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Case 2. If OC is a subset of nyh(K), there is a subcontinuum K, of K such
that nyh(Ky) = OC. Then L = {(x, »)} (x, »)is in Tx T and there is a point z of K,
such that x = my(z) and y = nyh(z)} is a subcontinuum of Tx T such that Py(L)
is a subset of OB and P,(L) = OC. Thus, L. contains a point of V. As before, this
involves a contradiction.
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Convexity on a topological space
by

H. Komiya (Tokyo)

Abstract. Although convexity is an attribute of subsets of linear spaces in general, we define
convexity on topological spaces without linear structures. paying attention to the concept of convex
hull, Then some theorems which have been obtained in linear topological spaces are given in these
spaces.

Takahashi [5] discussed a convexity on a metric space. In this paper, we discuss
a convexity on a topological space without linear space structure. We introduce
a convexity on a topological space and several concepts concerning the convexity,
and obtain some theorems which generalize the theorems proved by Browder [1],
Fan [2] and Sion [4]. All topological structures are implicitly assumed to satisfy
Hausdorfl" separation axiom.

The author tenders his very warm thanks to Professor W. Takahashi for his
advice in preparing this paper.

1. Definitions and some elementary properties. Let X be a topological space,
/(X)) the family of all subsets of X and & (X) the family of all finite subsets of X.
An H-operator on X is a mapping {-> from o (X) into o (X) satisfying the following
conditions:

(a) (@) = @, where @ is the empty set;

(b) {x}> = {x}, xe X;

(€) LAy =LA, Ae A(X);

(d) (A = U {(F): FcA, Fe F(X)}.

The image {(A) of A is said to be the convex hull of 4. A convex setin X is
a subset of X which is equal to its convex hull.

PROPOSITION 1. (i) An H-operator is monotone, i.e. if A< B, then {4y =(B>.

(i) The convex hull {A> of Ae oZ(X) is the smallest convex set containing A.

(iii) The entire space X and the empty set & are convex sets.

@) If {C,}yer s a family of convex sets, then [\ C, is a convex sei.
vel

) If {C,}yer is a family of convex sets such that for any two indices v, and v,

there exists an index p with C,=C,, ( C,,, then ) C, is a convex set.
vel
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Proof. (i) Suppose A< B and Fis a finite subset of 4. Since F is a finite subset
of B, {F>={B) by (d). Hence {4><=({B).

(ii) Suppose A e o/ (X). If 4 = @, then the assertion is trivial by (a). Suppose
4 # @ and x e 4. Since {x} = {{x}) ={4 by (i), A={4). {4) is convex by (e}
If B is a convex set containing 4, then {(4>=(B) = B by @).

(iii) The empty set @ is convex by (a). Since XedX) by (i), X =X

@iv) Put C = {‘]ICV. Since {CH>={C,> = C, for vel, {(C)=C. Hence C is
convex. "

(v) Put C = {J C. To show C is convex, we need only to show {Fye( for

vel
finite subset F of C by (d). Since Fis finite, there exists v € I such that Fe C,. Hence
it follows (F)<=C,=C. '

Let R be the set of all functions from a countably infinite set N into the real
numl?er system R which are zero except at a finite number of points of N, i.e. R is
the direct sum iZNR, where R; = R for all ie N. The topology and the linear space

€

structure on R are the usual ones. Suppose that a topological space X and an
H-operator (-} on X are given. Let 5#(X) be a subfamily {(F>: Fe & (X )" of
& (X). For He s#(X), a mapping ¢ from H into R is called a structyre mapping
on H, if it has the following properties:

(2) The mapping ¢ is an into-homeomorphism;

(0) If AcH, then (<)) = {p(A)>, where {p(A)> is the usual convex hull
of ¢(4) in R. )

ProrosrTION 2. (i) _If a subset A of H is comvex, then ¢(A) is convex.
; (i) If A= p(H), then ™ 1((AY) = @ *(A)). Hence if A is convex, then ¢~ (A)
is. convex.

Proof. (i) Since {p(4)) = ¢({4)) = @(4), p(4) is convex.

() Since ¢(Co™(@)) = <p(p™ ANy = (A, <o~ A = p™KA).

Let Sy be the set of all structure mappings on H. When S, is nonempty for each
He #(X), an element & of the product i Ex) Sy is said to be a structure on X with

respect to- the H-operator +>. A convex space (X, {*>,¥) is a triple consisting of

tatc;pc;loglcal space X, an H-operator {*> on X and a structure & on X with respect
0o (.

