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XL (1981)

On Iwasawa’s A-invariant for certain Z-extensions
_ by _
Jogepr E. Osrpori and H. H., Kirrevexy (Pasadens, Oalif,.)

Tn this article we consider Z,-extensions of certain abelian extensions
of , the field of rational numbers. For the basic theory of Z;-extensions
we refer to Iwasawa [3].

Let & be a finite extengion of 0, [ a prime, and let K [k be a Z;-extension,
i.e. K [k is a Galois extension and Gal (K /k) = I' is topologically isomorphie
to the additive group of Z;, the ring of I-adic integers. Let L be the maximal
abelian unramified l-extension of K, and let X = Gal(L/K). Then X
hag the gtructure of & Z;fI"l-module in a natural way. If we fix a topo-
logical generator, o, of I', X can be endowed with the structure of a 4
= Z,;7[T]] module under the correspondence o1 -+T. It is known that
X conta:ina ag a submodule of finite index an elementary module

B~ @ Al(fi)

in Z,[T] {This follows from the existence of a pseudoqsomorph;lsm B+X,
and the fact that E has no finite A-submodules.) Let He(T) = []f; :
Then the degree of Hy is ig, the Iwasawa i-invariant for K/X.

Now suppose that I is 0dd and that %/Q is a totally complex abelian
extension with Gal(k/Q) = 4. We assume that every element of A has
order dividing I —1. By using the action of 4 on Gal(F k), where F is the
composite of all Z;-extensions of k, we single out a certain set of Z,-exten-
siong of %. We then obtain congruence eonditions on corresponding A's,
and & functional equation for the corregponding H's.

where f, =1 or is a distinguished. irreducible polynomial

1. Let I be an odd prime, and let k/Q be a totally complex abelian
extension with Gal(k/Q) = 4. Assume that the group A has exponent
dnndmg i —1. Let W be the group of {{ —1)st roots of unlty m Z,, and let

4 = Hom {4, W). For each xed let

T e ez,

red
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Then the &, are & set of orthogonal idempotents with Ye, = 1, and any
4
topological Z;{4]-module M can be decomposed:
M == @D e, M,
yed
where

r(m) = x(r)m for all mes, M and all ve 4.

Let F' be the corpposite of all Z-extension of k, and denote by @
the group Gal(¥[k). Since Leopoldt’s conjecture is valid for &, [1], it
follows that ¢ ~ Z&*, where [k: Q] == d. Furthermore, X /Q is o Galois
extension, and Gal{F/Q) ~ G- 4, the gemi-direct produet, where A aets
on G by group theovetic conjugation. We shall identity 4 with o lifting to
Ga.I(I’/Q ) for which J == complex conjugution is an elomont of A under

a fixed embedding of I into the tield of complex numbers. We first deter-
mine the decomposition of & as a Z,[4]-module.

Let G = @ o6 andlet F* be thefixed field of ¢~. If " is the maxi-

el Y= —1
malzeal su‘bﬁeld of k, then /L™ ig Galois with group GG~ x{J. Thay if
Ff iy the sublield of F*" tixed by J, Gal(FF k') ~ GG . Since Leopoldt’
eonjecture is trne for k™, B is the cyclotomic Z; -exbension of %7, implying

that e, & ~ Z, and &G = 0-for all other y € 4 such that x(J} = 1, where
¥o 18 the prineipal chameter of 4.

It shall be shown that each group s G hus 71~mnk at most one.
Assuming this, it follows from the fact that ¢ ZI* that o@ ~ Z
for all y such that y(J) = —1 or x = zo, and that & =0 0+herw1se

Suppose that py, ..., p, are the primes of k lying above the rational
prime 1. Let %, denote the completion of & at p,, @p the integers of &, ,
and. Uf the units of 0 »; congruent to 1 modulo py, for t a non-negative
integer. Choose f 1arge enough, 80 that the pradic exponential funection
maps pio, isomorphically onto UY). Let Z < 4 be the decorposition
group of the primel, 80 Z is naturally isomorphic with the groups Gal(k,, /Q;).
Ohoose coset representatives =y = 1, ¥4y ..ey Ty Of A[Z so that 7(py)

