icm

On the dimension of increments of Tychonoff spaces
by
A. Ch. Chigogidze (Thbilisi)

Dedicated to Professor G.S. Chogoshvili
on the occasion of his 65-th birthday

Abstract. All spaces are to be completely regular and Hausdorff. The present paper is an
investigation of the following problem of extensions of spaces: find a characterization of those
spaces X which possess the Wallman realcompact extension [12] ¥ whose increment Y— X has
dimension not exceeding # (7 be an integer > —1).

The present paper is motivated by problems which relate extensions Y of
a space X and the dimension of the increment ¥ —X. Let £ be a topologically closed
class of spaces and n be an integer, Then find a characterization of those spaces X for
which there is an extension ¥ e & whose increment ¥— X has dimension not exceed-
ing n. Classes of spaces which have been considered are the class of bicompact spaces
(see for example [9], [10], [11]) and the class of topologically complete spaces [1].
For these classes characterizations have been found. Two general approaches to this
problem (for metric spaces) are given in [2], [3].

To the best of our knowledge, the class of realcompact spaces have not been
considered earlier. In the present paper are given characterizations of those spaces X
which possess the Wallman realcompact extension ¥ whose remainder Y— X has
dimension not exceeding ». But it should be observed that we comsider only part
(in general, proper part) of the class of all realcompact extensions of Tychonoff
spaces, On the other hand, this part is sufficiently rich in elements. In acknowledg-
ment of this recall onc fact from [12], which confirms that if X is not Lindelsf and
not pseudocompact then X has infinitely many Wallman realcompactifications,

1. Notations and basic definitions. All given spaces are assumed to be com-
pletely regular and Hausdorff, that is Tychonoff spaces.

Collection of all zero-sets of a space X is denoted by Z(X). If X< ¥, then
Z (X, Y) denotes the trace of & (¥) on X. Let £(X) denote the family of all nest
generated intersection rings in X [12], Tt is easy to see that % (X) is precisely the family
of all collections & (X, ¥) (X is fixed). In the present paper we consider the Wallman
bicompactification w(X, #) and the Wallman realcompactification v(X, %) as-
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sociated with a given element # of & (X) [12]. When there is no question as to the
space X, we will simply write (%), v(#). Collection of complements (in X) of
elements of collection & (X, Y) is denoted by 4% (X, Y). R denotes the space of
real numbers.

1.1. DEFINITION, Let X< Y. We shall say that a space X is realcompact with
respect to Y if X = o(X, Z(X, Y)). :

It is easy to see that the notion of relative realcompactness generalized the
notion of usual realcompactness. Really, if a space X is z-embedded in Y then
Z(X, Y) = Z(X) [4], and hence, the Wallman realcompact extension, which is
constructed by means of collection & (X, ¥), coincides with the Hewitt realcompact-
ification of a space X. This shows that Definition 1.1 transforms, in this particular
case, into the definition of the notion of usual realcompactness.

The following proposition directly follows from the construction of the Wallman
realcompactification [12].

1.2. PROPOSITION. Let Y be any bicompactification of a space X. Then X is
realcompact with respect to Y if and only if for each point p e Y~ X there is a con-
tinuous f on ¥ with f(p) = 0 but f(x) # 0 for all xe X. In other words, if and only
if each pe Y—X is contained in a zero-set of Y which does not meet X.

The following proposition is to be contrasted with the absolute case, where
the union of two realcompact subspaces may fail to be realcompact.

1.3. PROPOSITION. Let X,, X,, ..

Then \) X, is realcompact with respect to X.

n=1
o0

Proof. Consider the bicompactification X’ = clgx Y of Y= X, and let
n=1

PeX’'—Y. For each n with p¢clyy X,, we can use complete regularity to find
a continuous f;: fX — R such that f,(p) = 0 but £,(x) # O for all xe X,. But for
each n with p e clgy X,,, we can use Proposition 1.2 (it is easy to see that each X, is
realcompact with respect to clyx X,) to find a continuous g,: clgx X, — R with
gx(p) =0 but g,(x) 5 0 for all xe X,; then extending g, from the bicompact space
clpx X, to all of BX; we again find a continuous f,: fX — R such that f,(p) = 0 but
Jux) # 0 for all xeX,. Let:

f= T2 AIAD.
Then f(x) # O for all xe ¥, but f (p) = 0. Restricting f to X’ and using Prop-
osition 1.2, we have the desired result.

1.4, CorOLLARY [4]. If the Tychonoff space X is the union of a countable family
of z-embedded realcompact subspaces, then X is realcompact.

