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Abstract. Using the combinatorial axiom <}, we deduce the existence of uncountable Bool-
ean algebras in which every chain and antichain is countable. We find examples of such al-
gebras for which: the automorphism group has either 1 or 280 elements, and we apply a result
of Kunen and Tall to conclude that the existence of such algebras is relatively consistent with
the negation of the continuum hypothesis.

We also prove that if B is a Boolean algebra in which every antichain is countable then
B has a countable dense subalgebra, and if B is atomless then the automorphism group of B
has either 1 or 2%° elements. ’ .

0. Introduction. A chain in a Boolean algébra is a set which is linearly ordered

by. the canonical partial ordering associated with the algebra; an antichain is a set

"‘of. pairwise incomparable elements of the algebra. Some authors use the word

“antichain” to denote a set of pairwise disjoint elements; note that this is not the
case here. -

Using the combinatorial axiom <, we deduce the existence of ancountable
Boolean algebras in which every chain and antichain is countable. We find examples

~of such algebras for which the automorphism group has either 1 or 2™ elements,
and we apply a result of Kunen and Tall to conclude that the existence of such
algebras is relatively consistent with the megation of the continuum hypothesis.

We also prove that if B is a Boolean algebra in which every antichain is count-
able then B has a countable dense subalgebra, and if B is atomless then the auto-
morphism group of B has either 1 or 2% elements.

Our set-theoretic terminology is standard. If C<w,, then C is closed unbounded
iff Vu<o,3peCa<f and Va<w;sup(Cnx)eC. If Sco,, §is stationary. iff
SN C %0 for every closed unbounded set C. Fodor’s Theorem {4] asserts that

+if S is stationary, f §— w,, and f(x)<a for all «e S, then there is stationary
S’=S such that f is constant on S’.

A. set mapping on a set X is a function f such that for all x e X, f(x)= X— {x}.

A set Yo X is free (with respect to f) iff Vy,ze ¥ z¢f(y). Hajnal (see [5] ot
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[3, § 44]) has proved that if X has cardinality %, f(x) has cardinality <2 for all
xe X, and 1<x, then there is a free set of cardinality %. We will need this result in
the next section for » = &, and 1 = X,.

The proposition ¢> asserts that there is a sequence {S,: a<w;) such that
S, <o and for any SSw,, {0: Snoa = §,} is stationary. We refer to {S,: a<w;)
as a »-sequence. Jensen has shown that > is true in L, the universe of constructible
sets. See [2].

1. Statement of results. An element b of a Boolean algebra B will be called
uncountable iff {ae B: a<b} is uncountable; otherwise b is countable.

The main results of the paper are the following:

THEOREM L. Assume <>. Then there is an atomless field of subsets of w such that
every nonzero element is uncountable and every chain and antichain is countable,

THEOREM 2. Assume (>. Then there is an uncountable atomless field of sybscts
of w such that the countable elements form a maximal ideal and every antichain (and
hence every chain) is countable.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively.

The next theorem shows that it is no accident that fields of subsets of w are
involved in Theorems 1 and 2.

A subalgebra .D of a Boolean algebra B is dense in B iff for every nonzero b e B
there is nonzero de D such that d<b.

THEOREM 3. Let B be a Boolean algebra in which every antichain is countable.
Then B has a countable dense subalgebra, and hence B is representable as a field of
subsets of w.

Proof. Suppose not. Then it'is easy to obtain a sequence (b,: a<w,) of non-
zero elements of B such that for each «, if B, is the subalgebra of B generated by
{by: B<ua}, then there is no nonzero de B, such that d<b,. Let

Z = {u<w,: Ibe B, bAb, b,—b # 0} .