== 1, Since the group Z has exponent dividing 1--1, and the (I-—1)8t
roots of unity are in. @y, it follows that &, /Q; is & Kummer extengion.
Furthermore it we denote by 4, the mulmplmutwe group of nen-zero
elementy of &, whose (I —1)st powers are in 0y, we have a perfoct pairing
Ay ><Gh1(7.:p /Qz) - W given by («, ) y(e)a™'. Hoence A,/@F 18 natu-
rally 1som0rph10 to the chmmeter group of Gal( Ia,,l Q,

Let y & A and define y, = g/, the charactor of Z obtained by res’nrlcu

ting the de)mmm of x to Z. Under the identitication of Z with Gal(k, /@),
P

we can view yy e Gal(k, @1}, 80 that there exists an element a, e Al suuh

that gz (y) == v(a)ar’ for every y € Z. Congider the product P = pi0,

icm
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. xph@p whick is naturally a Z;[4]-module. Define §eP by

B =(ay, oy x(m) 7 mla), <)o
Let ¢ € 4 and we determine the p,-eoordinate of p{f) in P. There exists

y € Z 50 that ¢r; = 7,;» for some index j.
Then
elr(7) e} = (57 ery(a) = 1 (77 my ()
= 207 (a) o) = 1 () nle) = @) g7 vla).
Hence ¢(f) = x(p)p in P, and so s P is non-trivial. Applying the
exponential map in each component and noting that exp is a Z,[A]-map,
we gee that for any x € 4, &,(U®) is non-trivial, where U® = U(‘

.x UQ . Since U iy a ZI[A] -module of Z rank d, each elgenspace
must h&ve rank exactly one. Now by class field theory ([4], ch. 7, §11.5)
& containg as a Z;[ 4] submddule of finite index an isomorphic eopy of

(T®] EnU™)/(torsion) ([3], §2), where E is the closure of the units, B,
oi k embedded diagonally in U“’) It follows that all the elgenspa,ees for &
have Z,rank at most one.

For any g € A, such that y(J) = —1 or x = %, lot K, be the subfield
of F fixed by. @ £,6- : o '

) XHL
Thus we have proved:

TeEoREM 1. For any yed, y(J) = ~1 or ye=y,, K[k is o Z
extension. The seb of such X, 48 an independent sel of Z,-ewtensions of %
whose composite is F. Furthermore, K, [Q is Galois with group the semi-direct
product Gal(K,[k)- 4, where 1(a) = zov™ ! = o for mery o e Gal(K,[k),
and 7 e 4. ' '

COROLLARY 1. If K [k is a Zr-extension with K ,’Q Galois, then K = I,
Jor some y e A.

‘Proof. If M is any Z,[A] submodule of G then M = @ e, M where

xEA .
€, M =0 or sﬁM =1 "s @ for some non- nega,twe Anteger a, A8 K jQ A,
Galols, Gal(K k) is a Z,[z]]—submodule of @. Bince Gral(K/k) ~ 2 i

follows that Gal(F/K) = @axG for some- x € A. Hence K = I, Tt is

eagy to see that &very sub extensmn of Fik which is Galois over 0, iz
a composite of layers from the extensions X,.

2. We next consider the splitting of primes in the various fields K.

TemoREM 2. Let p == 1 be a vational prime. Let Z(p) be the decomposition
group of p in 4, and p be a prime of b dividing p. If Z(p} is not contoined
in Xexr x, then p splits completely in K,

Proof. Let Z(p) be the decomposition group of p in &. Since p does
not split completely in K, (ef. [2]), it follows that Z(p) is non-trivial.
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Since p ¥ I, p does not ramify in I7, and hence Z(p) ~ Z;. Thus Z(p)
is generated as a Zrmodule by some

=Gy eerytyy -} € Def,

zed

with a, 0.

For teZ(p) = 4, tp =p, so that z(Z(p)} = Z(p), and hence there is
@ unit % e Z;, such that v(a) = v-a. But 7(a) = (... x(v)a, ...) 80 we must
have % = 1 comparing y, components, and y(r) = 1 for each component
with @, s 0. But a, = 0 il and only if p splits completely in K, and the
theorem is proved.

CoroLLARY 2, For every ye d, x(J) = —1, infinitely many primes
of & split completely in K,.

