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Paracompactness in countable products
via the Souslin operation

by

A. J. Ostaszewski (London)

Abstract. A proof is given that Cech-complete paracompact/metacompact spaces are count-
ably productive using a Souslin-like operation. Generalization to p-spaces follows.

§ 1. We offer a new proof and analysis of the following result and a new charac-
terisation of paracompact Cech-complete spaces (also of paracompact p-spaces).

THEOREM. If (x,: 1 € o) is a sequence of Cech-complete spaces (or more generally,
p-spaces) which are all Lindeldf paracompactjmetacompact then their product is
respectively Lindeldf paracompact/metacompact.

We recall that a completely-regular space is Cech-complete if it is a %, subset
of some (equivalently, any) compactification.

The paracompact case was proved by Z. Frolik using perfect mappings [6] and
was then generalised from Cech-complete spaces to p-spaces by A.V. Arhangel’skii [0]
and K. Morita [12]. The theorem was recently obtained for Cech-complete spaces
by an application of “frames” in C. H. Dowker and D. Strauss [1]. The result
was independently obtained by M. M. Coban [2]. The present analysis was
motivated by the observation that the Lindelof case for Cech-complete spaces is an
easy corollary of the following obvious

LeMMA. 4 ¥; subset of a compact Hausdorff space is Lindelof if and only if it is
a A .4 subset. .

Since a countable product of spaces which are #,; in some compactification
is readily seen to be s is some compactification, the Lindeldf case is immediate.
For the other two cases we appeal to the preservation of Souslin representations
and analyticity under countable products (Choquet [3], Frolik [5], C. A. Rogers .
[15]; note also J.E. Jayne [9]).
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s
DEerNITION, Consider the following Souslin representation of a space X where 4
is an arbitrary set:
o0
NV ay, ..
(a,az,.) AN n=1

o X =

where

s ) »

(i) for each ne N and each xe X
@ {(a,...,a)ed": xeV(ay,.
and {V(ay, ...

, a,)} is finite,

, @) ay ..., € A} is an open cover of X,

) K@ = ) V.o,

({il) V(s s @y ) SV @y, ..., @) for all ay, ..., a,,., € 4,
(iv) for each open U=K(g) there is n so that V(ay,..,a)<sU.
‘We call such a represenfation meta-Souslin or, respectively, para-Souslin if in

place of (2) we require that for each n € N and x € X there is an open set W contain-
mg x so that

3 {(ag, .. a,,) € A"

‘We note that the convergence. condition (jii) appears and is studied in ([5],
[14], [13]). When | 4| = k the representation is akin to A.H. Stone’s k-analyticity [15].
Generalizations of Souslin representations were also studied in [10].

In Section 2 we shall prove Theorems 1-4 and in Sectlon 3 we generalize all
results to p-spaces.

a,) is compact for each g = (ay, a5, ...) € AV,

Viay, ..., a,) n W # @} is finite.

THEOREM 1. A space with a mem-Souslm/pam-Souslm representation is respect-
ively metacompact{paracompact.

TueoreM 2. A Cech-complete space is metacompact[paracompact if and only if
it has a meta-Souslin|para-Souslin representation,

THEOREM 3. A countable product. of meta-Souslin/para-Souslin spaces is again
meta-Souslin/para-Souslin.

T'am grateful to Ken Kunen for pointing out that a para-Souslin space is
necessarily Cech-complete. We thus have the following characterisation.

TaEOREM 4. A Hausdorff space is paracompact and Cech-complete if and only if
it has a para-Souslin representation.

It is not true, however, that meta-Souslin implies éech-complet\e.

EXAMPLE. The space Q of rationals is meta-Souslin in its usual topology.

Proof. Enumerate Q as {g,: ne w). Taking 4 = N choose Vi, ..., i,) to be,
for i, = ... =i, = 1, an open interval of rationals'centered on q;, of diameter less
than 27" and so small that it excludes’ the points g,, ‘for m<i,. Otherwise let
Vi, ... i) = @. Since g, ¢ V(iy, ..., 1,) for all i;>m we see that:

HGys oes i)t xE Vg, oy i)Y Sm if B
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To see that (iv) holds in the definition of a meta-Souslin representation note that
w

if X@ = V({,,....,i,) =4O, then for some N>1,
n=1

= K(@i;,1,1...) = {g;,}) and so V(i, ..., iy) = @. The rest is clear.