Case 1. Z is stationary. Let {c¢,: a<w,) enumerate |) {B,: a<w,} and for
each aeZ let f(e) be the least ordinal B such that b ae¢s, b,—cy #0. Let
C = {a: B, = {¢;: f<o}}. It is clear that C is closed unbounded, so CnZ is
stationary. Moreover, f () <a for every o€ C n Z. By Fodor’s Theorem there is
stationary S€C n Z on which f is constant. !

Let ¢ = ¢y, where ¢ € S is arbitrary. For each ae S let d, = (cAb)V(EA b,
(@ denotes the complement of ¢). Then we claim {d,: « € S} is an uncountable set
of pairwise incomparable elements, contradiction. Suppose o, fe S and a<p.
If d,<dj, then cAb,<by and cAb, € By, contradicting the choice of b,. If d;<d,
then Zaby<inb, so EAb,<E Abp<b; and we reach a similar contradiction.

Case 2. Z is nonstationary. Then ¥ = w,—Z is uncountable, and if o, fe ¥
and a<f then either b,Ab; = 0 or by<bh,.

Let W= {ae ¥: {f € ¥: by<b,} is uncountable}. If W is countable, then we
construct b, E<w) inductively so that aye ¥—W and b, &b, for all n<i.
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But then {b,.: é<w,} is an uncountable pairwise disjoint set. Hence W is un-
countable.

If {b,: «e W} is a chain then let {¢,: a<w;) enumerate {b,: € W} in
decreasing order (i.e. a<f = ¢;<c,). Then {c,—C,+4: <@y} is an uncountable
pairwise disjoint set, contradiction. Hence {b,: « € W} is not a chain.

It follows that there are «, f& W with b,Abs = 0. Now let

fi woy—{ye¥: b,<h,}

and g: o, —{ye ¥: b,<b;} be one-to-one and such that if {<n then £(£),g(0)
< f (1), g (). For each & let d; = by v (bg—byq)- Then if & # 7 it is easy to check
that d; and d, are incomparable. This contradiction completes the proof that B has
a countable dense subalgebra.

Since any countable Boolean algebra is representable as a field of subsets of w,
the second assertion follows. B '

Tt should be remarked that this argument generalizes almost verbatim to larger
cardinals.

It follows from Theorem 3 that every Boolean algebra with no uncountable
antichains must have cardinality <2"°. Must every uncountable such algebra have
cardinality %,? Without using the continuum hypothesis we have been unable to
settle this question, but we can say that the number of countable elements is not
too large.

THEOREM 4. Suppose B is a Boolean algebra in which every antichain has cardi-
nality <8;. Then B has at most &, countable elements.

Proof. Suppose X were a set of 8, countable elements of B. For each be X,
let £(b) = {ce X: c<b}. By Hajnal’s set-mapping theorem there is a free set Y= X
of cardinality %,. But the elements of Y are clearly pairwise incomparable, con-
tradiction. ®

A Boolean algebra is rigid if it has no automorphisms except the identity.

THEOREM 5. Let B be a Boolean algebra in which every antichain is countable.

(a) If every nonzero element of B is uncountable, then B is rigid.

(b) If B is atomless and B contains a nonzero countable element, then B has
exactly 2% automorphisms.

Proof. (a) If B had a nontrivial automorphism £, then there would be nonzero
be B such that £(5) Ab = 0. But then {c¢Vv{f(®)—f(c)): c<b} would be an un-
countable set of pairwise incomparable elements, contradiction.

(b) Any countable atomless Boolean algebra has 2% automorphisms so if b € B
is nonzero and countable, there are at least 2% automorphisms of B fixing b. On
the other hand, by Theorem 3, B has a countable dense subalgebra D. Every auto-
morphism of B is completely determined by its values on D, and there are only 2%
possible functions mapping D into B. H

COROLLARY 6. Assuming <>, there are uncountable Boolean algebras with no

3 — Fundamenta Mathematicae CXI. 2~
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uncountable chains or antichains which are rigid, and there are such algebras with the;
property that every uncountable atomless subalgebra has exactly 2%° automorphisms..

