icm

ACTA ARITHMETICA
XL {1981)

Restricted sums of reciprocal values of additive functions
by
R, SITARAMACHANDRARAO and P. V, KRISHNATAH (Waltair, India)

1. Introduction. Let # denote the set of all multiplieative arithmetical
functions f satisfying

(1.1) H (1—p ™ty < flm)n~" < H a—p=f

aln pin

for all positive integral » and for some positive reals a, # and ». We write
Dy ={n} f{n) 1} and @, = {n| f(m)>1 for all m > a}.

Recently de Koninck and Galambos [6] obtained an asymptotic formula

for }' {logo,(n))™" (see Remark 3 below) where o,{n) — > @. Evelyn
2N dln

Seriba [1], generalizing this, established an asymptotic formula for

2 (logf(n))™" where f is any member of & subject to the apparently
ﬂqﬂﬁ;nﬁﬂf

additional conditions » > ¢ and g1 (seé Remark 1 below).
In this paper we establish an agymptotic formula for

(logf(m))™!

R, ue.DfnS

where f is any member of # and § is a set of positive integers subject to
gomo restrictiony (statement in §2 and proof in § 3). In § 4 we exhibit
& snccesgion of particular cases of our theorem (Corollaries 1 through 4)
in which Corollary 3, besides covering Scriba’s result, affords & refinement
of it in certain cages (see Remark 2). § 5 contains a rich class of illustrations
which result from an application of our theorem to the set of M-void
integers introduced by Rieger ([1171).

2, Notation and statement. A set A of positive integery is said to be
multiplicative provided, for (a,b) =1, onehas abecd iff ac d and be d
or equivalently when the characteristio function %, of 4 is multiplicative.
‘We write & to denote the class of all multiplicative sets § for each of
which there exight numbers 8 == 8g<1, b ==by>1 and an arithmetical
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function p = pg such that, a8 & - oo,

(2.1) D ts(m) = p(n)a+ 0 (p""a’)

mn
(m,n)=1

unifermly for all positive in’negml %, where o(n) ix the namber of distinet
prime divisors of n. We write *(n) to denote (—1)*™ and p(n) for the
product of the distinet primes dividing #. Writing dlln to menn that - d
is o unitary divisor of &, i.c., djn and (d, o /d) = 1, we note that the almw o

is the unitary tmaloﬂm of L 1 Mnbms j:unctmu 4 in the HELLSG that ¥ 4™ (d)
. . dlhz )
=1orQ ‘M,cordmp; as # = 1'or % > 1. Tor fewF Ml(l veal § wo write

i d
11 (n) ::2(—-5,;-)—)#* (-Z—) {see Lemmin 1; (1)),
din . . .

We observe that whenever f satisfies (1.1) with a = ay, # = f, and
» ==, then f satisfies (L.1) also with a = a,, § = f,.and v = », for all
positive 8y < B, and all » 2 ;. In the sequel, for given fe # and S e 7,
We' assumeé, as we may in virtue of the above observation, that » > a,
f<l—aly and f<1—4. For such § wo write ¢ = ¢ = (1L —27%"*

Remark 1. In [1] Seriba imposed the restrietions LT and v > a
in thé definition of &. Theqe conld be dropped in view of the above obser-
vation. . -~ S

The main resuli _Qf this paper ig the following

. PHEoREM, Let fe & and 8 ¢ . Then as o — oo

@2) D (logfem)

nsw,nelps
1]
e Vi gy Mﬁ_ﬂ?____ " 7 T
= a;_i]i’(t)m it -} vO{log_m (m foxp (VOL(2)) +w )}
where . ‘ N
28) . ) = . 3 gs(n f: (n)p
@5 K ) = ﬁ ( ) “i_ — %
and . A ; ‘
(2.4) D) = (Pumgm/logglngcc)‘“-a

where Ais any aumber gfrea,ﬁew man 8eg. In yafmculm' Jor each positive mfegefr 7,
we have ag » -+ oo,