A nonempty 001}vex set ¥'in a convex space (X, {*>, ®) is also a convex space.
The to.pology on Y is the relative topology induced from X, The H. ~operator >y
on Y is defined as follows. For 4 e & (Y), {4y = (4. The structure Py is the

restriction of @ to #(¥). The convex space (¥, < >y, ®y) is said to be a subspace
of the convex space (X, ¢+, &).

2. ]?xamples of cunvgx spﬁces.‘ (1) A convex subset X of a real linear topological
space E is an example of a convex space. The-topology of X is the relative topology
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induced from E. The H-operator is the usual convex hull determined by the linear.
space structure of E. Suppose H e #(X). Since the linear subspace V' spanned
by H is finite dimensional, there exists a topological isomorphism I from V into R.
The restriction ®(H) of I to H is a structure mapping on H. We always take the
structure @ of this type whenever we regard a convex subset of a real linear topological
space as a convex space. ’

(II) The n-dimensional real projective space P"(R) is another example of a convex
space. P"(R) is the quotient space of R***\{0} by the following equivaleace relation
~: x~y if and only if there exists a nonzero real number 7 such that x = ty. We
use the following notations:

7 R"IN{0} — P"(R) is the quotient mapping,

S" = {xe R"*!: ||x|| = 1, where

Il = (G + G2+ + DA for x = (6, 2%, ., 3"},
To={xeS" x1>0} u{reS™ >0, x" =0} u
U{xes" 150, % =x"* =0} u..U{xe ST x1>0,x% = .. =x"1}

For each X% e P"(R) there exists a unique element x € $% such that n(x) = %, so we
denote by A the mapping which corresponds each X & P'(R) to the element x € S%. .
The mapping 4 is a bijection from P*(R) onto §%, and A™* is continuous as Atis

the restriction of 7 to S%. We define a2 mapping 0: S% — R* by
B0, e, X XY = (il %) for (k. XD e Sh .

Then 6 is an into-homeomorphism and the image 6(S%) is a convex subset of R*.
We denote by # the composition 8 o A: P"(R) — R". Then 5 is injective and the
inverse #~! is continuous. We define an H-operator on P'(R) by

Ay = n7H({n(4)) for
For He #(P"(R)) the structure mapping @(H) on H is the restriction of n to H.

A<P'(R).

3. Some theorems. The following theorem is obtained by Browder [1] when Xis
a compact convex subset of a real linear topological space. The method of the proof
of the theorem is same as [1].

THEOREM 1. Let (X, (+>, ®) be a compact convex space and T be a mapping from X
into o (X), where for x € X, Tx is a nonempty convex set in X. Suppose further that
foryeX, T~y = {xe X: yeTx} is open in X. Then there exists xo € X such that
Xo € Tx,.

Proof. Since Tx is nonempty for x € X, {T“l Y}yex is an open covering of X.
Since X is compact, there exists a finite subset F = {y1, Y2, ..o ¥4} of X such that
{T~'y}1=1 is an open covering of X. Setting H = {F) and 4; = Hn T" 'y, for
i=1,2,..,n {4}, is an open covering of H. Let ¢ = &(H) be the structure
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mapp.ing on H. P.uttingj? = @(H) = {p(F)) and 4; = 9(4,), {A}\- is an open
covering of H. Since A is compact, there exists a continuous partition of unity
{91,925 -, gu} subordinate to {4,}. A mapping f from H into itself is defined by

JG) = Lo®5 for sel,

where §; = ¢(y) fori=1, 2, ..., n. Since fis continuous, f has a fixed poiat %, & &
by the Brguwer fixed point theorem. Put xo = ¢~ 1(%,). If the sel of indices /s such
that g(%,) # 0 is {i;, iy, ..., 1,,}, then

L
%o -”:k;g w(Fo) Fi

]and Xoedy, for k=1,.,m Hence xjed, =T 'y, ic y,eTx, for
k= L, ..., m. Since Tx, is convex, Pips vees Y10 =T, Where we write LPigr s Vi
instead of {{y;, .., »;,,}>. Hence we have "

Xo = ¢ (%) = (p'l(kzlg;k(fco) )

€ (P_1(<iin ceey 7{m>)
= Pis ves Vi <Txg

Before stating the next theorem, we give some definitions. Let X, (>, )
be a convex space and f a real-valued function on X. The function £ is said to be
convex if fo ®(H)™* is convex in the usual sense for He H(X), quasi-convex if
the set {J.C € X: f(x)<c}isconvex for ce R and quasi-concave if — f’is quasi-con;cx.
thn Xis a convex subset of a real linear topological space, these definitions coincide
with the usual ones.