Finally, we observe that by a result of Kunen and Tall [7, Theorem 11], if B is

a Boolean algebra with no uncountable chain or antichain then B remains such an:

algebra in any extension of the universe via a property (K) notion of forcing. Since
the continuum hypothesis may be violated by a property () notion of forcing (by
adding many Cohen reals, for example), the conulusions of Theorems 1 and 2 and
Corollary 6 are relatively consistent with the negation of the continuum hypothesis.

‘Several problems remain, ’

.PrOBLEM 1. Can our uses of > be replaced by CH? Using CH, E. S. Berney 1]
has constructed an uncountable Boolean algebra with no uncountable antichains,
but his algebra has uncountable chains.

PrOBLEM 2. Is it consistent that every uncountable Boolean algebra has an
uncountable antichain? Tt is conceivable that Martin’s Axiom implies that there
is no uncountable collection of subsets of ¢ in which all chains and antichains

(with respect to inclusion) are countable. Kunen [6] (and the first author, indepen-.

dently) used CH to construct a sequence {A4,: a<a,) of subsets of w such that
if < Bthen Ay~ A, isfinite and {4,: a<w,} has no uncountable chains or antichains,

and Kunen proved that under Martin’s Axiom no such sequence exists, but that.

is the best result to date.

ProBiEM 3. Is it provable in ZFC that every uncountable Boolean algebra:

with no uncountable antichains has cardinality 8, ?

PrOBLEM 4. Can Theorems 1 and 2 be generalized to larger cardinals?

2. Proof of Theorem 1. The Boolean algebra of Theorem 1 will be obtained as
the union of a sequence {B,: a<w,) of countable atomless fields of subsets of .
For each «, B,,, will be generated by B, together with a single subset x, of o, and.

if o is a limit ordinal then B, will be the union of the preceding By’s. The prop~'

osition ‘<> will be used to ensure that every potential uncountable chain or antichain
is considered at some point. :

The only difficulty lies in showing that if a countable set M of maximal chains
and antichains in B, is specified, then x, can be chosen so that every element of M
remains maximal in B,,,. This is done in Lemma 2.6. The st x, is constructed
essentially by a forcing argument, as the Teader familiar with forcing will see, but no
knowledge of forcing is necessary to follow.the proof. .

Given a partial ordering (P, <), a set DgP is called dense in P if
VpePige Dg<p.

For the purpose of the following lemmas, B is always a countable atomless
field of subsets of w. We shall be ix;tercsted in the partial ordering

P={(a,b): a;beB,ach,b—a + 0},

where (2, b)< (a3, by) iff a;a, and by b,
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LEMMA 2.1. Let m be a maximal antichain in B, and let Dy(m) = {(a,b)eP:VxSw
if acx<h then x is comparable with some element of m}. Then D(m) is dense in P.

Proof. Let (2, b) € P. Since Bis atomless there are disjoint non-empty a,, a, € 8
such that a; U @, = b—a. Let cem be such that a U a, is comparable with ¢’
If ccauay, then (au a;,b)e D;(m). If a U a;<c, then (a,a U a) e Dy(m). B

TEMMA 2.2. Let m be a maximal chain in B, and let D,(m) = {(a,b) e P: VxS w
if a=xSb then x is incomparable with some element of m}. Then D,(m) is dense in P.

Proof. Let (a,b)eP. Since B is atomless, there are disjoint non-empty
a,,a,,a;€ B such that g, va, Ve =b—a If ava;em then (@ v az,b—ay)
& Dy(m). If a U a, ¢ m then there is ¢ € m such that c and ¢ L a4, are incomparable.
If ¢n (e, Uas) =0 then (au ay,b)e Dy(m). If cna, # 0 then (avay,b—a,)
€ Dy(m), and if ¢ N a3 5 O then (aua;,b—az)e Dy(m). B

LeMMA 2.3. Let m be a maximal antichain in B, and lete,fe B. Let Dy(m, e, f)
= {(a,b)e P: VxS if asxch then (enx) v (f—x) is comparable with some
element of m}. Then Dy(m,e,f) is dense in P.

