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On the mean values and distributions
of arithmetic functions
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1. Introduction. Let {d(n)} be & sequence of integers, for which
there exist ' > 0 and 0 < o < 1, such that n* < Tb(n) < T for all integers
n > 2. A set of positive integers F is said to have b-density (B) it P,(E, b)
- §(H) a8 n — oo, where

1
P, (H,b) = ) card{m e B: n < m < n+b(n)}.

The e-density defined in [5] is a special case of b-density, with d{n) = [#°].
Here [#] denotes the largest integer not exceeding . As in [6] it can be
ghown that a set F has a natural density, whenever it has a b-density and
in such a cage the two densities ave the same. Unlike b-density the natural
density is not capable of detecting large gaps; see the examples given
in [B].

A complex-valued arithmetic function g is said to have a b-mean
value if

1

TP

nam - by

tends to o limil a8 » — oo, If |g(m)| < 1 for all m > 1 and if g hag a b-mean
value, then it is clear, ag shown in [B], that ¢ has a mean-value in the
usual sense.

A, complex-valned arithmetic function ¢ iy called muliiplicative if
g(1) = 1 and g{mn) = g(m)g(n), whenever m and w are prime to each
other. Lot « denote the clags of all mumltiplicative functions ¢ satistying
g (m)] € L for all integers m = 1.

A complex-valued arithmetie function f is called additive it f(mn)
== f(m)--f{n), whenever m and » are prime to each other.

In thiy paper wo obtain conditions for the existence of b-mean values
for functions in 4. We then use these results to get some conditions for



64 G. Jogesh Babu

the existence of the distributions of additive funcmons in the sense of
b-denrity.

In the last section we generalize the Erdds—Kac theorem 1o the
b-density case. Wo also congider weak eonvergence of additive functions
to infinitely divisible distributions as in [2]. As a special case we obtain
the following result. Liet cu(m) denote the number of prime factors of m.
¥or any z > 0 and: f > 0w have exu,pt posmb]y for o(n®) integery
e (n, w4l that . o

()~ loglogm| < (loglogm)+*.

Weo mainly use elementary nuniber theoretic arguments, Probabilistio
arguments are used liberally in the last two sections.

Throughont this paper p and ¢ stand for prime numbers, d, &, r, s, n, m
for positive integers and § for a non-negative integer ; djm means d divides m
and dfm means d does not divide m; p/lm means p’im and p*'4m. Finally,

1———1-9- it plm,

1
—— otherwise .
Ve
‘2. bemean vahies of mwultiplicative fometions. The main object of
thiig section: is to prove Theorem 1 stated below. For this purpose, defme
for d.( mulhplmatwe functlon g,

Cgmy = [T e,

pHm,p<k

Buppose 4 .4 and 2% (L—u(p)) converges. Then the infinite product

]g (1 - —5) (1 + 5 u(p)) p~

converges. We denote this produet bv E(u) If we.#, then obviously
y, € A and £(w,) is well (]O,Ellmd Let ./!b (hmo’m tho cl"l.qﬁ of w in .A? sa.tls—
fying, for each >4,
1L - eard {p? s L —u(p?)| > &} = 0(b(n)
as f -» oo, o o A ‘

TEEOREM L. Supposs u & .4, and 2;‘(1“-«.[%0@&(;0)) < oo, Then

1 1

@ N ) = st
- . : b(n) n<maEn+bin) i R ’

ag. n—» 00, . N
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Before proving Theorem 1, we consider the following corollary and
the remarks.

JOROLLARY 1. Suppose u & A, and Z 1-»@.5(10)) converges. Then

o has b-mean velwe £(u).

Prool of Corollary 1, H’Z —u(p)) converges, then &£(u,)

E(w) an 4 -> oo, o the result follows from Theorem 1.