REMARK AND PROBLEM. Let X be meta-Souslin with 4 = N. The compact
valued mapping a + K(a) is upper-semicontinuous and inverse images of points
under K are compact (by (2) and K6nig’s lemma). It follows from this that if X is
a subspace of a Hausdorff space Y whose open sets are Souslin-# then X is Bo-
relian-4(Y). Indeed

iy # 1 (otherwise K()

¢ = U K@x{a}
ﬁsAN

is closed in Y'x 4 (by semi-continuity) and “vertical” sections are compact. Hence
by Novikov’s projection theorem, as generalized by D. G. Larman [11], X = projy®
is the complement of a Souslin-# set and being analytic is Borelian-4(Y) by
Lusin’s Separation Theorem. (This argument was observed in [14].)

Thus X is in some sense absolutely Borel. Is every (metrizable) descriptive
Borel set meta-Souslin? Or, perhaps, must a meta-Souslin set necessarily be & ,; in

“any extension? Added in proof: Yes. See atend.

§ 2. Proofs of Theorems. The proofs of the “meta’” and “para” cases of
Theorems 1-3 are almost identical. We therefore prove the “meta” cases first and
then indicate what minor changes are needed for the “para” case.

Proof of Theorem 1. Assume X has a meta-Souslin representation as in the
definition and let % be a given cover of X; we have to find an open point-finite re-
finement of % covering X. Observe that for any a e AY there is a finite number of

sets, say Uy, ..., U, in % so that
K@cU;u..u U
(since K{a) is compact), thus by clause (iv) there is N so that
Viday, s apyUy v ..U Uy

With this in mind we put

S ={@a,...a)e U A": I finite subset of # with V(a;, ..., a)= U’}
m=1
and let
T={(a,, .., a)€S: (ay, ..., BGy-1) ¢S},

i.e., the set of sequences in S of minimal length. Note that T as a tree (ordered by
extension of sequences) has no infinite branches. For each (a;, ..., 4,) € T choose

a finite system %(ay, ..., a,)S% so that V(ay,..,a)s U%(a,, ..., a,) and let
V(s ens @) = {V(@g, s ) O u: Ue(a, .., a)}»
V= U V(0g, oo, Gy) -
(ag, weyt)eT

pil
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We claim ¥ is a point-finite refinement. To prove this consider for any x e X the
{ree
Te={(ay, ... m): InZk(@y, ., Qs s

a)eT and xe V(ay, ..., a)} .

Each level of T, is finite by (2) and, by definition of T}, T, has no infinite branches.
Hence by Konig’s lemma T, is finite. Thus by clause (i):

KVev: xe V}<|T, max |%ayy s a)]

(aty e ,n,_,') eTxnT

Evidently ¥ is a cover: given x € X, there is an g*e 4" with x e K(a*%). By our
initial step, there is a least n so that V(a¥, ..., a}) is finitely covered by #. Thus
@}, ..,aNeT.

Para-Souslin case. This proceeds as before but now we show that " is

locally-finite. Consider x € X. Choose for each n an open set W, with xe W, so
that

{(a,,..,a)e 4" V(ay, ...,
We may assume W, 2W,=... This time we take

To={ay, s ) 3@y, s &, s @) €T and V(ay, ..., a) 0 W, # O} . ‘
Here again T, has finite levels and no infinite branches, hence is finite. Let
sa)e T}

a,) W, % @} is finite.

m = max{n: (a,, ...
Then with W = W, ., we have
HVe?: VA Ws@)<|T) max

% (ay,s ey at)] -
15000 ,0n) €T g

Indeed Ve implies V= Un Via,..
Ue¥(ay, ..,

¢ T, we have

,a,) for some (a,..,a)eTl and
a,). Suppose V' o W # @. Evidently if n>m, then since (a;, ..., A1)

Viag, s tus )0 Wy = @

and so
VO WSV(ay, s pyy) O Wy =9
Thus n<m, but then ¥(a;, ..., 4,) N W, # &, hence (ay, ..., a,) & T,.

