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Non-accessible points in extremally
disconnected compact spaces * I

by

Ryszard Frankiewicz (Katowice)

Abstract. In this note we prove under assumption MA: 1. In each extremally disconnected
compact space there exists a non-limit point of any countable discrete subset 2. In G(I} (Gleason
space over interval [0, 1) there exists a non-limit point of any discrete subset of cardinality <2® 3.
Kunen’s Theorems on non-limit points from [11].

The paper deals with points in compact (Hausdorff) extremally disconnected
spaces (and more generaly in F-spaces) which are not limit points of countable
discrete subspaces. We show (Theorem 3) that in ZFC+(B) (where (B) is a known
consequence of Martin’s Axiom (MA) due to Booth [2]) in extremally disconnected
compact spaces X of weight X<2” such points exist. Under some more restrictive
assumptions concerning the spaces we obtain much stronger conclusions. Namely,
if the m-weight of X is countable (e.g. if X is the Gleason space over a compact
metric space), then the space X contains a dense countable subset D such that no
point of D is a limit point of any discrete subset of cardinality <2 (Theorem 5).
This result can be applied, for example, to obtain the following fact (Kunen [11],
ZFC--(MA)): BN\N contains a countable set, dense in itself, of points such that
none of the points is a limit point of any discrete set of cardinality <2°. We prove
that if ¢f(m) = m<2°, then there exist points in fm which are not limit points of .
strongly discrete subsets (i.e. subsets 4 such that there exists a disjoint cover of 4 by
open subsets of pm such that Un 4 is a one-point set for each U of the cover)
of fm having the cardinality <m. (Theorem 4). This result can be applied to obtain
the existence in N\A of points which are not P-points and which are not limit points
of any countable discrete subset, but are limit points of discrete sets of cardinality w; -

Our result seems to be interesting in view of the following result by Kunen [11]:
in BN\N there exist non-P-points which are not limit points of subsets having
cardinality <22. This result by Kunen, and his other results from papers [11]and [10}
concerning non-limit non-P-points of BN\N, are shown to be consequences of our
theorems concerning non-limit points in extremally disconnected spaces.

* The results of this paper were announced at the Logic Colloguium® 77 in Wroclaw..
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“All the results mentloned above were obtamed under the assumption of (MA)
or (B), which is weaker than (MA). However, a§ was recently shown by Kuneu,
results of this kind can be obtained in ZFC: namely, Kunen proved that in SN N
there exist non-P-points which are not limit point of countable discrete subsets:

it would be interesting to obtain such a result for extremally disconnected compact

spaces without isolated points (in particular, for those having weight <2,

The problem of the existence of non-limit points of discrete countable subscts
is related to other problems in topology. It is known (cf. Grizlov [7]) that if x is
a limit point of a discrete countable subspace of a compact extremally disconnected
space X without isolated points, then X\{x} is not normal.

The points of N\N which are not limit points of discrete countable subsets
are known to be minimal in the Rudin-Frolik ordering of BN\N (as regards these
questions we refer the reader to M: E. Rudin [14] T. Frolik [6] and W. Comfort
and S. Negrepontis [3]).

1. Preliminaries. Most of the theorems of this paper will be proved under the
following assumption:

(B) (Booth [2]) Let & be a famlly of infinite subsets of & such that | K| =
for each finite subfamily X of . If || <2, then there exists an infinite set Z, Zcw,
such that |Z\A4|<w for each Ae §F.

The statement (B) is known to be a consquence of Martin’s Axiom (MA)
(D. Booth [2] and D. Martin and R. Solovay [12]). Let N* = BN N, where BN
denotes the Cech-Stone compactification of the countable discrete space N.

Let X be a compact space, and let ) be a cardinal number. The closed set Fo X
will be called a P(1)-set of X if for each family § of open neighbourhoods of F,
if |§]<4, then Fcint ) §; if 4 = w,, then such a set will be called a P-set; if
F = {x} then x will be called a P()-point.

