CONTRACTOR OF
200

ACTA ARITHMETICA XL (1981)

Restricted sums of reciprocal values of additive functions

by

- R. SITARAMACHANDRARAO and P. V. KRISHNATAH (Waltair, India)
- 1. Introduction. Let \mathcal{F} denote the set of all multiplicative arithmetical functions f satisfying

(1.1)
$$\prod_{p|n} (1-p^{-\beta})^{\nu} \leqslant f(n) n^{-\alpha} \leqslant \prod_{p|n} (1-p^{-\beta})^{-\nu}$$

for all positive integral n and for some positive reals a, β and ν . We write

$$D_f = \{n | f(n) \neq 1\}$$
 and $G_f = \{n | f(m) > 1 \text{ for all } m \geqslant n\}.$

Recently de Koninck and Galambos [6] obtained an asymptotic formula for $\sum_{2 \le n \le x} (\log \sigma_1(n))^{-1}$ (see Remark 3 below) where $\sigma_s(n) = \sum_{d \mid n} d^s$. Evelyn Seriba [1], generalizing this, established an asymptotic formula for $\sum_{n \le x, n \in G_f} (\log f(n))^{-1}$ where f is any member of $\mathscr F$ subject to the apparently additional conditions v > a and $\beta \le 1$ (see Remark 1 below).

In this paper we establish an asymptotic formula for

$$\sum_{n \leqslant x, n \in D_f \cap S} (\log f(n))^{-1}$$

where f is any member of \mathscr{F} and S is a set of positive integers subject to some restrictions (statement in § 2 and proof in § 3). In § 4 we exhibit a succession of particular cases of our theorem (Corollaries 1 through 4) in which Corollary 3, besides covering Scriba's result, affords a refinement of it in certain cases (see Remark 2). § 5 contains a rich class of illustrations which result from an application of our theorem to the set of M-void integers introduced by Rieger ([11]).

2. Notation and statement. A set A of positive integers is said to be multiplicative provided, for (a, b) = 1, one has $ab \in A$ iff $a \in A$ and $b \in A$ or equivalently when the characteristic function χ_A of A is multiplicative. We write $\mathscr S$ to denote the class of all multiplicative sets S for each of which there exist numbers $\delta = \delta_S < 1$, $b = b_S \ge 1$ and an arithmetical

function $p = p_S$ such that, as $x \to \infty$,

(2.1)
$$\sum_{\substack{m \leqslant x \\ (m,n)=1}} \chi_S(m) = p(n)x + O(b^{\omega(n)}x^d)$$

uniformly for all positive integral n, where $\omega(n)$ is the number of distinct prime divisors of n. We write $\mu^*(n)$ to denote $(-1)^{\omega(n)}$ and $\gamma(n)$ for the product of the distinct primes dividing n. Writing d|n to mean that d is a unitary divisor of n, i.e., d|n and (d, n|d) = 1, we note that the above μ^* is the unitary analogue of the Möbius function μ in the sense that $\sum_{d|n} \mu^*(d)$

= 1 or 0 according as n = 1 or n > 1. For $f \in \mathcal{F}$ and real t we write

$$f_t^*(n) = \sum_{d|u|} \left(\frac{f(d)}{d^a}\right)^t \mu^*\left(\frac{n}{d}\right)$$
 (see Lemma 1, (i)).

We observe that whenever f satisfies (1.1) with $\alpha = \alpha_0$, $\beta = \beta_0$ and $\nu = \nu_0$ then f satisfies (1.1) also with $\alpha = \alpha_0$, $\beta = \beta_1$ and $\nu = \nu_1$ for all positive $\beta_1 \leqslant \beta_0$ and all $\nu_1 \geqslant \nu_0$. In the sequel, for given $f \in \mathscr{F}$ and $S \in \mathscr{S}$, we assume, as we may in virtue of the above observation, that $\nu > \alpha$, $\beta < 1 - \alpha/\nu$ and $\beta \leqslant 1 - \delta$. For such β we write $c = c_{\beta} = (1 - 2^{-\beta})^{-2}$.