Remark 1. Without some additional agsmption like condition (1),
the resald iy F,mlw An exsaple of a sequence {g,} of primes is congtructed

in {87 saeh thot 2] ' <2 oo and the set B of integers, which are not divisible

by any of the punwﬂ 4y, does not huve o density. In other words the set B
does not have o b- dt,nmtv, i B(n) == [m*]. Let « be the multiplieative
functmn defined hy w(gl) == 0 for all » and 421 and for other primes

%) = 1 for all j. Ulearly u e . But :

- 9 -
e }.4 - w{m) =" card {m e H: n<<m < n+n}
nCiE R nlt

does not tend to o limit,

Remark 2. From the vesults of [8], it follows that hm—-l 2 g m}l

ﬂ-i-OD msn

exigts for all g e 4. But the v e .4 oomtruomd in Remark 1 shows that
this is not the case with b-mean values. ‘

To prove Theorem 1, we require the following lemmas.
TrvwA 1. Let b<s and {a,} be a sequence of real numbers. Then

p 1! “I.’ ) _1’1
(3) DY s < asin 3 =,

where 3 denoles the sum over all integers m e (7' r-ks] and 3" denotes the
sum mzw all primes p < k.

rroot. The left-hand side of (3) i nob wore than
‘ 1 1
(4) PARNE AR |aya, 37 8, (m) 3, (m)|.
Bty

Wo estimatio 37 &, (m) and | 38, (m) 8 (m)j separabely. First note that for
any positive rntunm d, tho numbm of integers m e (r, 5] that are
dwm]blu by d i [(r- 8)/d]-[r/d]. This number lies between ¢ /d—1 and
8/d--1. Bo, for 2« p < &, we have

o e dff ) eglel

5 — Acty Arlibmotion X1
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Also if 2 <<p,g<k and p = ¢, then
1 1

) [ > 8,(m) 8,(m) \g(}% +1) (1 — 5) (1_ _é.) ~

_1(-“}_,) (_ _E _2) _E (lu.%,) (i 5 _mg),F
q pi\P M v g/\e Pq

+—-«(s~i-~ toa 3)
Y

By Oauchy-Schwarz inequality

SR BIDER ) S s

The lemma now follows from (4), (B), (6) and (7).
For any complex-valued arithmetic function g and real numbers
@<y, let

Mg, y) = 2, gtm)

BLMRY

¥—

Lemma 2. Lot §~r — co such that (logs)*/(s~) >0 for some n
and lot w, b e A such thet w(p’) =1 for p=mn, h(p!) = L for p<n and
h{p?) = (h(p)) for oll j = 1. Suppose kb = k(r, s) - oo such that

(83 M (b, vy 8)— E(By) = o{1).
Then
M (v, 7, 8} = &(u) () Fo(l),
where v 15 the multiplicative function defined by v{m) = w(m)h(m
mz 1.
Prooif. If g is the wultiplicative funetion defined by

) Jor all

9(P%) = v (07) — Iy () 0 (07

for j>1, then g(p?) =0 for p=m, 21, lg(m)
g(p) == w(p)—1 for all primes. Further, we have

tﬁ <H(1+2|9 ()ip™ )-1](1 fo i [ ()| -+ O{p 3))

<R N

200w for 01l me and

Hence

S0 [T St - 0

dr=l < o |
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From the definition of g, we have

v (m) = 3 g(d)hy(m/d),
dlin
go that for any j= 1

(9 HM(v, 1) 8)

Z (3_,, 2 hk(fmf)) *Z%y(d)M(hk,r/d,s/d)

g r<mdaa dea
d
,CZ-J (@M (irk,r/d,s/d)-l-a(z o )|)+0(3i,.2‘9(d”)-
P dog dw=a

Sinee g(p’) = 0 for p =9, j =1, we have

(10) 3 ig(d)] < 2card{d < s: i p>n then ptd} < ((2log2s)/(log2)]".
a8

Further, by (8) we have

(11) M Ty 1]y 8]0) — E(Ry) = 0(1)

1 .
uniformly for all 1 < 4 < §. Since 2-& lg(d)| —~ 0 a8 j — oo, the lemmsa

d>j
tollows from (9), (10), (11) and from the hypothesis that (logs)" /(s —r) — 0.

LeuMa 3. Suppose u € H 8 such that u(p’)=1 for p=n, j = 0. Then
we have M (u, v, 8) —> E(u), whenever 8 —r —> oo such that (logs)® /(8 —¥) — 0.

Proof. The lemma follows from Lemma 2 on taking k(m) =1 for
all m

‘ ~'1
Levwma 4. Let {a,} be a sequence of real numbers such that 2 7 ay, < oo,

i P
Let b be the multiplicative function defined by h(p’) = P Suppose s —»

> oo such that (logs)" /(s —r) — oo for all integers n = 2. Then

M(hk: T, 8) = E(hk) ‘1'0(1):

where &t — oo suoh that k<< 8—7p.