Proof. Let (a, b) € P. Tt is easy to see that there is (', b)<(a, b) such that one
of the following holds. ’

M) V—adcw—(evf), @b-dcenf,

B) V—dce-f, @ b—dcf-e.

If (1) or (2) holds, then clearly Vxcw if @ cx=b’ then enx)u(f-x)eB,
so (d',b) e Dy(m, e, f).

If (3) or (4) holds, thenlete = (e n @) U (f-b)andletd = (en b) L (f—a).
Then d—c # 0 so (c,d)eP. By Lemma 2.1 there is (¢, dY e D,(m) such that
(¢, d)<(c, d). If (3) holds, then (@ v(c—oa), b’ —(d~ad))e Dy(m, e, f), while
if (4) holds, then (a’ L (d—d), b —(c'—c))e Dy(m,e,f). B o

LeMMaA 2.4. Let m be a maximal chain in B, and let e,fe B. Let Dy(m;e, [}
= {(a,b)e P: Vxco if acxch then (enx) L (f—x) either lies in m or else is
incomparable with some element of m}. Then D(m, e, [) is dense in P. .

Proof. Like Lemma 2.3, but 'using Lemma 2.2 instead of Lemma 2.1. B
Levva 2.5. Let ceB, and let Dy(c) = {(a,b) € P: VxS if acxch then
x % c}. .

Proof. By Lemma 2.2, letting m be a maximal chain containing c. B

LEMMA 2.6. Let M be a countable collection of maximal chains and antichains -
in B. Then for any (a, b) € P there is x ¢ B such that acxc<bh and if B’ is the field of
sets generated by B L {x}, then every element of M remains maximal in B'. }

Proof. Let Dy, Dy, ... enumerate all sets of the form D,(m, e, 1), Dy(m,e, [,
and D(c) where me M and ¢, e, f € B. Form a sequence {(a,, by): ne w) as follows:
Let a; = a, by = b. Given (a,, by), let (@y+1» by+1) € D, be such that (@41, (/3 3
<(a,, b,). Let x = | {a,: ne w}.' Note that every element of b’ has' the form
(e 0 x) U (f—x) for some e,fe B. But now by Lemmas 2.3-2.5 it is clear that

3%
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x ¢ B and every element of M remains maximal in B'. It is easy to see that B’ is
atomless. B

Proof of Theorem 1. Let {S,: a<wm,;) be a {>-sequence. Since < implies
the continuum hypothesis, there is an enumeration (aa. a<w,y of the power set
of o in which each element occurs uncountably many times.

By induction, we construct a sequence {B,: a<w;)> of countable atomless
fields of subsets of , and a sequence {M,: a<w, ) where M, is a finite or countably
infinite set of maximal chains and antichains in B,.

Let B, be arbitrary, and let M, = 0. If o is a limit ordinal, let B, =  {B;: f<a}
and M, = {J {Mj: f<a}. Finally, suppose o = B+1. If {a;: { €Sy} is a maximal
chain or antichain in B, then let My, , = M;u {{as: £€S,}}; otherwise let
My, ;= M. Choose x4 ¢ By by Lemma 2.6 so that if By, is generated by By U {xz}
then every chain or antichain in M., ; remains maximal in By, ;. Moreover, if a; € B,
then we may assume x;Sda;.

Let B = |J {B,: «<w}. It is clear that every nonzero element of B is un-
countable. Suppose m< Bis a maximal chain. Let §'= {«: a,em}. Then it is easy to
see that {o: {a: fe S na} is a maximal chain in B,} is closed and unbounded.
Since {¢: S, = S N a} is stationary there is o such that S, = S na and {a;: fe S,}
is a maximal chain in B,. But then {az: pe S,} e M, for every y=a so {a;: feS,}
is maximal in B. Hence m = {ay: feS,} and m is countable. It can be shown
similarly that all antichains are countable, This completes the proof.