Remark 1. In [1] Scriba imposed the restrictions $\beta \leq 1$ and $\nu > \alpha$ in the definition of \mathscr{F} . These could be dropped in view of the above observation.

The main result of this paper is the following THEOREM. Let $f \in \mathscr{F}$ and $S \in \mathscr{S}$. Then as $x \to \infty$

$$(2.2) \sum_{n \leqslant x, n \in D_{f} \cap S} (\log f(n))^{-1}$$

$$=x\int\limits_{-1/r}^{0}F(t)x^{at}dt+O\left\{\frac{x}{\log x}\left(x^{-\beta}\exp\left(\sqrt{b}L(x)\right)+x^{-\alpha/r}\right)\right\}$$

where

(2.3)
$$F(t) = F_S(t) = \frac{1}{1+\alpha t} \sum_{n=1}^{\infty} \frac{\chi_S(n) f_i^*(n) p(n)}{n}$$

and

(2.4)
$$L(x) = (\lambda \log x / \log \log x)^{1/2}$$

where λ is any number greater than $8c_{\beta}$. In particular, for each positive integer r, we have as $\alpha \to \infty$,

(2.5)
$$\sum_{\substack{n \leq x \\ n \in D_r}} \frac{\chi_S(n)}{\log f(n)} = x \sum_{m=1}^r \frac{(-1)^{m-1} F^{(m-1)}(0)}{(a \log x)^m} + O_r \left(\frac{x}{(\log x)^{r+1}}\right).$$

3. Lemmas and proof of the theorem.

LEMMA 1. If $f \in \mathcal{F}$, then

- (i) f(n) > 0 for every n,
- (ii) there exists an N > 1 such that $f(n) \ge n^{\alpha/2}$ for all $n \ge N$ and
- (iii) the complement of G_f and hence that of D_f are finite sets.

Proof. (i) is clear. Since for a prime p and a positive integer m,

$$f(p^m) p^{-ma/2} \geqslant p^{ma/2} (1 - 2^{-\beta})^{-\nu}$$

from (1.1), we see that $f(n)n^{-a/2} \to \infty$ as $n \to \infty$ (cf. [9], Theorem 316) and we have (ii). (iii) is immediate from (ii).

LEMMA 2. Let h > 0, $k \ge 1$ be constants. For $\sigma > 0$, let us define

$$A_h^{(k)}(\sigma) = \int_{3/2}^{\infty} \log \{1 + kx^{-1}(x^{\sigma} - 1)^{-1}\} (\log x)^{-h} dx.$$

Then as $\sigma \to 0+$,

$$A_h^{(k)}(\sigma) = hh^{-1}\sigma^{-1}(\log \sigma^{-1})^{-h} + O\{\sigma^{-1}(\log \sigma^{-1})^{-h-1}\log\log \sigma^{-1}\}$$

where the O-constant may depend upon h and k.

The proof of this lemma follows the same lines as that of Lemma 1 in [5] with the choice $x_2 = k\sigma^{-1}$ instead of the choice $x_2 = \sigma^{-1}$ made in line 7 from below, p. 138 in [5] and consequent minor modifications.

LEMMA 3. If $k \ge 1$ then the Dirichlet series $\sum_{n=1}^{\infty} k^{\omega(n)} (\gamma(n))^{-1} n^{-\sigma}$ converges for $\sigma > 0$ and for the sum function $f(\sigma)$, we have as $\sigma \to 0+$,

$$\log f(\sigma) \sim k\sigma^{-1}(\log \sigma^{-1})^{-1}.$$

Proof. For $\sigma > 0$, the convergence of the Dirichlet series follows, in virtue of Theorem 41 of [7], from the absolute convergence of the product

$$\prod_{p} \left(1 + kp^{-1}(p^{\sigma} - 1)^{-1}\right) = \prod_{p} \left(\sum_{m=0}^{\infty} k^{\omega(p^m)} \left(\gamma(p^m)\right)^{-1} p^{-m\sigma}\right)$$

which then equals $f(\sigma)$ (\prod_{p} stands for the product taken over all primes p). The proof of the second conclusion follows the same lines as that of Lemma 2 in [5] except that we now use Lemma 2 above in place of Lemma 1 of [5].