-Let x(F, X) denote the character of a set Fin a space X, i.e. the minimal cardi-
nality of a base of neighbourhoods of F in X (sometimes we will write 2 (F) for
x(F, X))

Under the assumption (B), each closed subset of N* of the character <2
contains a P(2%)-point of N*. :

The proof of this well-known fact is the same as the proof of the existence of
P-points, which was carried out by W. Rudin in [15] under CH and by A. Blass [1]
under (MA) and therefore is omitted.

' For the notion of an F-space we refer the reader to [3] and [17]. We shall use

only the following equivalent property of being a totally disconnected compact
F-space (see e.g. Walker [17]): if X is a compact totally disconnected space, then X is
an F-space iff for each countable family &/ of pairwise disjoint closed-and-open
subsets of X, if #c.of, then there exists a closed-and-open set ¥ X such that
ValU(@\#) =0 and V> (J 4.

From this reformulation it immediately follows that any compact extremally
disconnected space is an F-space.
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Let 7 be a countable inﬁhite,set of pairwise disjoint :clpSed—an-d—open subsets
= X, then & will. be called a quasi-partition of *X. :
If o = {A"l ne o} is a quasi-partition of a compact F-space X, then the

map n:d X2 s ﬁN given by the formula

7 4(x) = () {clK| KN and xeclu {4"| ne K}}

for x € X, is continuous and open. Moreover, if x € 4", then 7 ,(x) = n.
ont:
Conversely, if an open continuous map n: X = BN from a compact F-space
is given, then & = {n~*(n)] ne N} forms a quasi-partition of X such thatz = ny.

LemMaA 1. Let X be a compact totally disconnected F-space. If for each point x€ X
and each open neighbourhood V of x there exists a quasi-partition of suchthatx € U=V
Jor some U from sf, then X is homeomorphic to the inverse limit

Y = lim{BN, pjl| «, pe X}

onto

such that each projection m,: b=y BN is open, where [Z|<w(X)” and pg: N — N
are onto.

Proof. Let A be the collection of all quasi-partitions of X. Clearly, |%|<w(X)".

Consider a partial order on &, assuming that o/ <& if 4 is a refinement of of,
i.e. if for each Ve there is a- Ue o such that VeU.

The set 9 is directed under <. In fact sup{ef/, B} ={AdN Bl de s,
Be #1\{0}.

' Let o = {4"| ne cu} we shall assume that each quasi-partition has a fixed
epumeration.

Let # = {B"| m € w} be a quasi-partition such that o/ <2. We definc a function
p%: NS N such that p%(m) = n if B c A"

Let % = pp%: N5 BN.

Let us consider the space Y = [im{BN, n%| o, % € ¥}. Since niyng = ny,
where 7, are projections, there exists a continuous map n*: X — ¥ induced by
J['_,A A e i’I}

Since for each point x & X and each open nelghbourhood V of x there exists .
a map 7 such that x e (n)< ¥ for 'some n & N, thus for any points x # ye X
there is a map 7.t X iy BN such that m,(x) # mg(y). Consequently, 7* is
a homeomorphism. B

COROLLARY. Each infinite compact extremally disconnected space is homeomaorphic
to the inverse limit im{BN, Bpj| o, B € X}, where |Z] = w(X).

Proof. By Efimov’s theorem from [5], w(X) = w(X)" for extrcmally discon-
nected compact spaces, B

If B is a Boolean algebra, then by st(B) we denote the Stone space of B.

Let U(m) = st(2(m)/?<"(m)), where m is a cardinal and P=<™(m) is the ideal
of all subsets of cardinality less than m. The space U(m) is an F-space (see Comfort
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and Negrepontis [3]). If m is regular, then the set U(m) is embedded in
Bri = st(P(m)) as a P(m)-set. :
By Lemma 1, if ¢f(m)> o then U(m) is homeomorphic to

Y= 11@{51\7, szl u,ﬁez}:

where |Z|<m® and the projections m,: ¥ o BN are induced by the set of all quasi-
partitions of Y. If cf (m) = w, then there are no open continuous maps from U(m)
onto BN.