ProPOSITION 3. (i) If f and g are convex and r is a nonnegati
s ti
frg 2. 0. gative number, then
() If f is convex, then f is quasi-convex,
‘:(m) S is quasi-convex if and only if the set {xe X: f(x)<c} is convex for ce R,
o ‘Prpof.‘ i) I:c:.t, He #(X) and ¢ = &(H) be the structure mapping on H.
ince (f+6) o™ =fop ™ +g001 and (1f) o 9™t = r(fop™Y), (frtg) oo™t
and (if) e ¢7* are convex. Hence f+g and rf are convex.
. h(u) Let 4, = {xe X: f ({c)sc} for ¢ e R. To show A, is convex, it is sufficient
o show that {F) <4, for finite subset F of A4,. Let @ = D({F)) be the structure
m;}lvlpn_ug on {F) and :Zc ={XeloF): fo p(R)<c}. Since 4, is convex by hy-
pothesis and o(F)=4,, p(KF)) = (o(F)y = A,. Therefore (Fy = o HA)<4,.
(iif) Suppose f is quasi—:;onvex: The equality

{rex: fo)<e} = aU {xe X: FOO<d}
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holds. Hence, by (v) of Proposition 1, {x € X: f(x)<c} is convex. Conversely sup-
pose {x& X: f(x)<d} is convex for de R. The equality

{xeX: fX)<c} = N {xe X: f(x)<d}

holds. Hence, by (iv) of Proposition 1, {xe X: f(x¥)<e} is convex.

The next theorem is obtained by Fan [2] when X is a compact convex subset
of a real linear topological space.

THEOREM 2. Let (X, <+>, @) be a compact convex space. Let { f,}, <y be a family
of real-valued lower semicontinuous convex functions defined on X. Then there exists
an x € X satisfying
vel,

fx<e for
if and only if, for any finite set of indices vy, V3, ..., v, of I and for any n nonnegative
n

AUMbErS Ly, o, oy Ay Sch that Y, X, =1, there exists a ye X satisfying

=
S afOI<e.

Proof. The “only if” part is easy. We prove the “if”” part. Suppose that for
each xe X there exists vel such that f,(x)>c. Setting G, = {x € X: f,(x)>c},
{G,}, s is an open covering of X. Since X is compact, therc exists a finite subco-
vering {G,,, ., Gy.} of {G,}yer- Let {gy, .. g,} be a continuous partition of unity
subordinate to {G,,, ..., G,,} and put

D) = Ta@f for (v)eXxX
=1

and

d(x) = D(x,x) for xeX.

Since d is lower semicontinuous on X by Lemma 3 of [6], d takes its minimum .

Hence we have

dxy=m>c for xeX.

We define a mapping T from X into &/ (X) by

Tx = {yeX: D(x,»)<m} for xeX.

Then Tx is nonempty and convex by hypothesis and T “ly = {xe X: D(x,y)<m}
is open as g;’s are continuous. Hence by Theorem 1 there exists x, € X such that
Xo € Txg, i.e. d(xp)<m. This is a contradiction.

The following theorem is obtained by Sion [4] when X and Y are compact
convex subsets of real linear topological spaces. The method of the proof of the
theorem is same as [4].

THEOREM 3. Let (X, (>, ®) and (¥, [-], ¥) be compact convex spaces and f a real-
valued function on X x Y such that f (-, y) Iis quasi-concave and upper semicontinuous

2 — Fundamenta Mathematicae CXI. 2
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on XfOI ye X and-f() N ‘) I8 quasi-convex and lower semiconti wous on ¥ 0“)‘. X &
¢ S quas, a lower se, 1 (
Then we Iulve . ‘ ' : f '

min max f (x, 3) .

max min f'(x, y) =
Y yeY xeX

xeX ye

We need some lemmas. The following two lemmas and their proofs are in [4]

Lemma 1. Let S be an n-dimensional simplex with vertices ay, ..., a,. If
ey Oy

{Ag, ... 4,} is an open covering of S and S\A, is convex for i =0, ..., n and ¢ A
E d i