IMMMA 4. Let A > 0, $a(n) \ge 0$ (n = 1, 2, ...) and let $f(\sigma) = \sum_{n=1}^{\infty} a(n) n^{-\sigma}$ converge for $\sigma > 0$. Assume that $\log f(\sigma) \sim A\sigma^{-1}(\log \sigma^{-1})^{-1}$ as $\sigma \to 0 + .$ Then as $\omega \to \infty$,

$$\log \left(\sum_{n \leq x} a(n) \right) \sim (8A \log x)^{1/2} (\log \log x)^{-1/2}$$
.

This is a special case of a Tauberian theorem given for general Dirichlet series by Hardy and Ramanujan [8] (see also [10]). Combining Lemmas 3 and 4 we obtain

LEMMA 5. If $k \ge 1$ we have, as $x \to \infty$,

$$\log \left\{ \sum_{n \leqslant x} k^{\omega(n)} (\gamma(n))^{-1} \right\} \sim (8k \log x)^{1/2} (\log \log x)^{-1/2};$$

consequently

$$\sum_{n \leqslant x} k^{\omega(n)} \big(\gamma(n) \big)^{-1} \, = \, O \left\{ \exp \big((j \log x)^{1/2} (\log \log x)^{-1/2} \big) \right\}$$

for every j > 8k.

LEMMA 6. For $f \in \mathcal{F}$, we have, as $x \to \infty$,

(3.1)
$$\sum_{n \le x} |f_i^*(n)| = O\left(x^{1-\beta} \exp L(x)\right)$$

and

(3.2)
$$\sum_{n>x} |f_t^*(n)| n^{-1} = O(x^{-\beta} \exp L(x))$$

uniformly for $t \in [-1/\nu, 0]$ where L(x) is given by (2.4).

Proof. We recall the well-known inequalities

(3.3)
$$a^x - 1 \le xa^{x-1}(a-1)$$
 if $x \le 0, a > 0$

and

(3.4)
$$a^x - 1 \ge xa^{x-1}(a-1)$$
 if $0 \le x \le 1, a > 0$

From the definition of f_t^* we have, for prime p and positive integral m, that

$$\begin{split} f_t^*(p^m) &= (f(p^m)p^{-ms})^t - 1 \leqslant (1 - p^{-\beta})^{vt} - 1 \\ &\leq -vtp^{-\beta}(1 - p^{-\beta})^{vt-1} \leqslant (1 - 2^{-\beta})^{-2}p^{-\beta} = c_s p^{-\beta} \end{split}$$

by (1.1) and (3.3). On the other hand

$$f_{t}^{*}(p^{m}) = (f(p^{m})p^{-n\alpha})^{t} - 1 \ge (1 - p^{-\beta})^{-\nu t} - 1$$

$$\ge \nu t p^{-\beta} (1 - p^{-\beta})^{-\nu t - 1} \ge - (1 - 2^{-\beta})^{-2} p^{-\beta} = -c_{\beta} p^{-\beta}$$

by (1.1) and (3.4). Now the multiplicativity of f_{ℓ}^* yields

$$(3.5) |f_i^*(n)| \leq c^{\omega(n)} (\gamma(n))^{-\beta}$$

so that we have, by Lemma 5, as $x \to \infty$,

$$\sum_{n \leq x} |f_t^*(n)| \leq \sum_{n \leq x} c^{\omega(n)} (\gamma(n))^{-\beta} \leq x^{1-\beta} \sum_{n \leq x} c^{\omega(n)} (\gamma(n))^{-1} = O(x^{1-\beta} \exp L(x)).$$

Now (3.2) follows from (3.1) by partial summation on noting the fact that $x^{-\beta/2} \exp L(x)$ decreases for large x.