R N RN T T e NN LR
‘(_d) L Togf( %) "’2/ - (alogay® 0, (log @)+

"nan T
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3. Lemmas and proof of the theorem.
Luvwa 1. If f e F, then
(i) flw} = 0 for cvery m,
(it) there ewists an N > 1 such that f{n) = n** for all n = N and
(lil) the complement of Gy and hence that of D, are finite sats.
Proof. (i) is clear. Since for a prime p and a positive integer m,
L e R I -
frout (1.1, wo see’ that fm)n™ - 0o as n — o6 (¢f. [9], Theorem 316)
and we have (i0). (i) Is immediste from (ii).
LimmA 3. Let b= 0, k1 be constants. For o> 0, let us define”

AP (o) = f log {L -+~ (#° —L)" } (log2) ™™
a :
Then ws o — 0,

AP (o) = kAo log o™ 4 0 o7 {log e~ ) P loglog o™}

where the O-constant moy depend upon b and k.

The proot of this lemma follows the same lines as that of Lemma 1
in. [8] with the ehoice @, = ko™ ingtead of the choice #, = o~ L made in
lite 7 froms below, p. 138 in [5] and conseguent minor modifications.

LuMMA 8. If k2= 1 then the Divichlet series 5“ B (p (m)) "0 con-

ﬂm
'uea"gas fm o> 0 and for the sum Function f(a), we have o3 o - 0+,
logf(s) ~ ko™ {loga™")"t. '

Proof. For o> 0, the convergence of the Dirichlet series follows,
in virtue of Theorem 41 of [7], flom the absolute convergence of the
product :

H (L4-kp™ (7= = T Y Vk”‘f’m’(?(p )) )
» o om0 .
which then equals f(o) ( [ [ stands for the pr 0(11101: t&ken over all primes p).

The proof of the second umolumun follows tho same lines as that of Lemma
9 in [B] exeept that we now use Lcmmn, 2 above in place of Lemma 1
of [B]. o :
DLMM’A 4. Let A >0, m(n) 20 (n=1,2, ) and  let f(o)
,}] 'n ° conwergs for o> 0. Assume thai _lggj(c_r)-.rvAcr"l(1ogcr"1}'"‘

el _
as cr—>-0+. Then as & ~ oo,

log (2 w(%)) ~ (SAlogm)l.fz(lOgIOgm)_m ) ‘_ |

e
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This is a special case of a Tauberian theorem given for general Dirichlet
series by Hardy and Ramanmjan [8] (see also [10]). Combining Lemmag 3
and 4 we obtain

LevMya 5. If k= 1 we have, as & — oo,
Iog{z B4 (o ()~ } (8%logaz)*(logloga)~ 12,

REET
consequently

2 B0 (y(0))™ = 0 {exp ((jlogz)"* (loglog=)~"*))
ne

for every § > 8k.
Levma 6. For fe#, we have, as ¥ — oo,

(3.1) DU ()] = O (o Pexp ()
neL

and

(3.2) D )T = 0o Pexp L(w))

NG
umiformly for t e[ —1/v, 0T where L(x) is given by (2.4).
Proof. We recall the well-known inequalities

(3.3) & -1l<aa"™ e—1) i w<0,a>0
and '
(3.4) a“—lam_wm"l(a;—l) ¥ 0ge<l,a>0.

From the definition of f;’ we have, for prime p and positive integral ",
that '

F™ = {fe™p™™ -1 < (1 —p~fyt~1
< _vtp—ﬁ(‘l __w-,p-—.ﬂ)vé—l <1 _2-4'2)-_21)—5 _ oﬁp—ﬁ

by (1.1) and (3.3). On the other hand

@™ = (F™p ™) ~1 2 (L~p~fy —1

ZpT 1 —p T e — (=27 = —gpF

by (11) and (3.4). Now the multiplicativity of f* yields
(3.5) IfF ()] < 0™ (p(m))~?
50 that we have, by Lemma 5, a5 @ — oo,

DA m)] Z‘o“"”’(v(n L Moo (pm))t = 0(aPexp L (#)).