Note. The choice of T above is an implicit use of the paracompactness of the
Baire space 4" (qua countable product of discrete spaces).
Proof of Theorem 2. We have to obtain a meta-Souslin representation of X
. . p 3 @
given that X is metacompact and Cech-complete. Write X = N G, where each G,
n=1
is open in BX. Define inductively a sequence of Ppoint-finite open covers of X
{¥,: ne N), by demanding that

¥ refines {U ~ X: U open in BX and dgpyUcsG,},

¥4y tefines {Un X:' U open in X, c],mUcG,,+1 and, for some Ve?v",
cdyUn XcV}.
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Note that the last collection is a cover of X because X is regular. If we allow @€ ¥,
then a set A (of cardinality sup|¥",|) may be found so that

(@) ¥, = {Vlay, ...,
(b) clxV(ay, ...\

a): @y, ...,a,€ A4},
Uy VEV (@5 ooy i)

and the indexing in (a) satisfies (2) of clause (i) of the definition of meta-Souskin
representation. We indicate a construction for (a) and (b): Write ¥y = {¥ ()1 a <k}
where k, = |#7,|. For each a<k, define inductively,

¥,(@) = {Ve ¥, ey VeVEdINU ¥ 2(B).
B<a

Now let

) 1 a(a) = {V(m},az): oy <k,}

where k, = |¥",| and some or all members may be @ if k; is too large an index set.
Continue inductively and then replace k,, k,, ... by an upper bound. Since we do
not repeat non-empty sets in this process, it is clear that (2) will hold.

We now observe that for a e A", we have
@

o0
N clge¥(ay, . a)s NG, = X,
n=1 n=1
hence

K(a) = ﬂ V(ay, s ty)

:DB

IXV(a,, ) = X o dp(Viay, s ) _
n=1

Ds

]ﬂxV(ﬂj AN
since the latter is a subset of X. Thus K(g) is compact.

Finaily consider G open in X with K(a@)=G. Choose U open in BX thh
G = Un X, then

0 ClyxV (@ys s a)E U
p=1

By compactness of BX there is N so that

m clyyVlay, s a)SU.

n=1

clpxViay, ..., ay) =

Thus

V(dy, sty ) EX O clgyV(ay, o, a)sXn U= G.

Proof ;)f Theorem 3. This is entirely combinatorial. Let {X,: meN) be
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a sequence of meta-Souslin (para-Souslin) spaces. We may assume that for one
and the same set A

Xo= U U V. ..,a)

acdAN a=1

is a meta- (para-) Souslin representation. Define

: o
W(tll 3 veen a,,) = I_[ V,,,(azm--‘, A3.am=1, Ug. am=1, .10, A 2500 1);_m~x) _[_[ ’\,m )
1= meket |

where n = 2%~ Y2s—1) and, for each m<k, s, satisfics

m
277125, ~ ) <n< 2" (25,4 1) .

It will be noticed that k<#n and that for each m <k we have extracted from a, , s 4,
a subsequence corresponding to indices which are odd multiples of a fixed power
€2m"1) of 2. It is a routine exercise to check that

U ﬂ W(d1,...,

aeAN n=1

o0
is a meta- (para-) Souslin representation of [] X,. The combinatorial trick is stan-
n=1
dard in descriptive set theory.

Proof of Theorem 4. The proof is due to Kunen. Let X have a para-Souslin
representation. By Theorem 1, X is paracompact and so is normal, hencs oompletcly
regular. Thus SX exists. Recall that an open set U is said to be regulur if int(clU) =
(of course if ¥ is open then int(cl V) is regular). Appealing to the condition (3) for
, 4 para-Souslin representation, construct a cover %, of X consisting of regular opmn
sets U, refining 47, so that for each U in U, the set

(4) {(ay. ..., a): V(a,, ..

is finite. Now define in BX the open set -

,a)n U # 3

G, = {int,,xclﬂ U: Usa,) .