3. Proof of Theorem 2. We will obtain our Boolean algebra as the union of
a sequence (B,: a<w;) as before, but in addition we will construct a sequence
{I: a<w;p, where I, is a maximal ideal in B, and I,=I; whenever a<p. It will
turn out that | {I,: «<w,} is the maximal ideal of countable elements in the
Boolean algebra.

In Lemmas 3.1-3.7, B will always be a countable atomless field of subsets of w,
and 7 will be a maximal ideal in B. The partial ordering P to be used this time is
P ={(a,b): acl, be B—I, and g=b}, ordered as before, i.e., (a;, b;)< (a3, by)
iff a,2a, and b;cbh,.

Lemma 3.1. Let m<I, and let D(m) = {(a, b) & P; cither Veem cgb or
3cem c<a}. Then Dy(m) is dense in P.

Proof. Let (a,b) e P. If (a, b) ¢ D,(m), then Ice m c<b. But then (a U ¢, b)
€ Dy(m). B

Lemma 3.2. Let ce B and let D,(c) = {(a,b)eP: Vxcw if asxch then
x % c}. Then D,(c) is dense in P.

Lemma 3.3, Let ce I and let Dy(c) = {(a, b)eP cca v (w—>b)}. Then Dy(c)
is dense in P.

LemMa 3.4. Suppose D is dense in P. Let (D) = {(a, b)e P: (w—b, o—a) € D}.
Then S(D) is dense in P.
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LemMmA 3.5. Suppose D is dense in P and e, fe I Let
“T(D,e.f) = {(u,b)eP: ((a—e) Uf,(b—e) v f)eD}.

Then T(D,e,f) is dense in P.

Proof. Let («,b)eP. By Lemma 3.3 there is («’,b')<(a, b) such that
eufed u(w—b). Let ¢ =a' ne, f'=d njf Find (x,y)e D such that
xNL(@ = uf, ('~ uf). Now let &' =(x—(e ufueuf, and
b= (J'—(euf)) U e wf'. Then it is easy to see (a”,b'")eT(D,e,f). B

Now suppose M is a countable (or finite) collection of subsets of B, and let &
be the smallest collection of dense sets such that

(a) every set of the form D,(m), D,(c), Dy(e), for me M, ce B, eel, lies in &,
and ‘ .
(b) if Ded and e, fel, then S(D), T(D,e.f)e2.
Let us call xew (M, I)-generic over B iff VD €% Ia,b)e D acx<bh. Since
% is countable it is clear that there exists xS which is (M, I)-generic over B.

LEMMA 3.6. Let x be (M I)-generic over B, and let B' be the field of sets generated
by B U {x}. Then every element of B'—B is (M, I)- genefzc over B.

Proof. It is evident from condition (b) above and Lemmas 3.4 and 3.5 that
if x is (M, I)-generic over B, then so are (x—¢) U fand o —x, ife, fe I. To complete
the proof, it will suffice to show that any element of B’ — B has the form (x—e) U f
or ((w—x)—e) u f for some e,fel

First note that if x is (M, I)-generic over B, then for any aeZ, both a nx
and a—x are in /. This follows immediately trom Lemma 3.3.

We observed in the last section that every element of B'—B has the form
(e A x) U (f—x) for some e, f'€ B. But by genericity of x and w~x, the remark in
the preceding paragraph shows that we cannot have both e, fel orbothe, f¢l,
since otherwise (¢ N x) U (f—x)€ B.

If feI and e¢ ] then (e nx) U (f—x) =
w—eand f—xarein I.Ifee Tand f¢ Tthen (e 0 x) U (f—x)
U (e n x) where o—f, ¢ n xel, and we are done. @

(x—(w=e)) L (f—x), where both
= ((wfx)—(m—f)) v

LeMMA 3.7. Under the hypotheses of Lemma 3.6, I u {x} generates a maximal
ideal I' in B' and Yue INbe B’ if b<a then be B.