Proof, Lot B, = 2%“’? and D, == 2——% Since le "l == 1,

paEn :P'<ﬂ
we have for any n <k,
(12) | M(y, 7, 8) — E0)] = [ My, v, 8)6 " Elhe) .
o I (T, 7, 8) = ()] +1E)e ™ — () e .

. Z (P (m)

..]_ R
FaMES

=B !

— i, - 118,
gk R {mye ")

§—7
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1
Since > —af < oo,
7 P -.
_Im 1 .- 1 -1 _',1,‘
(13) E(hn)e Fn ""]Y (1 - }E*) (1 — —p—' 61%,) [ 1.‘1‘1“.])
»

and .

: oo L, .
(14) ; Pl e 0

g

a8 w —> 0o, Furthm' sinee k<< 8 —y, the number &,, of integers m & (¥, ¢]
which are divisible by p* for some p e [n, &), does not exeoed

S s 1-pth < ) ((s—npt ).

nsn<k i Comsmph
Thug
4
(15) Ny 2(s—r) dp? <—(s—1).
e Y

Henee by (13), (14) and (15), for any > 0 there exists an integer n(s)
sneh that, whenever &> n 2 n(s) .

(16) ‘ LNy < (s—e, Dy—D,< g
and SRR
(17) |E(h) e — E(R) 67T < 6

I p*fm fm any peln, k), then

|h1¢('m’ i

apdz,(m)) mllgl 2 a8, (m) l
<k nep-<k
By (18), Lemma 1 and by the Chebyshev’s ineqnality, it follows that the
number N, of integers m e (r, 8] for which | 3 a,8,(m)| > ¢ is not more

nee L
than

-mh,,( Y~ } oxp |4 (
AP

(18) & 3| 3 4, omf < 10(s ) e Dy~ D,) < 10s(s ).

rames nap<h
Bince |h(m)| =1, we have by (12), (18), (L7) and (18), that
(19) iM(hm vy 8) = £l < My 7, 8) —E(Ry) |+ 284 (2N -+ W) (g — 1)
S| M By, 7, 8) — E(By)| 145,

whenever 8§ —~r> k% and % > n 2 #(e). The result now follows from (19)
and Lemma 3. :
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LuuMA B. Let u e 4 such that Z' (1— Reu(p)) < oo, Lets—7 > o0

such that for oll integers n = (logs)"'/(s —r) =0 and let k —> oo such that
B<s—r. Then .

ﬂ[(%fn *y8)— ‘S(u;a) = 0(1).
Proof. Liet b be the mulbiplieative function defined by
h(p) = (},-—-(Inm(p})“)m i T (p)

and A{p?) e () ) (Jlua]lv he# and [him)| = 1. So there exists @yl << m

&
such that h{p) == . Sinee Beu{p) < Reh(p)and ik(p) —u(p)| <Reh(p)--—
—RBeu(p) <L 1 - lwu('p), we have ‘

(20) E—;'-u —Reh(p)) < o
n

ané ‘

(21) Z IR () —u(p)] < co.
= p

Let for any multiplicative funetion g,

gulm) =[] gleh.

pim,n<p<k
We huvo clearly, . o
(22) 1M (g 7, 8) — E(u) < | B (g — U Joml 7, 8)] -
1M s ¥ 8) = & (1) & ()| 16 (080) (B — (1)1
We now eetimate the terims on the right-liarid side of (22) separately.
Sineo w, ¢ A, _
(23} (g, () =ty (W} P ()] <2 by (1) — P ()]
for all m 21, So ‘
) =Tl Py ) < s ) () —h(o)

Reta P10 plm

a1
< r2—n S s~
nq:p<i§
where N. L is defined in the proof of Lemma 4. By (15), (21), (23) and (24),
for any &> 0 there exists o n(e) such that for all k> n > 2 (e),

(25) Mty — U Pzl s 74 8) < £



70 G Jogesh Babu

Since |&{u,) <1 for all », we have

16 (2a) E(Rrnp) — & ()| < 16 () — £(thnr)

|
b - w(p)—1
<| [] (1+ ML o )) - [] (1+ =

+0w*ﬂ
np<k nep<i
v ~2 -
gm‘};ﬁm(p) u(p);+0(w2ﬂp )

Thus in view of (21) we have, for any & > O there exists an integer o, 5=
such that for all k> » 2 a,,

(28) & (o) & (Pruge)

Hence, for & > n = n, and § —v > k%, we have by (22), (25) and (26)
that

(27)

— &{up)| < e

EM(”%J ry 3) - '5(%#)1 < 2s "}'uv‘[(uﬂ.huk! *y ‘9) — 'E(u’n) ‘f(hﬂ,k” .

