(©.31) Gy = 3] Y tpni (Bh+3 —am) (—1)"+ D)ty (4 +3)(—1)"},
M} m==0

I
(6.32) Hy = D' (20 ~2m4-1)(—1)™.
=9
The numbers obtained by replacing each @, by b, in (6.20)~(6.32) are
denoted by L,, M,, N,, P, respectively (eqns. (6.33)-(6.36)). Clearly ¥,,
H,, Myand P, are integers. Hy, &,, L, and N, are integers by Lemma 4.
By (6.5), (6.7), (6.30), (6.34} and Lemma 5, we have

{6.37) Py = (2h-41) Ay, M, = (2k+1)C4.

Moreover, from (6.5), (6.7), (6.29), (6.31), (6.33), (6.35) and Lemma 5,
we have .

(6.38)
& k-1
By +6y = ($42) | Y s~ 3 g (—1)"} = (85-+4) By,
=0 m=0
[ k=1
Lo+ Ny = (45+2) { 3 buar (1" + ) Bl —1)"} = (85+4)Ds,
m=0 m=0
s0 that '
By = —@, M;=0, i »h{(—-p)=0/(mod3),
F, =0, Ly=—N, i k(—p)=4(mods).

Algo, working modulo 4, we have, a8 before,
2k (mod 4), if Rh(—p) =0 (mod 8
1 (mod 4), it h(—p) =4 (mod 8
7i4 (mod 4), it
(2 +1)h(p)T/4 (mod 4), it

!

{6.30)(a) Hy =

s

(6.39)(b) P, = ‘

and
: "By -+, =2 {mod £},

Dy+ Ly = 72 (mod. 4),
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so that by Lemma § we have
B, =2 (mod. 4), if
Ly = T2 =2 (mod 4), if

h(—p) = 0 (mod 8),
h{—p) = 4 (mod 8).
Finally an casy caleulation shows that
O, 4Ty 0 26, 0° +4H 0 = T (w),
(6.40) 9Ly -4 Mow 2N ,0* +4P* = Z'(w).
Differentiating (6.11) and setling z = w, Wwe obtiain
(6.41) Y ()T (0)—p4(0)2' (@) = —8i(1+ o+ of).

Using (6.25), (6.26), (6.28), (6.87), (6.38), (6.40) and appealing t0 Lemma 5,
(6.41) gives
TmwyvMA 6. Let p == 8l+1 be a prime. Then

A E, 20D M, = —4k, if p = 1 (mod 16), 2 (—p) = 0 (mod 8),
A Fy~pD Ny = 21(4]~2),

ZBlFl ”‘“130].['1 = ""“‘4:]‘;, '?:f _p =3
BB, —pC My = 20pCT,

1 (mod 18), h(~p) == 4 (mod 8),

(mod 16), k(—p) == 0 (mod 8),

A B, 420Dy Py = 4k —2, if p =&
A Hy +P-D9L9 = (2k+1)(45-+2),
\m:aBgHﬁ—pGgN._. = —4k—2,

BB, +p0;Py = (2k+1)(pC5-2),

if p =9 (mod 18),
B(—p) = 4 (mod 8&).

7. Proof of theorem. For p == 8(--1 a prime, we define for j
=0,1,...,7 |
8 O (s

(7.1) g, = (__) - ) (__,),

Jple<p=(d1)p/8 P goafl -l »
80

\ UL
(7.2) Ng= > (5)

FLal gual

Setting 8 = ji+1 (¢ =1,...,1 in (7.1) wo have, as @lp) =1,

- 385~ S - Sl

iml bl
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that is
o 8t—j
(1.5) 8 = Z(—_J—)
b4

t=1

Mapping #1417 in the right-hand side of (7.3), we obtain (as (—1/p)
Eey —|--1)

(7.4) 8 == 8,
Hrom [4], p. 162, and [5], p. 120, we have

M —p) =28+ 8y, M(—2p) =
Putting (7.2), (7.4) and (7.5

(G=0,1,...,7).

(7.5) 2(8,—8), 8 =28,
) together, we oblain

8y = 8; = {{h(—p)+1(-2p)),

By = 8, = 8, = 8, = 4(h(—p)—h(—2p),

8s = 85 =} —3h{—p)--h(—2p)).

(7.6)

Noext, for any complex number 2, we define

p—1
K (2) = 2(%)5”“1“”.

) in (7.7), and using (7.3), we obtain

(mf) = o8
i=u
), and appealing to (7.6), we get
h{—2p)
2

(7.7)
Taking 2 = w, (r = 0,1,
(7.8)

Choosing »

k=S 1, 5 1]1 (7.8

K(w) = h(—p) -+

(1 —ead- w0t — ),
(7.9

from which we obtain

(740} 4h(—p) = K (o) (L} o+ ot — o)+ K(— o)l —o+ o+ ae’).

Now Liouville ([9], p. 415) has gshown that

(7.11) = Y (2) 8 (2) — X' (2) Z(2)-
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Taking # = 4+ e in (7.11}) we obtain
2K () = (1—){¥ ()2 () — ¥ (0)Z(w)},
9K(—w) = (1+w){Y(—cu)Z’(—m)—Y’(—m)Z(—-m)}.
Substituting (7.12) into (7.10) we obtain
(7.18)  4h(—p) = 0 {X () Z(w)— ¥ (0)Z'(0)+ Y{(—a)Z{—w)—
— ¥~ w)Z({—w)}.