LEMMA 7. For $f \in \mathcal{F}$ and $S \in \mathcal{S}$ we have, as $x \to \infty$

$$\sum_{n \leqslant x} \chi_S(n) \left(f(n) \right)^t = F(t) x^{1+at} + O\left(x^{1+at-\beta} \exp\left(\sqrt{b} L(x) \right) \right)$$

uniformly for $t \in [-1/v, 0]$ where F(t) is given by (2.3). Proof. By (2.1), (3.2) and (3.5) we have, as $x \to \infty$,

$$\begin{split} & \Sigma_{x} = \sum_{n < x} \chi_{S}(n) \left(f(n) \, n^{-a} \right)^{t} = \sum_{n < x} \chi_{S}(n) \sum_{\substack{r < -n \\ (r,s) = 1}} f_{t}^{*}(r) \\ & = \sum_{r < x} \chi_{S}(r) f_{t}^{*}(r) \left\{ \sum_{\substack{s < x/r \\ (s,r) = 1}} \chi_{S}(s) \right\} = \sum_{r < x} \chi_{S}(r) f_{t}^{*}(r) \left\{ \frac{x}{r} \, p\left(r\right) + O\left(b^{\omega(r)} \left(\frac{x}{r}\right)^{\delta}\right) \right\} \\ & = x \sum_{r = 1}^{\infty} \chi_{S}(r) f_{t}^{*}(r) p\left(r\right) r^{-1} + O\left(x \sum_{r > x} |f_{t}^{*}(r)| r^{-1}\right) + O\left(x^{\delta} \sum_{r < x} |f_{t}^{*}(r)| b^{\omega(r)} r^{-\delta}\right) \\ & = (1 + \alpha t) x F(t) + O\left(x^{1-\beta} \exp L(x)\right) + O\left(x^{\delta} \sum_{r < x} |be|^{\omega(r)} (\gamma(r))^{-\beta} r^{-\delta}\right) \end{split}$$

on noting that $0 \le p(n) \le 1$ for all positive integer n. The second O-term above is $O\left(x^{\delta} \sum_{r \le x} (bc)^{\omega(r)} (\gamma(r))^{-\beta-\delta}\right)$ or $O\left(\sum_{r \le x} (bc)^{\omega(r)} (\gamma(r))^{-\beta}\right)$ according as $\delta > 0$ or not. In either case this reduces to $O\left(x^{1-\beta} \sum_{r \le x} (bc)^{\omega(r)} (\gamma(r))^{-1}\right)$ and hence to $O\left(x^{1-\beta} \exp\left(\sqrt{b}L(x)\right)\right)$. Thus as $x \to \infty$,

$$\Sigma_x = (1 + at) x F(t) + O(x^{1-\beta} \exp(\sqrt{b}L(x)))$$

uniformly for $t \in [-1/\nu, 0]$. Now by partial summation,

$$\begin{split} \sum_{n \leq x} \chi_S(n) \big(f(n) \big)^t &= x^{at} \Sigma_x - \alpha t \int_1^x \Sigma_u u^{at-1} du \\ &= (1+\alpha t) x^{1+\alpha t} F(t) + O \left(x^{1+\alpha t-\beta} \exp \left(\sqrt{b} L(x) \right) \right) - \\ &- \alpha t (1+\alpha t) F(t) \int_1^x u^{at} du + O \left(\exp \left(\sqrt{b} L(x) \right) \right) \int_3^x u^{at-\beta} du \right) \\ &= x^{1+\alpha t} F(t) + O \left(x^{1+\alpha t-\beta} \exp \left(\sqrt{b} L(x) \right) \right) \end{split}$$

uniformly for $t \in [-1/\nu, 0]$ since $1 + at - \beta \ge 1 - a/\nu - \beta > 0$.

Proof of the theorem. With N as in (ii) of Lemma 1, we have

$$\int_{-1/\nu}^{0} \left(\sum_{\substack{n \leq x \\ n \in D_f}} \chi_S(n) \left(f(n) \right)^t \right) dt = \sum_{\substack{n \leq x \\ n \in D_f}} \chi_S(n) \int_{-1/\nu}^{0} \left(f(n) \right)^t dt = \sum_{\substack{n \leq x \\ n \in D_f}} \chi_S(n) \left(\log f(n) \right)^{-1} - \Sigma$$