The metric separable space X is called measurable if there exists a o-additive
measure v: B — [0, 1], where B is the algebra of all Borel subsets of X such that
y(U)>0 if U is an open nonempty set, and v({x}) = 0 for x € X, and v is a regular
Borel measure (see Halmos [8]). )

‘Let M(X) = BJI, where I = {4 & B| v(4) = 0}. Tt is known that M(X) is a com-
plete Boolean algebra (see Halmos [8]).

Let G(X) be the Gleason space over a regular space X, i.e. G(X) = st(RO(X)),
where RO(X) is the complete Boolean algebra of regularly open sets in X.

A subsets D of X is said to be strongly discrete in the space X if there exists
a disjoint family {V,| de D} of open subscts of X such that ¥, n D = {d}.

Countably discrete subsets of any regular space X are obviously strongly
discrete.

The reader is referred to books by Comfort and Negrepontis [3] (ultrafilters,
BN, F-spaces, Gleason spaces, ...) Engelking [4] (character, weight, ...) Sikorski [15]
(Boolean algebras) and to Halmos [8] (measure, measure algebras, ...).

2. Main results. Let <, denote the canonical well-ordering on 2% x 2° (the so
called max-lex, see T. Jech [9], p. 11). '

Let & be a centred family of closed-and-open subsets of X. We shall say that
the open continuous map n: X play BN refines § if for each V e § there exists a finite
subset F of N such that z(X\V)cF.

Let X be a space and let {n,| ¢<2”} be a family of open maps =,: X o BN

If {Bjl (o, B)<x (o, Bo)} is a family of closed non-void subsets of X, and
{@.] a<A} is a collection of centred families of closed-and-open subsets of X,
where 1<2°, then let
)] g = N {Bjl (@, A<« (%0, Bo)}»

@ 0 _ { K’é‘é if _fﬁ NN T = Qﬁ or if g2 A, or if i(x,) does not exist,
Kgo ”’("‘0>(N *), otherwise,

where i(xo) is the least of the ordinals i such that K m m; {(N*) # @, and =

refines the family &.,,.

Let {U,| a<2”} be a standard base for N*.

Lemma 2. (B) Let X be a compact space and let {n,) 0<2} be a family of

open continuous maps ;2 X = fN. Let {®.l a<i}, where 1<2%, be a collection of
centred families of closed-and-open sets such that |§,| <2°. Then there exists a family

icm®

Non-accessible points in extremally disconnected compact spaces I 119

of non-empty closed sets {Bj| «, p<2°} having the following properties (the sets L are
defined in accordance with (1) and (2)):

(3) ;CB;H for (OC’, ﬂ’)<t(“3 ﬂ)<*(‘10: ﬁo)s for all o> ﬁ0<2m'
@ i LR an Y (N®) = @, then Bjy = Li 0 7t({n}) # @, for some neN,

(5) LR A m (N¥) # O, then By = UY=Ly, where U is a closed-and-open
set in N*, such that U Uy, if L nmy (Up) # 9, and Uc N*\Uy,, otherwise,

(6) x(Bi)<2, for each (o, Bo)-

Proof. The family {Bj «, f<2°} will be constructed by induction.

‘Assume that 2° x 2° is well-ordered by <,, and assume that we have formed
our construction for all (&, f)<u(tto, Bo) We have Kjo# @ and x(K§)<2®.

By the definition of L§2, Lj: is a non-empty closed set and (L) <KD @
and, consequently, x(L5D<2%. ) ‘

If LY A ng (V) = @&, then By = L A gt ({n}) and x(B)< 2(L5) 0<2”.