Clearly X< ﬂ G,. We prove that this is in fact an eqlullty

n=1

n=1

Consider pe ﬂ G\X. For each n choose U, €U, so that pe intelyyU, nnd_
choose a zero set Z, of X with '
peclpZ,sintely,U,,
(beczj\usc {r} = ZQp clgxZ, cf. [7]). Thus (on intersection with X) Z,=U,. Observe
that since Z;ep all 7, we always have Z,

T, = {@a,, ..,

N..nZ, # . Now let
a): 3Zep)ZsViay, .., a)}.

icm°
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We have just shown that T, is infinite, because %, refines #7,. We next claim that 7T,
is finitely branching. For, consider any (4, ..., q,) with V(a;, ..., @) n U, = .
Thus if Z&V(ay,...,a,) then ZnZ,cZ N U, = G, hence Z¢p by our earlier
observation. By finiteness of (4), T, is finitely branching. Thus by Konig’s lemma
there is a branch a* e 4" passing through T,.Choose ZF e p with ZF =V (4}, ..., a»)-
Now p ¢ K(a*) so there is a zero-set Zoep with Z, n K(a*) = & (since by
definition K(a) is compact). By clause (iv) of the definition of a para-Souslin rep-
resentation, there exists N so that Zy n V(d], ..., af) = . But
B#Zy,nZin .. nZFSZyn V(a) N ... 0 V(ay, ..., ay) -

©

This is a contradiction. Hence X = [\ G,. This completes our proof.
n=1

§ 3. Generalization to p-spaces. We recall that a space X is called a p-space
(Arhangel’skii [1]), if there is a sequence {%,: ne N) of families of open subsets
of BX such that for xe X

xe ) St(x, %)X,
n=1

where St(x,%,) = U {Ue%,: xe U}.

Theorems 1-3 continue to hold, provided we weaken clause (iv) to read:

(iv)’ for each a € AN with K(g) # @ and for every open set U of x with U2K(a),
there is » so that V(a,, .., a)cU.

We shall call such representations weakly meta-Souslin or weakly para-Souslin
according as (2) or (3) is invoked in clause (i). We now have:

THEOREMS.

1'. Every weakly meta-Souslm/weakly para-Souslin space is metacompactf
paracompact.

2'. A p-space is metacompact[paracompact if and only if it is weakly meta-
Souslin/weakly parg-Souslin.

3. A countable product of weakly meta-Souslinjweakly para-Souslin spaces
is again weakly meta-Souslinjweakly para-Souslin.

4&'. A Hausdorff space is a paracompact p-space if and only if it is weakly para-
Souslin.

Proof. It is easily checked that weakening clause (iv) does not affect the proofs
of Theorems 1 and 3. With regard to Theorem 2, one defines ¥, inductively so that

¥, tefines {Un X: U open in X and (U’ e % )clixsU},
¥ .4 refines {Un X: U open in BX and (AU’ €Uy 4)elxUS U’ and
@Ve¥)clyUn X<V}
Writing as before V(a;, ..., a4} = X n Ulay, ...
we need to show that

, a,) with U(ay, .., @,) open in BX,

(@) = ﬁ Vidgs oo @)
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s compact. So let x € K(a) (if K(a) = 9, this is already compact) and consider that

xeK@es N clyxUa,, ..., a,) .
1

n=1

Thus for each n, xeclyxUlay, ..., a,); but by definition of ¥7, there is U’'e%,

30 that
xeclyUlay, oya)EU".
Hence :
clgUfay, ..., a,) SSt(x, %,) .
Thus k

n=

o o
N clpxUlay; oy a)s ) Stlx, %) X;
n=1 1

that is, for K(a) # @ we have

o

K(_[_l) = V(ala -~-:un)
n=1

0 clxV(ay, s @yys)
N X N elpxUlay, ., @y g)

N cpxUlay, ..., a,) .
n=1

I

which implies clause (ii) and (iv)’. ‘
To see that the Souslin-representation “covers” X, note that for any xe X
the infinite tree

T. = {@a, .., &): xeV(ay, .., a,)}
if ﬁnitclj.v ‘branching both in the case of point-finiteness and, a fortiori, local-finiteness
assumptions. By Konig’s lemma there is a branch a* € A" through T, and we have
xe N Vi, ..., a*) = K(a*). ’
n=1

Minor alterations to the proof of Theorem 4 yield Theorem 4’ as follows. In

place of G, consider
9, = {intgxclyxU: Ued,} .
. ‘

Then for fixed x & X assume p e 01 St(x, 4,)\X and consider, instead of T, the tree

Tpn = {(ay, .., a): 3IZepZsV(ay, ..,4,) and xe V(g ..., a,}.