where

$$\begin{split} & \mathcal{L} = \left(\sum_{\substack{n < N \\ n \in D_f}} + \sum_{\substack{N \leqslant n \leqslant x \\ n \in D_f}} \right) \chi_S(n) (f(n))^{-1/\nu} (\log f(n))^{-1} \\ & = O\left(1 + \sum_{\substack{N \leqslant n \leqslant x \\ N \leqslant n \leqslant x}} \chi_S(n) (f(n))^{-1/\nu} (\log f(n))^{-1} \right) = O\left(x^{1-a/\nu} (\log x)^{-1} \right) \end{split}$$

as $x \to \infty$ in virtue of Lemma 7. Now by (iii) of Lemma 1 and Lemma 7 we have, as $x \to \infty$,

$$\sum_{n < x, n \in D_f \cap S} (\log f(n))^{-1}$$

$$= \int_{-1/r}^{0} \left(\sum_{n < x, n \in D_f} \chi_S(n) (f(n))^t \right) dt + O\left(x^{1-a/r} (\log x)^{-1}\right)$$

$$= \int_{-1/r}^{0} \left\{ F(t) x^{1+at} + O\left(x^{1+at-\beta} \exp\left(\sqrt{b} L(x)\right)\right) \right\} dt + O(1) + O\left(x^{1-a/r} (\log x)^{-1}\right)$$

$$= x \int_{-1/r}^{0} F(t) x^{at} dt + O\left(\frac{x^{1-\beta}}{\log x} \exp\left(\sqrt{b} L(x)\right)\right) + O\left(x^{1-a/r} (\log x)^{-1}\right),$$

thus completing the proof of the theorem.

4. Sums over certain semigroups. In this section we specialise our theorem to the case where S is a suitable semigroup of positive integers. At the outset we introduce a Möbius-type function relative to a set of primes P by writing

$$\mu_P(n) = egin{cases} 0 & ext{if either n is not square free or n has a prime divisor} & ext{outside P}; \ (-1)^{\omega(n)} & ext{otherwise.} \end{cases}$$

By using Dirichlet series or otherwise one verifies that

where s_P is the characteristic function of the multiplicative semigroup S(P) generated by P.

Let C be a set of primes for which there exists a $\delta < 1$ such that $\sum_{p \in C} p^{-\delta} < \infty$. For each positive integer n we write $C_n := \{p \mid p \in C \text{ or } p \text{ is a prime divisor of } n\}$. We shall apply our theorem to the semigroup S(C') where C' is the set of all primes outside C by first proving

LEMMA 8. $S(C') \in \mathcal{S}$. More precisely, as $x \to \infty$

$$\sum_{\substack{m \in x \\ (m,n)=1}} \chi_{S(C')}(m) = x \prod_{p \in C_n} \left(1 - \frac{1}{p}\right) + O\left(2^{\omega(n)}x^{\delta}\right)$$

uniformly for all positive integers n.

Proof. That S(C') is multiplicative is clear. Observing that $\prod_{p \in C_n} (1+p^{-\delta})$ converges, we obtain, by Theorem 41 of [7], that $\sum_{m=1}^{\infty} |\mu_{C_n}(m)| m^{-\delta}$ converges so that we have as $x \to \infty$,

$$\begin{split} \sum_{m \leqslant x} |\mu_{G_n}(m)| m^{-\delta} \leqslant \sum_{m=1}^{\infty} |\mu_{C_n}(m)| m^{-\delta} &= \prod_{p \in C_n} (1+p^{-\delta}) \\ &= O\left(\prod_{p \mid n} (1+p^{-\delta})\right) = O(2^{\omega(n)}) \end{split}$$

uniformly for all positive integral n. Now by partial summation,

(4.2)
$$\sum_{m \le x} |\mu_{C_n}(m)| = O(2^{w(n)} x^{\delta})^{-1}$$

and

(4.3)
$$\sum_{m>\infty} |\mu_{C_n}(m)| m^{-1} = O(2^{w(n)} x^{-1+\delta})$$

uniformly in n. Hence by (4.1), (4.2) and (4.3),

$$\begin{split} \sum_{\substack{m \leqslant x \\ m,n) = 1}} \chi_{S(C')}(m) &= \sum_{m \leqslant x} \chi_{S(C'_n)}(m) = \sum_{d \leqslant x} \mu_{C_n}(d) = \sum_{d \leqslant x} \mu_{C_n}(d) \left[\frac{x}{d} \right] \\ &= x \sum_{d = 1}^{\infty} \mu_{C_n}(d) d^{-1} + O\left(x \sum_{d > x} |\mu_{C_n}(d)| d^{-1}\right) + O\left(\sum_{d \leqslant x} |\mu_{C_n}(d)|\right) \\ &= x \prod_{p \in C_n} \left(1 - \frac{1}{p}\right) + O\left(2^{\omega(n)} x^{\delta}\right). \end{split}$$