Finally, as 1 —Reh(p} = 1 —cosa, = 2(sina,)* = fa; for some eon-
stant & > 0, we have from (20) that ;%—af, < oo, Bo by Lemmu 4,
we have for each » <k, that

M b,y vy 8) = E(h,) +o0(1).
Coosequently, by Lemma 2, we have for each n < k, that

(28) Mgy 7y 8) = E(,) E () -0 (1)

The lemma now follows from (27) and (28).

Leyvya 6. Lot w e be sueh thet 2“' 1 —Reu(p Then

)< oo.
for any A>1, &(u,)— £t a) >0 as n — co.
Proof. Wo have by using Cauchy-Schwarz inequality, that

e ) -twai<! ] bwﬁbi um))wﬂ
n‘-‘..'m:ﬂ waJ,
£ E — |1 —w{p)| - 0(21} )
n<p<nﬁ‘ foe=2)
1 1/2 y 1 e
< N i ﬂ)( N ) - O(n
(nripégn" P i (p)l nfp&.:u;' P )

n(e),

icm
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Since there exigty o constant 4 (see [4]) such that

(30) jﬂi

L

= logloga -+ A+ o(l),

a8 ® — oo and sinee |1 —22<g2(L—Rez) for |2| <1, the result follows

from (29).
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let ¢ be as in the definition of {d(n)}. Pub
I e k{m) = [#*"]. We have by Lommas b and 6 that

(31) M (s 1y Mot B ()} == & (1) -0 (1),
ag # - oo, To eomplete the proof, it is enongh to show thatb
M (| —g), my n+D(n)) -0

as m — oo. Lot for e > 0, H(n, &) denote the seb of m e{n, n+b(n)] for
which |u{m) —u,(m}| > &. Sinee

— thy, ()| < 2

Fc!épr:‘.ln.pjum

wae have that if m e H(n, &), then there exists a p e[k, 2r) such that
plm and L —u{p?)] > a/8 for some jz= 1, So

A H (n, &) < Z card{m e (n, n+b(n): plm},

whero 2"‘ denotos the sum over all pf < 2o for which [L—u(p J‘)l > saf8

and & < p << 2n. IXence .
(32) card H(n,e)< Y (b(n)p~ +1)<b(n) (3 1+ 3o+ 3,
p>kij=a

9pn for which [1—u({p)|>ex/8.

u () 1L~ u(p’),

where 3™ is the sum over p <
Now
ik L 64 vl L 180 01
e g 1—wp)f < 55 O, — (L—Rou (1),
2_‘, ﬁ\ zﬁ/_dplvlu \222}:13 10))
T6 follows now, by (1) and (32), that cardH(n, &) == o(b(%)). Bo for
any s 0,

[}

M {fs —ty ], 2y meA-B () < a+%urdﬂ(n g)<eto(l).

This completes the proof of the theorem.

3. Distributions of arithmetic functions, Let {f,} be a sequence of
real-valued arithmetic functions. 'J}he dlstnbutmn of f mwnder P,(-, b)
is given by @,, where Q,(0) = P,{(m: f,(m) <), b. It Q, converges
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weakly to F, where F iy a distribution funetion, we write f, L . That
is for every continuity point ¢ of F, P, ((m Folm} < ¢}, b) -> I(c) ag n — oo,
A real-valued arithmetic function f is said to have o b-distribution

. b s . . - .
if f, = F, for the sequence f, = f, where I ig some distribution function
on the rend line.

TreorEM 2. Let f be & roal-valued additive arithmeiic fundtion satis-
Jying, for each ¢>> 0,

(33) card {p? <z 1f(p?)] > &} = o(b(n)),
as %~ oc. Then f has & b-distribuiion if and only if |
v 1

(34} — CONDETYeR

% @) gos,

- 1 :
{35) — 2 {p) <
| 2 plm< e

and
(36) S1p < oo,

where 3’ denotes the sum over all primes p for which |f(p)l < 1 and 3"
denotes the sum over the remaining primes.