3. In this section we consider the Iwasawa invariant A, == :{K of the
extengions K,. We also derive o funetional equation ior H, HK,
when y # g,.

Fix X € A, $J) = ~1lor g =x smd let L be the maximal abalia.n
unramified I-extension of K. Let X = Gal(L/E,). I I' = Gal (K, [k},
then ag noted in the 1ntroduct10n, X i8 o Z,[I-module and so becomes
8 A = Z;{[T]}-module under the correspondence o +»>1--T where ¢ is a
fixed topological generator of I'. But also, as K,/Q is Galois, so is L/Q.
Hence 4 acts on both A (via its action on I") and on X, Since these actions
are induced by group theoretic conjugation, we have for red, ve X
and v e 4, the equation ‘ .

r(re) = r(r)-r(w).

Also since (o) = o™, we see that T(1+7T) = (L+ 1)) ¢ 4,
any r€4 and ved we have v(r(T)) = r((L+T)% 1},

Lemua 1. Let M < X be a A-submodule. Then (M) iz a A- submodula
of X for every ve A. Furthermore A:nn(r(M)) = r(Ann(M) whers Ann
denctes the annihilator in A.

Proof. Tet me M, red and r ¢ 4. Then

so for

re(m) = 77 re(m)) = vz (#) m) e T (M),

Secondly, ;

reAnn({x(M)} «re(M) =0
<t rr (M) = 0
T M =0
<7 (r) € Ann (M)
<y er(Ann(M)).
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As mentioned in the introduetion, X contains as a A-submodule of
finite index an elementary module, B. F is a sum of eyclic modules,

B e @ Am;, where Annf{z) = (f;?), the prmmpal ideal of A generated

by f, Here J; in either 1, or a dlstmgmshed irredueible polynoraial.
Now if f is any dlstmgmshed irreducible polynomial and r e 4, we see
by the Weierstrags preparation theorem, and the fact that 7 is an‘a,uto-
morphism of A that v(f(T)) = »{T)g(T) uniquely, where «(T) is a unit
of A4 and g(7)} is a distinguished irreducible polynonaial.

Lipvma 2. Let H be an elémentary module of findte inden in X, and let
v & A. Suppose that

E @Awi @ij '

1=1 j=1
where Ann(z;) = (V) and Ann(y;) = ( fj , [; & distinguished @wedumble

polynomial. For each 4, let ©(f;) = wg; as abowe Then the set of f;7 is the
same ag the sel gj coummg mumphomss

Proof. v(B) = @Ar( AL @A’r(y,) where Ann(z{m)) = (%) and

Ann(s(y)) = (g}") by Lemma 1. As T(X) = X, v(H) is an elementary sub-
module of finite index in X. But this means that x(#) ~ F as A-modunles,
and hence that the annihilators of the y,’s are the same as those of the
T(¥,)’s aiter rearrangement.

Let ¥ have order a in A, and choose 7, € 4 so that y{1,} =7, Where
y is a primitive ath root of wnity in W, _We note that if r e kery, then
{T) =T and z(r) = for any red.

Imvma 3. Lot f = T be o distinguished irreducible polynomial in A.
Supgpose that (¥0f) = (f). Then the order of y™ in W divides the degree of f.

Proof. Let w(T)f(T) = 2(T) =fl(1+T)" ~1) where #(T) is a
unit of 4. Let a—1 be a zero of f(T) in some extension field &' of @Q;.
Then a—1 hag positive valuation in %" since f is distinguished, 5o we
can substitute T = «—1 in the above equa.tlon to deduce that o —1
is also a root of f(T'). Iterating we gee that ™™ —1 is a root of F(T) for
¢ =0,1, Seh O{5™) —1, where 0{n™) is the order of #™ in W, Now suppose
wehad @™ —1 = a"™ —1for some 0 < i < § < O(y™). Then o™V "1 .y
and taking Z-adic logarithms (% is the maximal ideal of %') we gef
7 (U= _1)loge = 0. Since 0< j—i< O(n™),loge = 9, 50 a is an
l-power root of 1, and henee, 2 —L is a root of w, = (1 +T)°—1 for some k.
Thus if f(T) is prime to w,, for all &, there are no such 4 and j. This implies
that the roots of f{T') are partitioned into disjoint orbits each with O (n™)
elements. Hence O(9™) divides the degree of ¥. It f(T)lw, for some k, then
either f(I) = T or f(T) = §; = w;/w,_, for some pogitive integer 4. As 11
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divides the degree of & we again have that O(#™) divides the degree of f
if f(T) # . We note that it can be verified that (v(£)) = (&).