Now suppose that h(—p) = 0 (inod 8). By (6.28), (6.26), (6.28),
(6.37), (6.38), (6.40), (7.18) and Lemma B, we have

44, M, —4D, By, it p ==1(mod 16},
M=P) =\ _44,p,—4D,H, i p =9 (mod16).
Hence, as 7, = 0 (mod 4), B, = 2 (mod 4), Dy =1 (mod 2), we have
44, M; (mod 16), if  p =1 (mod16),
—44,P,--8 (mod 16), i p =9 (mod 16).
Appealing to (6.27)(b) and (6.39)(b), wo obtain
AT (mmod 16}, it p ==L (nod 16},
— Ay -8 (mod 16), it p =9 (mod 16).
As T =0 (mod 8) and 4; = 4, =1 (mod 2), we have
h—p) = lT (mod 16), it p ol (moq ?16),
T+8 (med 16), it p =9 (mod 16),

(7.12)

h(—p) =

h(—p) =

that is
h(—p) &= T-+p—L (mod 16},
as required.
Finally we suppese that A{—p) =4 (mod 8). Ag above wo havo
4B, L, —40, 7, it p =21 (mod 18),
2= LLJ;BLQ"WJQ H,, it p -9 (mod16).
Hence, 48 By == U, =a 1l (uod 2), Ly =52 (wod 4), Fy 23 (miod 4),

By == 0 (mod 2), ¢ = 1(mod 8), Ly 2 (mod 4), Hy o 1 (mod. 4), we
‘have

R{—

840, (mod 16), it
40, {mod 18), if

p vzl (mod 18),
p =9 (mod 16).
Now if p = 1 (mod 16) we have from Lemma 6

UM, = B B, —2kpCt.

h(—p) == \

icm
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Multiplying by M, = 1 (mod 2), we get
C, = B, B, M, —2EM, (mod 4)
= —BIM, -2k, (mod 4)
= —{(14-2k) M, (mod 4)

C=m —Rhip) T4 (mod 4),
go that

h(—p) = 8~h(p)T = T4 (p—1}+4(h(p)—1)(mod 16).
On the other hand if p == 9 (mod 16) we have from Lemma 6
POy Py = (2k--1)(pC; —2)—By B,.
Multiplying by P, =1 (od 2), we get
Oy #= — (8L -+1)Py— B, B, P, (mod 4)
= — (k1) Py B,y (2 — By) P, (tmod 4)
= —(2k 1) P, (mod 4)

sz —h(p)T/4 (mod 4),
so that :
h(—p) = 8—h(T =T +(p—-1)-+4 (h(_‘p) —-l) (mod 186),
as required. ‘

This conopletes the proof of the theorem.

The author would like to acknowledge the help of Mr. Lee-Jeff Belk
who did gorme numerical ealenlations in connection with the preparation
of this paper. The author would also like to thank an wnknown referee
who pointed out that the author’s original proof of Lemma 3 was incom-
plete.

The ideas of this paper have been extended to determine h(-—2p)
(mod 18), where p == 1 (mod 8} is prime.
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XXXIX (1981)

On the distribution modulo 1 of the sequence an®+gn?-+yn

by
R. C. Baxar (London)

1. Imtroduction. Lt ||| denote distance to the nearest integer. Let
&> 0,and let a, B, y denote arbitrary real numbers. Recently W, M. Schmidt
showed [3] that fer N > ¢,(£) there is ¢ natural number n< N having

llan?+ fn|| < N -Hrte,
This generalizes the well known theorem of Heilbronn [3] and sharpens
a result of Davenport [2].

Schmidt’s method enabled him to prove that for N > e,(s) there is
a natural number #n < N having

llan? -+ fn? 4y << NHTe,
For y = 0, the exponent —1/5-+¢ could be replaced by —1/4&-+¢[6].
Both results sharpen those of Davenport [2].
In the present paper we shall show that for N> ¢,(s) there is a natural
number n < N having
flom? - fu? +ym|| < NHEFe,
vt is o more diffieult to prove n more general theorem. We denote by %
an integer greater than 1 and write K = 2577,
TrroreM 1. Suppose k=3 -and N > o,(k, &). Then there is a natural
number n < N with
(1) llon® |- ik~ - | <z N e
Wo nlgo glrengthen Schmidt’s theovem [6]1 for an arbitrary poly-
nomial of degree k2 3 with constinnt term zero, bub only when % is odd.
Mrmonrmm 2. Leb & be an odd intoger, % 3 8, and write Ky = 3(2*'—1).
Lot N > ay(k, 2}, Givon & polynomial F(n) of degree & with sonstant term zero,
there is a natural number n <\ N with
(2) T ()] < FHfieske,

Wo shall uso ideas normally asgociated with “major ares? in the circle
method [4]. Schmidt’s method, on the other hand, i3 a ‘very original
development of “minor are” ideas.