n<a nay

Now (3.2) follows from (8.1) by partial summation on noting the fact
that ™" exp L(x) decreases for large w.
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LeMMA 7. For fed and 8§ ¢ & we have, a8 & - co,

D asm) (f(n)f = P@@+ + 0o+ ~Pexp VIL ()

n<w

uniformly for s [—1/v, 0] where F(t) iz given by (2.3).
Proof. By (2.1), (3.2) and (3.8) we have, as 2 — oo,

Zo= 3 gelm){fmne) = Y ygn) Y fr)

Gy n=L FEmR
(#,6) =1
s
= S s | S ae®)= 3 aetnif 'r){ r)+0 (b‘""> (r) )}
regm (:f)airl FRT
= 2 (rfF & _I-I—O( Z\f, l’r“I) +O( ZU‘! )[poiry—?
= (1-+at) o F(8) + O (9" Pexp L(x)) -+ O (m" 2 (be) ™) (y (1))~ Pr? )

r

on notmg that 0 < p{n) <1 for all pogitive integer n. ’.[‘he second O-term
above is O(m Z' be) ™ (y ﬂ“") or 0( T (b6)°® (p(r)} ‘9) according as

g
§ > 0 or not. Tn elﬁher case this reduces to O[ 14 Z‘ (bc)“’"’( (r)~ ) and
hence to O(ml”ﬂexp(l/bl} ) Thus as & - oo,

Z, = (L+at)o F'(t)+ O (¢ Pexp (Vo L(a)

uniformly for te[—1/», 0], Now by partial summation,

2;55- ) (f(m)f = “’E atf.): wtldu

[
wa (14 at) @t F (1) +0( w+t=Pexp (Vb I ()} —
—ab(1+ at) F (1) f wtdu +0(exp(ﬁ1;(m)) f u"‘"ﬂdu)
e PP (1) + O (4P exp (Vb L (0))

uniformly for ¢ e[ —1/v,0) since 1+at~f=1 —afy—f > 0.
Proof of the theorem. With N as in (ii) of Lemma 1, we have

(3 atm(sonf) dt = szm ) [ (rmfa = 3 ) 10gf(%))

o T =1 R=E
t nG.D_, neD!
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where

5a(5 e 3)uolr

n<N Neneln

)T (logf(m)) ™

neDy weDf
B 0( i ngqu (% ﬁw(lwf(ﬂ')) ) O_( 1—0[”(105%"'1") N

ag ¢ — oo in virtue of Lenmm 7. N ow by (iif) of anmm 1 a‘nd Iwmma (
we have, as @& ~ oo, S

) (logf(m))~%
fsiar, neDp S ‘ -
a

:f( Z ;gsr(wfl}(f(n)))dt~l~ (II“’”(JogT) 1) |

12 n<xnelp

=z f{F( ya 1+a§+0( 1+wf'—ﬂcxp (V!’)L(&F)))}dt—} 0(1)-+ O(inltuéfy(ll)gm)w-l)
—1f»
:‘- -_—..mwi[ ( ) o "ﬁdt"!"o (—l——gexp (l/bL(Q" )) ( i a;‘v(logm). )

thus complf,tmg; the. proei of ‘ahe thwlem

4. Sums over certain semigroups, In thlq .soctlon wo S]mma,lme our
thecrem to the case where 8 is a suitable serigroup of positive integers,
At the outset we introduce a Mobius-type funetion relutive to a set of
primes P by writing . C

outmdo P

0 if either n is not: sqmle free or % has a priwe divisor
bp(n) = : : :

( ~—1)’"c’”’ oﬂmrwme

By usmg Dmchlet series or Ubherwmo one ven[ma that

wy zm»

d[n ‘

= 8_() ﬂ/)

where 85 is the ehmraete115t10 tunctwn o[ the nmlbmlu a;bwe semlgrcmp H (P)
generated by P.
Let ¢ be a got of primes for which Lhura exmt& 8§ 1 such that