. P . »
for i#j(i,j=0,..,n), then NA; # 9.
i=0

LemMA 2. Let ay, ..., a, be elements of R* where k<n. Then
n

n <a01 A

i=0

where we indicate by 8, that this element is to be omitted

s By ey ay # 9,

LEMMA 3. Let (X, <), ®) be a convex space, Y a finite set and f a real-valwed ‘

ﬁ::}c;u;n ;nsi( ><0Y su.ch tha‘t f (-, ») is qtfasz'—concave and upper semicontinuous on X
,mc}l ¢ X ]pp se,’ .m addition, that Y is minimal with respect to the property: Jor
hxe t1erg exists a ye Y such that f(x,y)<c. Then there exists X
that f{x,, Y)<c for all ye Y. ‘ e S”_Ch
“ ,Projf' .Settlng Y= {yo,'...,y,,} and 4; = {xe X: f(x,p)<c}fori=0,,.n
o5 ?'} Is ‘an open covering of X and X\ 4, is convex for i = 1 n Bm th
‘minimality:of ¥, for each i there exists a;€ X such that a;¢ 4, fo;‘},aé.i gin«::

{ 0.3 -")( iyeres n’} = X\ A4 i = . 3 EREEE 34
a a 3 e a, f X i and X\A 1s convex for 0 n. a a a
N i : v i 5 vens 1E < Q- By ey nx>

n g
iDQ(‘?o, v iy sy =@,

Let ¢ be the sttucfuré mappiné on {a,
Cdi=g(a) fori=1, .., n Since P (ag, oy dy, ey a,%) = {8, dy ay
n 3oy By veey Uy s

(o, ...

Qpr

D=

s B =

il

i=0

Hence, b <@ i i 1 |
> y Lemma- 2, (d,,..,d,) is 2. n-dimensionsl simplex. ‘If we put

A= 040 ¢ i
i = @40 <ag, .. a,)) for i =0, ..., n, then {4 A} i i
of (a,, 7..,&‘,,) and (i,qézj for i # j. Since I open coverine

<ﬁ05 s ﬁn>\zi = (p(<a09 s an))\(P(Ai 8l <al)" sy an>)
1: o = ‘P(("o: -"a‘ Cl,,) ﬂ (X\Ai))
and <ap, ..., a,) ) (X\4,) is convex, <d,, .., a>s4; is convex for i =0

“E

' vy FLL
Hence, by Lemma I, there exi = ,1 :
] a1y exists X, such that % i g i
0 0 Eiﬂ Zl- Puttmg Xg [ ()CO),

VWe havg Xg eiQOA,-, Le f(xq,p)<c for i =0, vy Me

s Gy, e @ = ‘15((010, wey ) and
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LemMa Y. Let X be a finite set and (Y, [1],¥) be a convex space and f be a real-
valued function on X x Y such that f (x, ) is quasi-convex and lower semicontinuous

-on Y for each x € X. Suppose, in addition, that X is minimal with respect to the property:
for each y € Y there exists an x€ X such that f(x,»)>c. Then there exists yoe ¥

such that f(x, yo)>¢ for all xe X.
The proof of Lemma 3 is same as the proof of Lemma 3.

Proof of Theorem 4. 1t is easily seen that
max min £ (x, ¥)<min max f(x, ) .
xeX yeY yeY xeX
Supposc
max min f (x, ) <e<min max f (x, y) .
zeX yeY ye¥ xeX

Let A, ={re¥: f(x.»)>c} and B, ={xe X: f(x,)»)<c}]. Since the family
{4}, cx is an open covering of Y, there exists a finite subcovering {dy,, ..., Ay}
of {5} xex. Similarly, since the family {B,},cyis an open covering of X, there exists
a finite subcovering {B,,..... B, } of {B},cy. If we put X; = {x1, o X} and
Yy = {1, . ¥}, then for each y € [¥;] there exists an x € X; such that f(x, ¥)>c
and for each x € (X, there exists a y € Y7 such that f (x, y)<c¢. Let X, be a- minimal
subset of X, such that for each y e [¥}] there exists an x € X, such that f(x, y)>c.
Let Y, be a minimal subset of ¥; such that for each x € (X, there exists a y € Y
such that f (x, y)<c. By repeating this process of alternately reducing the X; and 7,
after a finite number of steps, we can choose a finite subset X, of X and a finite
subset Yy of ¥'suchthat X, is minimal with respect to the property: for each y & [Y,]
there exists an x € X, such that f(x, ¥)>¢; and ¥, is minimal with respect to the
property: for each x € X, there exists a y € ¥, such that f (x, py<c. An application .
of Lemma 3 to the subspace {Xo) yields that there exists an xo € (X;) such that
f(xy, M) <c for all ye Y,. Since the function f(xe,') on Y is quasi-convex,
FGro,y < for all pe(Y,]. Similarly, by Lemma 3, there exists a yo € [¥p] such
that f(x, yo)>c for all xe{Xy). Then c< f(xp, ¥o)<¢, which is a contradiction.
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