This completes the proof of Lemma 8. Now we can prove

COROLLARY 1. With S = S(O') as above, we have, for $f \in \mathcal{F}$, as $x \to \infty$,

$$\sum_{n \leq x, n \in D_f \cap S} \left(\log f(n) \right)^{-1} = \alpha \int_{-1/\nu}^0 F_S(t) x^{at} dt + O\left\{ \frac{x}{\log x} \left(x^{-\beta} \exp\left(\sqrt{2}L(x) \right) + x^{-\nu/\nu} \right) \right\}$$

where

$$F_S(t) = (1+\alpha t)^{-1} \prod_{p \in U} (1-p^{-1}) \prod_{p \in U'} \left\{ (1-p^{-1}) \sum_{l=0}^{\infty} (f(p^l))^l p^{-l(1+\alpha l)} \right\}$$

and L(x) is given by (2.4).

Proof. By (2.3) and Lemma 8 we have, with S = S(C'),

$$\begin{split} (1+at)F_S(t) &= \sum_{n=1}^\infty \chi_{S(C')}(n)f_t^*(n)n^{-1} \prod_{p \in C'} (1-p^{-1}) \prod_{p \mid n} (1-p^{-1}) \\ &= \prod_{p \in C'} (1-p^{-1}) \prod_{p \in C'} \left\{ 1 + (1-p^{-1}) \sum_{l=1}^\infty \frac{(f(p^l)p^{-al})^l - 1}{p^l} \right\} \\ &= \prod_{p \in C'} (1-p^{-1}) \prod_{p \in C'} \left\{ (1-p^{-1}) \sum_{l=0}^\infty (f(p^l))^l p^{-l(1+al)} \right\}. \end{split}$$

This, together with Lemma 8 and our theorem, yields Corollary 1.

Fixing a positive integer k and taking C to be the set of all prime divisors of k in Corollary 1, we obtain

COROLLARY 2. For positive integer k and $f \in \mathcal{F}$, we have as $x \to \infty$,

$$\sum_{\substack{n \leq x, n \in D_f \\ (n,k)=1}} (\log f(n))^{-1} = x \int_{-1/r}^{0} F(t;k) \omega^{at} dt + O\left\{ \frac{x}{\log x} \left(x^{-\beta} \exp\left(\sqrt{2} L(x) \right) + x^{-a/r} \right) \right\}$$

where

$$F(t;k) = (1+at)^{-1}\varphi(k)k^{-1}\prod_{p \neq k} \left\{ (1-p^{-1})\sum_{l=0}^{\infty} (f(p^l))^l p^{-l(1+al)} \right\}$$

and β is subject to the only restriction $\beta < 1 - \alpha/\nu$ (φ being the Euler totient function).

Corollary 3 (Corollary 2, k = 1). For $f \in \mathcal{F}$, we have as $x \to \infty$,

$$(4.4) \qquad \sum_{n \leqslant x, n \in D_f} (\log f(n))^{-1}$$

$$= x \int_{-1/r}^{0} F(t) x^{at} dt + O\left\{ \frac{x}{\log x} \left(x^{-\beta} \exp\left(\sqrt{2}L(x)\right) + x^{-\alpha/r} \right) \right\}$$

with

$$F(t) = F(t; 1) = (1 + at)^{-1} \prod_{p} \left\{ (1 - p^{-1}) \sum_{l=0}^{\infty} \left(f(p^{l}) \right)^{l} p^{-l(1+at)} \right\}.$$

Remark 2. While comparing (4.4) above with (1.4) of [1], it should be noted that the β above is subject to the restriction $\beta < 1 - \alpha/\nu$. However one easily verifies that

- (a) in case $f \in \mathscr{F}$ but (1.1) fails for $\beta \ge \min\{\alpha/\nu, 1-\alpha/\nu\}$, (4.4) above yields an improvement over (1.4) of [1] and
 - (b) otherwise (4.4) above is equivalent to (1.4) of [1].