Before proving the theorem we make fow remarks.

Remark 3. T b(n) < n{logn)~?, then (38) implies (36). So in this
case condition (86) is redundant.

- Remark 4. By the Lévy’s continuity theorem (see Theorem 3.6.1

in [.9]), a sequence {f,} of real-valued arvithmetic functions > to a (ixtri-
bution if and only if, for each real number ?

feitf,gttm]) P, (d, b) = '}}}W 2: !
(’Yb) fe=ainmibin)

tends to a limit ¥(s), which iz continuwous at # == 0.

Proof of Theorem 2. For cach real number #, define the mulii-
plicative function ¢® by ¢¥(m) - ™, In view of Remark 4, it is
enough to show that there exists a function ¥ on the real Iine whioh. is
continuous at zero such that, for each #, ¥(t) is the b-mean vulue of ¢®.
Olearly ¢ e 4#,. Sineo for any real number o, 6% —1 —in| < @?, it follows

R i .
from (34), (36) and (36) that 2‘?(1 —g®(p)) converges. Ho the infinito
»

produet &(g¥) converges and by Corollary L, &(g®) is the b-mean value
of g®. Olearly £(¢®) i continmons at zero. Hence f bag & b-distribution.

As is mentioned in the introduction if f has o b-digtribution, then it
hag a distribution in the sense of matural dengity. But in this case, by
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Hrdés-Wintner theorem [8], (34), (38) and (36) hold. Thix. coinpletos
tho proof of Theorem 2.

Using Cranée-Wold deviee [1] and Theorem 2, we can easily deduce
the following theorem.

TaRorEM 3. Let fy, ..., 1, be veal-valued arithmetic functions satisfying

for cach &= 90,

a .
Ecam.l{;n’“ Sy (i (28] = &) = olbin).
i
If the series '

N ='!'~fj(p), by —-‘lff(ss?) and ‘}: L
o k ifj(?BTil FPIIES ¥
converge for § L, ..., 8, then there cxists a distribution funetion B on R°
such that of éach of 4ts continuity poimis
P’N-((m: ff('m’) < &3 Joely g S), b) —> -F(_cl: eey Bg)
ag - 00 :

Roewark B. Leb gbo a real-valued multiplicative funetion, If g {m} > 0
for all m, then g has a non-degenerate b-distxibution if and only if the
additive function f, dofined by f(m) = logg({m), has a non-degenerate
b-distribution.

The following two theorems can be proved using the techniques o:ﬁ 6],
[7] and the tools developed so far in this paper. We leave the details to
the reader. o

Mumormn 4. Let g be a real-valwed multiplicavive funclion satisfying

2 1p < o, card{p! < n: g{p’) < 0} = o(b{n))

a(po
and for each &> 0 _
(37) conrd {9’ << i lg(p?) > ¢ or lp(p))l <7} = ob(m)-
Suppose for some ¢ > 1, tho sories .
) ) Sogol, ) 5 loslaol)t and g

converge, where S denote the sum over all p such that ¢l lg(p)] < cc.md X
denotes the swm over the remaining primes. Then g has b-distribution.
TanornM . Let g be o real-valued multiplicative fwnati.omr suc:h thaot
S1jp = o0, 3 1lp < oo. Let u be the multiplicative function defined by
()0 :

n(py<t o “1 if g(pj)>0, o
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Suppose for each &> 0, (37) holds, for some ¢ > 1, the three series in (38)
converge and % has @ b-meon value (in which case it will hove zero mean
value, see [71). Then g has o symmeiric non-degonerats b-distribution.

We do not know under what conditions # defined above has a b-mean
value.