I L2 A (V%) # @, then y(mg(Lf) 0 N*, N )< g (meo L5, BN) -0 <27 '

If 7,,(L3D) n N* U, # O, then by (B) there exists a closed-and-open set U in

" N*, Uc Uy, such that Ucm,(Lf;) n N* 0 Up.

In this case let B = mz'(U).

If (L5 0 N* n Up, = @, then by (B) there exists a closed-a_nd—open set U
in N*, UcN®\Uj, such that Ucm, (L) 0 N*\Up,. Let By = T (U). .

The above inductive construction of B3} can be used to construct By if we
put K3 = X and L§ equal to X{ or mo)(N'*), where #(0) is the minimal ¢ such that
T (N%) () §o # O and =; refines Fo. .

Thus the sets Bj are defined. From the construction it follows that Bg’s satisfy
the desired conditions. B

I..;,WA 3. (B) Let X be a compact space, let {n,| «<2?} be a family of open
maps n,: X o BN, and let {§,] a<A}, be a collection of "families of closed-and-open
sets, such that A<2®, §, is centred and 1@l <2 for each a<l. Let the Sfamily
{B «, B<2"} satisfy conditions (3)—(6). )

Then, for every a<2°, either m(x) € N or m(x) isa P(2°)-point in N*, for each
point xe () {Bjl «, B<2.

Proof. Let xe () {Bjl «, B<27}. By (4), if n({x}) 0 N* = @, then m(x) = n
for an ne N. o

If 7,(x) € N'*, then by (3) 7,(x) has a linearly ordered base. Hence, m,(x) is in
this case a P(2%)-point of N*. H ‘

Treorem 1. (B) Let X be a compact space and let {m,| a<2°} be a family of
open maps w2 X = BN. There exists a point x € X such that for each «<2® either
n (%) belongs to N or m(x) is a P(2%)-point of N*.

Proof. Take A = 0in Lemmas 2 and 3. Then, by Lemma 2, there exists a family
{Bjl «, p<27} satisfying conditions (3)-(6). Since that family is centred,‘by .Lemma 3
there exists a point x such that either 7,(x) € Nor (%) is 2 P(2“)-point in N*. B


GUEST


120 R. Frankiewicz

- THEOREM 2. (B) Let X be a compact extremally disconnected space of weight 2°
and let {m,| a<2"} be a family of open maps m,: X e BN such that for each centred
Sfamily §, |§1 <27, of closed-and-open subsets of X there is an o such that T, refines .
Then there exist a point x € X, such that for each o either n(x)e N or (%) is
a P(2%)-point of N*, and for each family §, |§|<2°, of closed-and-open neighbonr-
hoods of x, if int |\ § = @, then there is an o such that m, refines § and n(x) e N*,

Proof. Let {§,| «<2°} be the collection of all centred families of closed-and-
open subsets of X such that:

@) 1.1 <2% for all a<2®,

(i) intN§, = B.

Apply Lemmas 2 and 3 to the family {§,| «<2®). Then the point

xe () {Bfl o, f<2°}

is the desired one.

Indeed, by Lemma 3, either m,(x) & N or n,(x) is a P(2®)-point in N*. Let & be
a family of closed-and-open neighbourhoods of x, such that |R|<2° We can
assume that int (V& = @. There is an ;<2 such that §, = & Since
xe (V{Byl o, <2} n N §,, and since y(KP N () ) <29 by the assumption
of the theorem there exists an o' such that . refines the closed-and-open base for

K A §, of minimal cardinality. Hence, T N¥) 0 KE A () Fao # D. By the

definition of B, B igey(N*), Miee)(x) € N*, and i, refines §,,. M

3. Inaccessible points of a compact extremally disconnected space.

TrEOREM 3. (B) Let X be a compact extremally disconnected space of weight 2°,
There exists an x € X such that x is not a limit point of any countable discrete subset
of X. . .