As before this is infinite and finitely branching. If a* e 4" i
hen e K D g If a is a branch through T, ,;

Remarks. 1. The Lindeldf case of the main theorem holds good for p~spaces,
because we may choose ¥, (as above) to be countable subcovers. Thus 4 = N and

icm
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we obtain a “weak Souslin representation” (clauses (i)—(iv)’ obeyed). Now the
refinement ¥ of Theorem 1 is countable, from which it is a quick step to obtain
a countable subcover from %, We have: ’

A p-space is Lindelsf if and only if it has a weak Souslin representation.

2. Any metric space is metacompact and so is weakly meta-Souslin. (Let
Viay, ..., a,) refine the balls of radius less than 27".)

§ 4. Some further generalizations. It is possible to modify clause (i) to obtain
other classes of spaces preserved under countable products. We note two examples
relating to perfect normality and paracompactness.

4.1. A dlass of perfectly normal spaces. Consider a space representable in the
form )

X= U ﬁV(a,,‘..,a,,)

aedN =1

where in addition to clauses (i) and (iv) of Section 1 we also require that
QY ¥y = V@, o, 01 yy s G € A} I8, for each n, o-closure preserving,
oo
i, ¥, = U ¥ and, for each m, <l'U ¥ = {cl¥: Ve¥,} for any subset
m=1
¥, of ¥ (meaning that ¥ is closure preserving).
@) clyV (@, s Gpar) SV(@1, o5 a4 for all a,, ..., @,+1 € 4, and, moreover,
each K(a) is empty or a singleton.
Such a space X is necessarily perfectly normal. For, given G open in X, let
F = {V(ays s @)% V(@15 oes a)<G}.
By (i) write ¥ = J %™, Then by (iii)’ and (iv)
G=UdU )
so that G is a countable union of closed sets. To deduce normaiity consider two
disjoint closed subsets A, B of X. Take G above to be X\B. Write ¥, ={J ¥~ ™
then AS U Visyy and
BacyVpseny=9.

The sets ¥4 1) may now be used to separate 4 and B (compare Wilansky n71p. 7.

This class of spaces is obviously countably productive. It is equally clear that
a space thus representable (perhaps “analytically normal” might be a name for this)
has the further property that any open cover has an open o-closure preserving
refinement and so is paracompact.

4.2. A class of paracompact spaces.

TueoreM. Let X have a Souslin representation with clause (i) modified to require
that for each 1 {V @y, cves B)7 Qas oens B € A} is o-discrete (cf. Hansell [8]). Then Xis
paracompact.
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Proof. We argue as in Theorem 1. Let % be an open cover of X and for each n let

o
Vag, .o, a): ay, vy a,€ Ay = J Voo

m=1

with each V, discrete. Now put

S o= {(ay, ...,a): V(a,,..,a)e V) and 39’ finite subset

of % with V(a,, ..., a)s Uu'}.
We have .

A~=0 U

nym
T (@, . an)eSh,

{bed™: (by,...b,) = (@ ... )} .

Let
Tn = {(a;, ... a,) € Sp: non Fk<n non Ih(a,, ..., o) € S} .

Then, since T,; picks out sequences of minimal length,

AN = U U {bEAN: (bl’ "7bn) = (“La s au)}

nomn
81y an) T,

and the summands are thus mutually disjoint. Now for (ay, ..., a,) € T}" choose
a finite system %(ay, ..., @,)S% covering V(a, ..., a,). Then

V(@0 8) = (U V(ay, ..., 0): UeWU(ay, ..., a)}
is finite, so that ’
Vyn= U

nm

¥ (ay, .., a,)

{8150 ,8n) €T,

is o-discrete (since V. is discrete) and finer thau %. Hence

U = U %n,m
nm

is a o-discrete open refinement of % covering X. Thus X is paracompact (cf. Engel-
king [4] p. 376).