4. Convergence to infinitely divisible laws. The object of this scetion
is to prove some of the results of Sections b and 6 of [2] for b-density.
We shall first state o cenfral limit theorem, which follows easily from
a more general case to be proved Iater in this soction. For a roal-valued
additive function f, Iot

-1 1
= Z‘wm and B = Z —=f4(p)
pn Demn »

THnoREM 6. Let f be a real-valued additive arithmelic function. If
B, — oo and max|f(p)|/B, -0 as n - oo, then (f —A4,)/[B, L @, whore ¢

p=n
denotes the normal distribution with mean sero end variance 1.
As a consequence of this theorem we have that

o — loglogw, e
“(loglogny™®

If m e (n, n+5(n)], then

< loglogm —loglogn < loglog2n —loglogn - 0

as n.— oo. So for every real number @

(39) P,((m: w(m)—loglogm < a(loglogm)¥), b) - @ (w)

as n -» oo. If {a{m)} is any sequence of real nunthers sueh that a(m) — co
a8 m — oo, then from (39) we have

Pn((m: | (m) —loglogm| > a&(m)(loglogm)**), b) - ()

ag m —» oo, In partienlar for each e>> 0 and £ > 0, axmpb possibly Lor
o(nf) integers m & (w, n-+nf], we have

lo(m) —loglogm| < (loglogm)ats,

To congider the general case, we start with the class K, infrodueced
by Kubiliug [8], consisting of all real-valued additive functions for which
B, ~> oo and for which there exists a soquence #, ~ oo guch that

(logr,)(logn)~t =0

and B2 Z if?"(p)wo

tp<PEn

icm
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v

as » — oo, Ag done in [2], it will be convenient to omit the normalization
by B,; this can be done by considering a new clags. Let H, be the class
of arrays {f,} of additive functions for which

(40) S =m0
LR )

for some sequence {r,} satisfying (logr,)(logn)™! — 0, for which

sup Z fr (D)< oo, lim f,(m) =
n ey o

and satisiving for every ¢> 0,

wt {2 > &} = o{b(n)).
K feH, B, -+ co and for cach &> 0,

ne |f(@)] > eB,} = ofb(n)),

then {f/B,} belongs to H.
Let I, be the finite measure on the real line B defined, for each inter-
val M, by

(41) card {p’ <

card {p? <

1
K, (M) = —fa(p).
<T@

For uny finite measure K, define the infinitely divisible charactersitic
function

-+t
P {u) = ex‘p( f (6" —1 —juw) oK (dw))),

-y

the integrand ab @ = 0 is taken to bhe --42/2. If F, is the distribution
Tunetion ct‘)rroﬁpnndmg 10 e, Fy has mean zero varviance K (B). We write
K, - X to indieate K, (I) -+ I(I) for all finite intervals T, whose boundary

has K mousure zoro. Notice that it K, — K and K, (R) -~ K (R), then K,

converges weakly to K.
We are now ready to state an analogue of Theorem 5.1 of {2].

TeworeM 7. If {f,} e H,, then a necessary and sufficient condition
for fnw_A" P ie that F =Py and K, — K for some K, where
Ay = 21 ""‘"fn(P

m‘:n
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Proof. Let & =k, = [n™], where n*fb(n) < T for all n. Put

Fenlm) = 3 £,
vlmp>r
Since

|fkn(m)| 4 |fn(}’j”;
E<p<n,pllm

for any &> 0, |fy,(m} > ¢ implies that for gome p & (%, 2n], »'||m and
Ifa(#)] > agf10 for some j= 1. As {f,} e H,, by (30), (40) nnd. (41) we
have

b(“)l"n((ﬂ’“ [ () > &), b) < Z* (Bn)p~? +L) == o(b{n))

as # -~ oo, whero 3" denotes the sum over p/< 2n for which [f,(pf)
> ag/l0 and k< p < 20. Also observe that, by Qanchy-Schwarz inequality,

(30) and (40),
. Y l . 12 — 1 1/2
%( ‘2‘ E;fn(p)) ( 4‘\—1 ?p—) e 0(1)

R<pan k<pn

-1 1
'_"fn(ﬁ)
k%ﬂ I)

a8 n -~ oo, Bo 1t iy enough to show that
(42) fi—dh & F
ag % - co, where fy is the additive function defined by,

@) i PR,
L o
T (@) lO otherwise

and

!
47 = D hin)-
Pk

The proof of (42} is omitted, sinee it is gimilar to that of Theorem 5.1 of [21,
the only difference being that we wse Lemia 1 instead of Lemma 2.1
of [2]. o .

Similarly, all the results of Sections 5 and 6 of [2] ean bo extonded
to b-density case with class H' in [2] replaced by Hy.
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