Sé, 2% < oo. For eaeh positive integer n we write C, = {p| p e 0 or p
s

is a prime ‘diviser of n} We dhall &pply oui‘ theotom to the semlgroup
8(C') where ¢’ is the set of all primes outsidg ¢ by firgt proving . '

- Restricted. sims of reciprocal values -

o
=1

Lmmma 8. 8(C") € & More precisely; as & — co .. @ -

. 1) awin),.b
M T () = @ l i 1] 02957 -
S{0) P ] n \)

M - pel,
[GIRES ) ks

uniformly for all positive integers n.
Proof. Thut 8(0')is multiplicativeis cloar. 01)501v111gt11'1t [T(x+27%

PeCy,
eomverges, we obtain, by Theorem 41 of [7 ], that )1 leae:, (m)|m*“’ converges
: m=l
so thalt we have as @ — oo, '

ot W1 T psty

Nl (i < g s (™" = H (L4 fb*")

~o([]a +57") = 0(2_',“_<’4>)j
win

uniformly for wll positive integral s, Now by 1)&11,1@1 mumnatmn

(4-2) S“‘ lag, (m}] = O(2% gy -
m*’m
and
(4.3) g (mymt == O (20
' T e . ’

wniforinly in n. Henee by (4.1), (4.2) and (4.3),

3 rec)+ D= S = S []

L [-LE =0 deic
Wy teyem 1 .
- mzﬂg )37 +0 o 3 juc, (d d‘l) +0{ 3 lnc, @)
thmal (t:»a' a<z
T T m(p;)
I [ (1 2}) ! 0(2; ).
petty,

This cowpletes the proot of Lemum 8 Now we can proye
COROLLARY 1. With § « 8(0) as abom, we have, for f & F as @ - oo,

! (log f(n))™! s @ f Py (B adt -0 {"1“8%7" (o™* exp (V2L () + a:"."“.)}'
e, na NS -1 g e ey e e
whese

Fo(t) = (L+at)” n (17_1&- ) n{(l —p 1}2 (.fp )t -~1(1+ui)}

o peU - mett R

and L{w) is given by (24) . .ot G e
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Proof. By (2.3) and Lemma 8 we have, with § = §(C"),

w(t) = 5 Lsite (0 My (m): -11[ I—P“I)IY L—p~

pelf Pl

(14 at) I

"!,j” o n 1+(—p- 2(1’ i }
~H(1--p“1)[7{(1.-:ﬂ ")j(f(pf))u ““““”}r-
mel! pelr I

This, together with Lemma 8 and our theorem, yields Corollary 1.
Fixing & positive integer % and taking C to be the set of all prime
divisors of %k in Corollary 1, we obtain
COROLLARY 2. Hor positive integer k and f e F, we have as v -+ oo,
1]

2 (logf(n))]™ = w IF

(#; Byedt + O {“{fv_ﬁ? (w""’exp (I/EL(.%-)) -{~m"“”’)}

1
nﬁi,m'kf)bill,! —1fs o
where
P(t; 1) = Fay o) b [T{a—p™ 3 (Fh)pot)
PtE =
and § iz subject to the only restriction §<C 1 —afv (p being the Huler totient
Junction).

CoroLLARY 3 (Corollary 2, k = 1), For fe &, we have as » — oo,

w4 D (logfim)™

nz, nﬁDf
o

=& f—F(t) @+ 0 !T%Q(w“ﬁexp(l/iﬂ(w)) + w'""/”)}
-1/ )

with

Ft) = F(t;1) = (1 +at)” ”{ —p” Z(f(pz))t ~iaast),

Remark 2. While comparing (eL 4) above Wl.th (L.4) of [1], it should
be noted that the § above is subject to the restriction g < L ~a/v. However
one easily wverifies that

(a) in case f e but (1.1) fails for g > mm{a/v 1 —afr}, (4.4) above
vields an improvement over (1. 4) of [1] and

(b) otherwise (4.4) above is equivalent to (1.4) of [l]

To jllugtrate the case (a) above we may take f(n) = a5 (J4(n))™
Wwith @ 2 1, » = 2a and 8 < 1/2 where J, is the Jordan totient function

icm
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of order s defined by J,(n) = «* ” 1—p7). In this case the O-terms
in (4.4) above and (1.4) of [1] turn out respectively to be O(«'Pexp L (x))
and O(x'"?*%) with arbitrary positive &.