Again the property envisaged by this kind of Souslin representation is preserved
under countable products.
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talk given by D. Strauss for which I am most grateful. It is a pleasure to acknowledge
conversations with K. Kunen of which Theorem 4 is the fruit.
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Added in proof. We have two observations to make.
1. Any regular meta-Souslin space X with representation (1) subject to 4 being countable

is an Fgs subset of any regular space ¥ containing X, To see this choose for each a, ..., an
in A a.set W(a, ..., an) open in ¥ so that

V@, s tn) = Wiay, o, a) 0 X

icm°
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Now put
T(ar, oo an) = {(@1; s Ony -oe5 am); CSly W (@, w., am) € Wiar, ..., @)} »
Yi={ye¥: @ distinct ,, ..., 0% in 4" y & W(o) N ... 0 W} .

Then Y is open and so

0 w0 "
z=00 Unrr
n=1 k=1
is Fqs and by hypothesis on the representation of X we have X = Z. Assuming, without loss
of generality, that X is dense in Y, we obtain X ¢ W, where

W= ﬁ U U cly W (b1, woes br) -

n=1 (agyeees@n) (B1seassbm) € T{(A150eesn)
But W is an Fyg set in Y and finally, by Konig’s Lemma, we have
X=2ZnW.

1 am grateful to Leo Harrington for the idea of using the set Z.

2, Jozef Chaber has pointed out to us that a completely regular space with a weakly
meta-Souslin representation is necessarily a p-space. We thus have a characterization of meta-
compact p-spaces. To prove this observe that the open covers Up = {¥' (a1, ... Gn): a1, -0y Gy € 4}

@

satisfy the condition (p) that if V&%, and () ¥» # @ then for any centered family & such
n=1

that for each n there is 4 in #& with A & Vu we have ) {4: 4 € 4} # @. We omit the details.
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Sur les fonctions de deux variables équicontinues
par rapport a une variable

by

Zbigniew Grande (Elblag)

Résumé. Dans cet article on considére la mesurabilité (la propriété de Baire) d’une fonc-
tion f: X x.Y--R définie sur le produit cartésien d’un espace topologique X et d’un espace me-
surable Y (et d’un espace topologique Y) dont toutes les sections f¥ sont équicontinues et
toutes les sections fx sont mesurables (ont la propriété de Baire).

Soient (X, T;) et (Y, T,) des espaces topologiques et R I’espace des nombres
réels. 8i X = ¥ = R et Ty = T, est la topologie euclidienne et si f: RxR— R.
est une fonction, la mesurabilité (au sens de Lebesgue) de toutes les sections f ()
= f(x, ) (x, y€ R) et la continuité de toutes les sections f¥(x) = f(x, y) impliquent
la mesurabilité (au sens de Lebesgue sur le plan R x R) de la fonction f. Ce théoréme
ne reste plus vrai dans le cas des fonctions réelles définies sur le produit de deux
espaces topologiques. En effet, ’hypothése du continu implique I’existence d’une
fonction f: Rx R— R non mesurable au sens de Lebesgue et telle que toutes ses
sections f, sont mesurables au sens de Lebesgue et toutes ses sections f* sont appro-
ximativement continues (donc continues relativement a la topologie de densité [2]).
Dans Iarticle [3] les auteurs examinent les cas particuliers dans lesquels le théoréme
considéré reste vrai.

Dans la premiére partie de cet article je démontre que ’équicontinuité de toutes
les sections £, d’une fonction f: X'x ¥ — R (X et Y étant des espaces topologiques)
et la u,-mesurabilité (propriété de Baire) de toutes les sections f” impliquent la
1 X fiz-mesurabilité (propriété de Baire) de la fonction f, en admettant des hypo-
théses supplémentaires sur les mesures g, et j,.

Dans la deuxidéme partie je démontre que I’équicontinuité approximative de
toutes les sections f;, d’une fonction f: IxI— R, ot I = [0, 1], et que la propriété
de Baire par rapport 2 la topologie euclidienne de toutes les sections f* impliquent
la propriété de Baire par rapport  la topologie euclidienne sur 7'x I de la fonction £,
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