To illustrate the case (a) above we may take $f(n) = n^{\alpha+\beta\nu} (J_{\beta}(n))^{-\nu}$ with $\alpha \ge 1$, $\nu = 2\alpha$ and $\beta < 1/2$ where J_{β} is the Jordan totient function

of order s defined by $J_s(n) = n^s \prod_{p|n} (1-p^{-s})$. In this case the O-terms in (4.4) above and (1.4) of [1] turn out respectively to be $O(x^{1-\beta} \exp L(x))$ and $O(x^{1-\beta+\epsilon})$ with arbitrary positive ϵ .

Applying Corollary 3 to the function σ_a we obtain COROLLARY 4. If a > 0 then as $x \to \infty$.

$$\sum_{2\leq m\leq 2} (\log \sigma_a(n))^{-1} = x \int_{-1/r}^{0} F(t) x^{at} dt + \Delta_a(x)$$

where

$$F(t) = \prod_{p} \left\{ (1-p^{-1}) \sum_{m=0}^{\infty} p^{-m} (1+p^{-\alpha} + \ldots + p^{-\alpha m})^{t} \right\}$$

and

(a) v = 2a and $\Delta_a(x) = O(x^{1/2+\epsilon})$ for each $\epsilon > 0$ if $a \ge 1/2$ and

(b) v = 1 and $\Delta_{\alpha}(x) = O(x^{1-\alpha}(\log x)^{-1})$ if $\alpha < 1/2$.

In particular for each positive integer r, we have, as $x \to \infty$,

$$(4.5) \qquad \sum_{2 \leqslant n \leqslant x} \left(\log \sigma_a(n)\right)^{-1} = x \sum_{m=1}^r \frac{(-1)^{m-1} F^{(m-1)}(0)}{(\alpha \log x)^m} + O_r\left(\frac{x}{(\log x)^{r+1}}\right).$$

Remark 3. The special case a=1 of (4.5) was obtained by de Koninck and Galambos ([6], Theorem on p. 161). In the course of their proof (line 5 from below, p. 162) it was made out that $\sum_{n\leq d}(\prod_{p\mid n}p^{-1})<\sum_{n\leq d}n^{-1}$ which is not true. However, observing that $\sum_{n\leq d}(\prod_{p\mid n}p^{-1})=O_s(d^s)$ for each $\varepsilon>0$ (which incidentally follows also from Lemma 3 above) and making consequent modifications in their proof, one can arrive at their final result.

5. Some more illustrations. Let M be a set of integers with min $M=r\geq 2$. Following Rieger ([11]) we say that an integer is M-void if it is positive and in its canonical factorisation $\prod_p p^{l_p}$, no l_p belongs to M. Denoting the set of all M-void integers by Q_M and its characteristic function by q_M we now apply our theorem to the case $S=Q_M$. Clearly S is a multiplicative set and it follows, in virtue of Satz 1 of [11], that (2.1) holds for this set with b=2, $\delta=1/r$ and

$$p(n) = \theta_M \prod_{p|n} \left(\frac{p-1}{p(1-(p-1)\sum_{p=m-1}p^{-m-1})} \right)$$

where

$$\theta_{M} = \prod_{p} \left(1 - (p-1) \sum_{m \in M} p^{-m-1}\right).$$

Further with this p(n) we have

$$\begin{split} F(t) &= F_{Q_{\underline{M}}}(t) = (1+at)^{-1} \sum_{n=1}^{\infty} q_{\underline{M}}(n) f_{t}^{*}(n) p(n) n^{-1} \\ &= \frac{\theta_{\underline{M}}}{1+at} \prod_{p} \left\{ 1 + \sum_{\substack{m=1\\m \notin \underline{M}}}^{\infty} \frac{(f(p^{m}) p^{-ma})^{t} - 1}{p^{m}} \frac{p-1}{p(1-(p-1) \sum_{m \in \underline{M}} p^{-m-1})} \right\} \\ &= \frac{1}{1+at} \prod_{p} \left\{ \left(1 - \frac{1}{p} \right) \sum_{\substack{m=1\\m \in \underline{M}}}^{\infty} (f(p^{m}))^{t} p^{-m(1+at)} \right\} \end{split}$$