Proof. We check the last assertion first. If b € B'—B, then b is (M, I)-generic
over B, so as observed in the preceding proof, if @ € I then a n b eI, so we cannot
have b=a.

For the rest, suppose x Ua = o for some ael Then x = w~—{a—x), and
gince a—x e I, we would have x € B, contradiction. Hence I is a proper ideal. Tt
remains only to check maximality. Let ye B'—B. If y = (x—e) u fforsomee,fel
then € I. If not, then y = ((w—x)—e) uffor e, f€ T But then w—y = x—u
ule~flel H
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Proof of Theorem 2. Let {S,: « € @, be a {>-sequence, and let {4,
enumerate the power set of w. For each f<wy, let my = {a,: a e S;}.

We obtain sequences (B,: a<m, {I,: a<w;),and {M,: a<w> by induction
as follows: Let B, be an arbitrary countable atomless field of subsets of w, and
let I, be a maximal ideal in B,. Given B, and I,, a maximal ideal in B, lot
M, = {my: B<o and my<B,}. Let x, be (M,, I,)-generic over B, and let B,
be generated by B, u {x,}, and let 7,,, be generated by I, U {x,}. If o is a limit
ordinal, let B, =) (By: f<a} and I, = U {l: f<a}. Let B =U {8, u<w}
and I = {J{I,: a<a,}.

It is easy to see that each B, is atomless so B is an atomless field of subsets of w.
It follows from Lemma 3.7 that I is a maximal ideal of countable elements of B.
It remains only to show that B has no uncountable antichains.

Suppose m<l were an uncountable antichain, Let § = {u: a,em}. Let
Z=1{o: {ay: pe Snoa}=mn B, and (VbeB,—1) if Icem csb then
(BF e S na)ageh}. It is easy to see that Z is closed and unbounded. Hence there
is xeZ such that S, = Sna.

We assert that m = m,. This will show that there are no uncountable anti-
chains included in I, and hence that there are no uncountable antichains in B (since
if mcB—1I were an autichain, so would be {w—a: aem}</).

Clearly m,=m. For each ce B— By, let g(c) be the least ordinal f such that
ce By, —Bjy. Suppose there exists ¢ € m—m,. Choose such a ¢ with ¢(¢) minimal,
Let p(c) = f=a. Then ¢ is (M}, Iy)-generic over By so since m, & M, there exists
(@, b) e D(m,) (compated in Bp) such that acc<bh. Since ¢ is not comparable with
any element of m, it mast be the case that Ve' e m, ¢’ &b. We may assume that o (b}
is minimal for b€ B; such that accsbh and Ve’ e m, ' &b.

‘Now ¢(b)>u since otherwise o e Z implies that Y¢' e m ¢’ &b, contradiction.
Say 'o(b) = y=a. Then b is (M, I,)-generic over B,, and there must be (¢, b%)
€ D,(m,) (computed in B)) such that a’chcd’. But then clearly we must have
Ye' em, ¢’ &b and g(b') <y, contradicting minimality of g(b). Hence B has no un-
countable antichains.

It follows that B has no uncountable chains, for if m were'an uncountable chain
we could, as above, assume that m< 1. But since all the elements of [ are countable,
. must have a subset well-ordered in type «,, and this contradicts the fact that B
has no uncountable antichains, H

<o)

- Added in proof December 3, 1980. Most of the problems have been solved. Shelah found
an upcountable algebra with no uncountable chains or antichains using only CH; the first
author showed it consistent that every uncountable algebra has an uncountable antichain; She-
Jah and Van Wesep independently answered Problem 3 negatively; and Shelah has generalized
the -style constructions to larger cordinals.
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