Proof. Let {ny| o/ €U} be the family of all open maps 7,: X‘E‘fﬁN. By
Theorem 1, there is a point x € X such that either 7 (%) € N or 7 4(x) is a P(2%)-point
of N* for all & e 9.

Suppose on the contrary that x e cl D\.D, where |D] = w and D is a discrete
subset of X.

There exists a quasi-partition # € U of X such that if y,yze D and y # z, then
ng(Y) # mg(z). and ny(D)c N*. .

. Hence mg(x)e N* and mg(x)is a P(2%)-point of N*, We have Ta(x) ¢ cl(rg(D)),
and hence x ¢ clD, a contradiction. B :

Lemma 4. Let D, |D|€<m<2", be a strongly discrete subset of U(m), where
cf(m)y>cw. Then theré exists a quasi-partition of of U(m) such that m(y) # m4z)
Jor z.# y and (D)= N*. Moreover, if x e cl D\D, then T (X) & 7T4(D).

Proof. Let {K,| de D} be a family of almost disjoint subsets of N and let
{U,| de D} be a partition of m such that de clgUy. By the non-measurability
of m (Ulam [16]) there exists a partition {Uj] neK,;} of U, such that, for each

n . ae
n,d¢cl,U;. The quasi-partition of = {clgy U (U}l de D} A U(m)| ne N} is
the desired one. B -

©
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< Treorem 4. (B) In the space U(m), where w<cf (m)<m<2°, there exists a point x
which is niot a limit point of any strongly discrete subset of U(m) of cardinality not
greater than . ‘ - C

Proof. By Theorem 1 there exists a point x & U(#) such that for each B e U
cither m,y(x) € N or my(x) is a P(2)-point, where 9 is the set of all quasi-partitions
of U(m).

" This point is not a limit point of any strongly discrete set of cardinality <m.

Indeed, assume that xeclD\D for some strongly discrete set and |Di<n.
By Lemma 4, there exists an & € A such that w (D)= N* and mu()) # w.A2)
for v,ze Du{x} and y # z. Since myu(x) is a P(2°-point of N*, we have
T AX) ¢ (T DY) > 7(cl D), which is a contradiction. B

COROLLARY. (B) If m<2® and m is regular, then in fm there exists a point x such

that x is not a limit point of any strongly discrete set of cardinality <m.

This follows from Theorem 4 in view of the fact that U(m) is a P{m)-subset
of pm. B

Denote by aw(X) the n-weight of X, i.e. the minimal cardinality of =-bases
of X; a family # of non-empty open sets is called a z-base of X if each non-empty
open set contains a member of #; a n-base # is non-archimedean if Ve U or U=V
or Un ¥V = @, for each two members of #.

LEMMA 5. (B) Let X be a dense-in-itself extremally disconnected compact space
sueh that nw(X) = w and let & be a centred family of closed-and-open subseis of X.

\g ~
If 8| <2, then there exists an open map n: X iy BN such that @ refines S.

Proof. Let {U,| new} be a closed-and-open non-archimedean n-base of X.
Foreach Se Glet As = {ne w| U,=S}. Since & is centred, the family {45 Se S}
has the uniform intersection property (i.e. intersections of its finite subfamilies
are infinite). :

By (B), there exists an infinite Acw such that A\Aj is finite for each S.

Let C= A be an infinite set such that {U,| ne C} is a pairwise disjoint family.
The quasi-partition &f = {U,| ne C} u {{X\cl | {U,{ ne C} induces a map .
refining €. B

Remark. If X is a dense-in-itself extremally disconnected compact space with
a countable Suslin number, then for each nowhere dense sct D there exists an open
map 7w X BN such that n{D)c N*.

THEOREM 5. (B) Let X be a extremally disconnected compact space with
m(X) = w. Then there exists a point x e X such that x is not a limit point of any
discrete set D, |D{<2°.

Proof. Let 9 be the set of all quasi-partitions of X. Since |} = 2%, there
exists a point x satisfying the conditions of Theorem 2.