by a straightforward calculation. Thus we obtain

COROLLARY 5. Let M be a set of integers with min $M = r \ge 2$. For each $f \in \mathcal{F}$, we have, as $x \to \infty$,

$$\sum_{n \leqslant x, n \in D_f \cap Q_M} (\log f(n))^{-1}$$

$$= x \int_{-1/r}^{0} F_{Q_M}(t) x^{at} dt + O\left\{ \frac{x}{\log x} \left(x^{-\beta} \exp\left(\sqrt{2} L(x)\right) + x^{-a/r} \right) \right\}$$

where $v > \alpha, \beta \leq 1 - 1/r$ and $\beta < 1 - \alpha/v$.

Remark 4. Corollary 5 affords us with a rich class of illustrations of our theorem. To this end, let t, k, r be integers such that $t \ge 1$ and $k > r \ge 2$. We write

$$M_1 = M_1(r) = \{n \mid n \text{ is integral, } n \geqslant r\},$$

$$M_2 = M_2(k, r) = \{n \mid n \text{ is congruent to one of } r, r+1, \dots, k-1 \pmod{k}\},$$

$$M_3 = M_3(t, r) = \{jr | j = 1, 2, ..., t\},$$

$$M_A = M_A(r) = \{ir | i = 1, 2, ...\}$$
 and

$$M_5 = M_5(r) = \{r\}.$$

The elements of the sets Q_{M_1} through Q_{M_5} (usually denoted respectively by Q_r , $Q_{k,r}$, $Q_{t,r}^*$, Q_r^* and $Q_r^{s^*}$) are known as r-free integers, (k, r)-integers ([12], [3]), unitarily (t, r)-integers, unitarily r-free integers ([2], [4]) and semi r-free integers ([13]) respectively. Specializing Corollary 5 to these sets of integers one can obtain a number of illustrations of our theorem.

Reference

- [1] E. Brinitzer, Eine asymptotische Formel für Summen über die resiproken Werte additiver Funktionen, Acta Arith. 32 (1977), pp. 387-391.
- [2] E. Cohen, Some sets of integers related to the k-free integers, Acta Sci. Math. (Szeged) 22 (1961), pp. 223-233.

- [3] E. Cohen, Arithmetical Notes XIII, A Sequel to Note IV, Elem. Math. 18 (1963), pp. 8-11.
- [4] Remark on a set of integers, Acta Sci. Math. (Szeged) 25 (1964), pp. 179-180.
- [5] N. G. de Bruijn, On the number of integers \(\pi \) whose prime factors divide n, Ill. Journ. Math. 6 (1962), pp. 137-141.
- [6] J. M. de Koninck and J. Galambos, Sums of reciprocals of additive functions, Acta Arith. 25 (1974), pp. 159-164.
- [7] T. Estermann, Introduction to modern prime number theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 41, Cambridge University Press, 1952.
- [8] G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc. (2), 16 (1917), pp. 112-132.
- [9] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford University Press, 1960.
- [10] E. E. Kohlbecker, Weak asymptotic properties of partitions, Trans. Amer. Math. Soc. 88 (1958), pp. 346-365.
- [11] G. J. Rieger, Einige Verteilungsfragen mit K-leeren Zahlen, r-Zahlen und Primzahlen, Journ. Reine Angew. Math. 262/263 (1973), pp. 189-193.
- [12] M. V. Subbarao and V. C. Harris, A new generalisation of Ramanujan's sum, Journ. London Math. Soc. 41 (1966), pp. 595-604.
- [13] D. Suryanarayana, Semi k-free integers, Elem. Math. 26 (1971), pp. 39-40.

DEPARTMENT OF MATHEMATICS ANDHRA UNIVERSITY Waltair, India

Received on 9.1.1979

(1125)