TazoreM 3, Let H,(T) = HK (X') be as defined in the fmtroducmm,
and write H (T} = T°VFg(T ) T) where g(O) #= 0, Thrm the or der of x m /J divides
the degree of g, so that A, == §(mod a).

Proof. Let ¢ (I be any distinguished polynomml of 4, such timt.
(-;x(g () ) ( "r )) and ¢'(0) # 0. Let f(T) be a distinguished irreducible
factor of g’ (L) and suppose m > 0 is the least integer such. that (7 T i)

= {f(T)}. By Lemma 3, O(5") divides the degreu of f %wu (7, (0"} == (4",
we must have all the ideals (f), (v,f), ..., (+§~f) appearing in ﬂm faetori-
zation of {g'y to the same power. As 7, is an :automorphmm of A, the distin-
guished. irredueible polynomialy genumtmg these ideals all hwo degme
equal to degree of . Hence a = O(n) = m0(n™) divides the degree of g'(T).
N otmg that (v, (T)) = ((L+T)"~1) = (I') and that by Lemma 2 ( (Hx(i")))
= (H (T )} we apply this argument to g’ = g(T') fo finigh the proof. -

Remark. If ¥ # %, this places some severe restrlctmns on the set
of fys.

TenoREM 4. Let ¢ € A, g{d) = 1. Then H,(T) satisfies the functional

squation o
e AN
S O L deg Hy , 1 o
Also
Hy(—1) ~-(-1) 23
Proot. Tt is clear that (J(H(T))) (H (), and since x(J
J(T) = —T[(1+1). Hence there iz a unit fw(fl‘)_m A guch ths‘x‘tu _

I oy
zf‘(lH,) g(l_.l_T)u(T) gﬂx(HT)u(i) = H,(T) = I"T%(T).

Clearing denominators, we obtain

T

(-»«-1)’(1+T)*’“ (1711')’“ (1) - J(T)9
W)

whers w/(1) — 4

and 2m = degreo of ;q (hileh i even” by
Theorem '3). ‘ : Sl

‘Let g(T) = ae+ ... gy 1’1’2"'“1 M‘-"" Then* (14 Ty (

D7) =
(1+T)g’" o ..-+a2m_1(1+5!')( ——T)”‘“‘“}-}-Tz?‘, o ponxmm-ml of ‘dégree st

icm
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most 2um. Bus as g(T) is distmguiéhed,' {1+ (1_:%) = T°" (mod 1)

50 there is a unit ¢ ez,, sueh that (1 +T)“”‘g(l+T) is & (momie)
digtinguished polynomial. Thug by the Weierstrass Preparation Theorem,
wo o that o(i+Tng( To) —g(T) Substiting T -0, and
noting that g(0) # 0, we see that v = 1. - '

The zecond statement now follows by evaluating the expression

. am - o
above for (141 (1+T) at T = —1.

We note that the proof is valid for any dlstmgmshed pulynmmal h
satistying (J (h(T ) = {R(T)).

4. We now discuss a sufficient condition for a Z-extension, so that I
does not divide Hy (1. As a consequence we derive divisibility plopeﬂues
for the A,’s when k& == Q({), { a primitive th oot of 1.

Let K be a Z-extension of & finite extension, &, of Q. Leb k, be the
nth layer of K, n =1, 2, ... Let @, = Gal(k,/k), and let 4, Dbe the
l-primary part of the ideal class grou'p of &,. I

Lemma 4. Let Kk, k,,6,, A, be as above, and suppose there is a
unique prime p of k whwh, mmbfws in K. Then (4,) " has bounded order
as n -> oo, where (A,b) is the subgroup of elements of A, fived by G,.