Applying Corollary 3 to the function ¢, we obtain

COROLLARY 4. If a> 0 then a8 2 — oo,

13

F(t)a™dt -+ 4, (x)
LS T -1fy
whers

. +p—rx::1)t}

and
(a) v = 2¢ and 4, ( 0) = 0@ for dach 6> 0 if a>
(b) » =1 and A, (%) = O(r"*(logz)™) if o< 1/2.
In particular for eack pogitive integer v, we have, as x — oo,

=R alm—1)
Z (log o, (n)) me (—V™ 220 +o,((

"
pL A e M1 (alogm)

1/2 and

(4.5)

&
logm)r+1 *

Remark 3. The special case a == L of (4.5) was obtained by de Ko-
ninck and Galatobos ([6], Theorem on p. 161). In the course of their
proof (line B from below, p. 162) it was made out that Y( [Jp™) < 2 w!

nsd pin
which is not troe. However, observing that 2( ]]p“bl) = 0,{d) for each
nsd pin
£ > 0 (which incidentally follows also from Lemma 3 a.bove) and making

consequent modifications in their proof, one can arrive at their final result.

5. Some more illustrations. Let M be a set of integers with min M
= 2= 2. Following Rieger ([11]} we say that an mteger is M-void if it
i# positive and in its canonical factorisation H p y no 1, belongs to M.

Drenoting the set of all M-void integers by @, aud its characteristic funetion
by g we now apply our theorem to the case § = Q. Clearly & is & multi-
plicative set and it follows, in virtue of Satz 1 of [11], that {2.1) holds for
this set with b =2, § = 1/r and

p(w) =BMH(M 22 )

ain —(» 1) Ap—mﬁl)

me M

where

o= [[o-v-n Zrey.
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Furtlier with this p{n) we have

'Eﬁiéﬂﬁﬁw=u+m“gfmﬂmﬁmmmm1

( n’b) mmn)
- 1+ at [ ] 24 i ﬁm

p—1 }
N — —" L At |
o=z P (1 (17 1 )m%Mp )
) mﬁM o )
s ...miLw....; {( — ___) >~1 m »—m(l - m’)]
L4 at m“u ]
® meM

by a s‘omigh’rfomﬁml caloulation. Thus wo obtain
CororLAry 5. Let M be a set of mtegm‘s with min 3 -
ench f &4, we have, a5 & — oo,

E (log f(m))™"

n<x, neJanQM
= f I’Q

—~1fy

= o=, How

aidt +0 {"“ é‘ﬂ: ( (‘X])(]/.Z L ) e m“"“ﬂ")}

where v > a, ﬁ LL~1)r and <1 —afv

"Remark 4. Corollary 5 affords ws with & vieh clars of illustrations
of gur theorem. To this ‘end, let 2, &, v be’ mtegem such tham t21 and
k> r>=2 We writo o

My = M. (r) == {n| »n is integral, n > r},

My == Iif[ﬂ(k, r) = {n| n is congruent to one of r, r+1, ...

My == Ma(t, 1) = {jr} § = 1,2, ..., 1},

].l/L My(r) = {jr § =1,2,...} and

Ms 5(7' = {7} . ) ‘ .
The olemonts of the sem QM through QM (np \11y denoted respectivaly

by Q,,,le,,,Q”,Q,. and @&} ate kmown a8 #dr co intdgers,’ {Jey r)-infegers

([12], [8]), wunitaxily" (¢, v)- integers, wunitarily mfree. integors (L2, T4

and semi r-free integers ([18]) respectively. Spuom]umrr Oorollary I’i ‘to
these gt of intogers one can obtaina number of illustrations of our thcorem.

y 'k —L1{mod &)},

(]

Cor
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