Let D, |D|<2% be a discrete set such that x € ¢l D\D. For each point de D
there exists a closed-and-open ¥, such that xe ¥, and d¢ V.
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By Lemma 5 there exists an & € % such that n,, refines ¥ = {¥V,| de D} and
na(x)e N*. )

There exists a 2 € U such that ng(D)cN* (by the remark before Theorem 5).

Let € be a quasi-partition refining «f and 2. It is obvious that me(x) ¢ (D).
Indeed, n,(d) € N for each de D but n,(x) € N*. Because my(x) ¢ 14(D) and my(x)
is a P(2")-point of N*, my(x) ¢ ne(cl D\D); a contradiction.

COROLLARY. (B) In a dense-in-itself extremally disconnected _compact spdce
with nw(X) = w there exists a countable dense-in-itself set of points such that none
of them is a limit point of any discrete set of cardinality <2°.

Proof. By Theorem 5, in each set of a countable z-base we can find a point
which is not a limit point of any discrete set of cardinality <2°. & ‘

The following two theorems seem to be known (cf. the proofs of the corre-
sponding theorems in Jech [9] p. 108-109).

THEOREM A. (MA) Let Y = st (M (X)), where X is a measurable separable metric
space. Then each subset of Y of cardinality <2° is nowhere dense.

THEOREM B. (MA) Let Y = st(M(X)), where X is a measurable separable metric
space. Then, for each centred family &, |&|<2° of closed-and-open subsets of Y,
there exists a quasi-partition f of Y such that m refines G.

Now we can prove

TrEOREM 6 (Kunen [11]). Jn the space st(M(X)), where X is a measurable sep-
arable metric space, there exists a point x such that x is not a limit point of any set
of cardinality <2°.

Proof. By Theorem 2, there exists a point x e st(M(X )) such- that either
7 ;(;) € N or my(x) is a P(2%)-point of N*, where s is an arbitrary quasi-partition
of Y. ‘

. Suppose that x € c] D\D, where | D| <2°. The set' D is nowhere dense and there
exists a quasi-partition # of Y such that nu(D)cN*.

For each point de D there exists a closed-and-open set V4, such that d¢ V,
and x & V. By Theorem B, there exists a 7, such that x,,, refines B = {V4 de D}
and 7y (x)e N*. Let € be a quasi-partition refining o, and #. We have
Tg(x) ¢ (D). Indeed, for each de D, m,(d)e N but Tao(x) € N*. Since |D|<2°,

we have |me(D)|<2”. Since my(x) is 2 P(2%)-point of N*, ng(x) ¢ clng( D), which
is a contradiction. H

4. Corol!aries for fN. Kunen [11] has proved, assuming (B), that: each compact
extremally disconneeted space of weight <2° can be embedded in BN\N as
a P(27)-set.

From this fact we shall derive, using the results from our paper, the following
corollaries:

CO.ROLLARY 1. (MA) (Runen [11]). Jn SN\N there exists a non-P-point that is
not a limit point of any set of cardinality <2°.

Proof. Clearly, each non-isolated point of an extremally disconnected compact
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space of weight 2 is a non-P-point; by Theorem 6 and Kunen's Theorem cited
above we have our theorem. E

COROLLARY 2. (B) (Kunen [11]). In BN\N there exists a countable dense-in-
itself subset of points which are not limit points of any discrete subset of cardinality
<2°. '

Proof. By Kunen’s theorem cited above and the corollary to Theorem 5.

COROLLARY 3. (B) For each regular cardinal m, m<2%, in BN\N there exists
a point x such that x is not a P-point, x is a limit point of a strongly discrete set of
cardinality m, und x is not a limit point of any strongly discrete set of cardinality <m.

Proof. Immediately follows from the corollary to Theorem 4 and Kunen's
Theorem since fm is an extremally disconnected space. B

I am very grateful to T. Przymusinski for his help in the preparation of this
text.
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