Proof. Let o generate &,. Then [(A,)" = [(4,)¥] = |4, /(c—1)4,.
It i5 well known from genus theory that |4, /(¢ —1).4,| is the power of I
which divides h-e(p)/{[k,:¥)(B: B-n Ny, yk,)) where & is the class number
and E the unit group of k, and e(p) is the ramification index of p in %,
Since e(p) < [k, : k], 14, /(e—1)4,] < h.

Temma 5. Let Bk be a Z-extension such that |
for all n. Then TYHg(T).

Proof. B X — Gal{L/F) for L the maximal abelian unramitied
l-extension of K then X =~ hmA as A-modules, where the limit is taken

with respect to norm ma.gs, [3] Thus if X is the submodule of X annihi-
lated by T, zX s lim (4,,)"" (recall T > o —1), which is finite by agsumption.

This implies that & is finite where % is the elementary module associated
with X. Therefore, T+YH(T).

TEEOREM 5. Lot k/Q be a totally complex abelian extension with Galois
group A having as exponent o divisor of 1—1. Suppose only one prime of
k lies above 1. Then for any y & zf, q{d) = —1 or g = xq, the order of %
in 4 divides A,.

Proof. This follows from Theorem 3 and Lemmas 4 and 5.

AM)G“I i3 bounded
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COROLLARY 3. For k = Q(§), { a primitive I-th voot of 1, the order of
x 4 divides A, for x such that x(J) = —L or y = z,. :

We would like to point out that Theorem 4 has been proved indepen-
dently by R. Gillard [B].

Addedinproof: J..F. Jaulent has recently obtained results similar to some
of those in this article.

— Théorie &' Twasewa dog tours mélabeliennes, Séminaire de théorie des Nombres
de Bordeanux, exposde No. 21 {1680 —81).
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On the rationality of periods of primitive forms
. by
Kazuoyuxkt HATaDA {Tokyo)

Tntroduetion. In this paper, we give a new proof of the algebraic
property of the periods of primitive forms F of Neben type. We also study
p-adic Focke series attached to the F, which take algebraic values.

Let I be o finite index subgroup of 8L(2, Z), w+2 = 2 be a rational
integer, 8,,,(I") be the space of ecusp forms of weight w +2 with respect
to I, g, be the representation GL(2,R)—» GL(w+1, R) given by

a b
of(c 3}
= H{ez+ )", (ox-+d)* " (az+b), (ee+d)"*(az+D)%, ..., (az +b)*)dz

(de, = (de, ede, z*de, ..., #°d2): the C¥™' valued differential form on

the upper half plane H), g,lr be the restriction of g, to I, Ind g,lr
I'$ B2, Z)

be the induced representation of o,lr, P ba the seb congisting of all the
parabolic élements in SL(2, Z) and Hban(I', oylr, B) (resp. Hp(SL(2, ),

Ind g,lr, B) be the parabolic cohomology group with the coefficients
I{8L@.7) S
in a commutative ring B. Nowlet j, (Hpnr(eulrs 2)) (vesp.ja(HE(Ind g, 0, Z)))

denote the image of the whole domain: Tmage (f,) (resp. Image ( 4,)) under
the cancmical hemomorphism

Jat H}’nP(Pa Oplry &) “"H}’r\l"(r’ 0wl ry R)
(resp. jut HB(SL(2, 2), Ind gulr, Z) > Hp(SL(2, 2), Ind ol R)))
o I} ELEED It SL{2, 5
which is induced by the natural inclusion Z=+R. In §2, we prove:
TemorEy 0.1(Y). (For details, see Theorems 2.2-2.4 in §2.) Let 8h
be the map of Shapiro:

Hi(SL(2,2), Ind gulr Z) » HYT, eulrs 2).
IteLE,2

1) This theorem has some spplications to cengruence properties of eigenvalues
of Hecks operators. (Cf. K. Hatada: On the divisibility by 2 of the eigenvalues of Heoke
operators, Proc. Japan Acad. 534, (1877), pp. 37-40, and K. Hatada: Congruences
of the eigenvalues of Hecke operators, Froc. Japan Acad. 534, {1977), pp. 125-128.
Also of. K. Hatada: Higenvalues of Heoke aperators on 3L (2, Z), to appear in Math.
Ann.) L . :