The following propositions are proved such as the respective propositions’ of
the classical theory of realcompact .spaces [8].- . e '

.S X all be realcompact with respect to X. 4
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L.5. PROPOSITION. Let X< Y and A is closed in X. If X is realcompact with
respect 1o Y, then A is also realcompact with respect to Y.
1.6. PROPOSITION. An arbitrary intersection of subspaces of a given space X,
each of them is realcompact with respect to X, is realcompact with respect to X.
L1.7. PROPOSITION. Let F,e Z(X,) and X, is realcompact with respect to
w(F,). Then [] X, is realcompact with respect to TTw(#).
@ .

An essential role in the present paper play the notions of the relative dimen-
sions d and I [5], [6]. Let us recall their definitions:

1.8. DEFINITION. Let X< Y. The covering dimension of X with respect to ¥,
denoted by d(X, Y), is defined as follows: d(X, Y)<n if every €% (X, Y)-cover
of X (under 2 (X, Y)-cover of a space X we mean a finite cover of X' members
of which are elements of collection ¥2 (X, Y)) has a ¥% (X, ¥)-refinement of
order at most <n-+1.

1.9. DEFINITION. Let X< Y. The large inductive dimension of X with respect
to Y, denoted by I(X, Y), is defined inductively as follows: I(X, ¥) = —1 if and
only if X = @. For a non-negative integer n, I(X, ¥)<n means that for every
pair Zy, Z, of disjoint elements of collection % (X, Y) there are Ze Z (X, Y),
01, 0,€4Z(X, Y) with X~Z = 0,00, 0,n 0, =0, 2,20, (i =1,2) and
Z, Y)sn—1.

Ind, X denotes the large inductive dimension of a space X with respect to X.

2. Covering realcompactness degree.

2.1. DerRINITION. Let X< Y. Under R(X, Y)-border cover of a space X we
mean a finite family {0} of elements of collection €% (X, ¥) such that X—{J 0, is
realcompact with respect to Y. The covering realcompactness degree of a space X
with respect to Y, denoted by R-d(X, Y), is defined as follows: R-d(X, Y)<n if
every R(X, Y)-border cover has a R(X, Y)-refinement of order at most<n+1.

R-dim X denotes the covering realcompactness degree of a space X with respect
to X. :

2.2. LeMMA. Let F € £(X). A family {O,, ..., O} of elements of collection €F
is a R(X, w(#))-border cover of X if and only if there are cozero-sets Hy, ..., Hy
of W(F) with Hyn X = 0, and v(¥F)—X<|J H;.

Proof. Let {0} be a R(X, w(#))-border cover of X. By Definition 2.1, there
are cozero-sets H; of w(#) with H;n X = 0;. Consider sets H; = H; n v(F).
1tis easy to see that Hie €% (v(F), w(ﬁ")) and hence, by Proposition 0.4 from [5],
v{F )~ H] = cl,z(X—0)). So, by Proposition 0.2 from [5],

o(F)—U Hi = clye(X~U 0) .

By Definition 2.1, Propositions 0.3 and 0.4 from [S], clys)(X—{) 09 = X-|) O,.
Thus v(#)—|J Hj < X and hence v(#) - X < H;. Itisclear now that v(#) - X's UH;.
Conversely, suppose {H;} are vozero-sets of w(F) with H;n X = 0, and
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v(F)—~X< U H;. Consider sets H; = H; N v(F). It is easy to see that v(F)— X<\ H]
and H{n X = 0,. Obviously, X—) 0, = v(#)— HicX. Hence X—{J O, is
an element of collection & (v(F), w(#)) and by Proposition 1.5, X—J O, is real-
compact with respect to w(#). Finally, by Theorem 2.2 from [12],

0, 6F = CL(X, w(F)).

Thus, {0} is a R(X, w(#))-border cover of X.

2.3. THEOREM. If & € (X)), then R-d(X, w(F)) = d(v(F)-X, Ww(F)).

Proof. Suppose d(v(#)— X, w(F))<n, and let {O;} be a R(X, w(F))-border
-cover of X. By Lemma 2.2, there are cozero-sets H, of w(#) with H,n X = 0;
and »(#)~X<{) H;. By Theorem 3 from [6], there are cozero-sets H; of (%)
of order<n+1 with HicH, and v(#)—X<{) H{. By Lemma 2.2, {H] A X}is
a R(X,w(#))-border cover of X of order<n+1, refining {0;}. Hence
R-d(X, w(F))<n.

Conversely, suppose R-d(X, w(F))<n, and let {0} be a €% (v(F)— X, w(F )
cover of v(#)— X. There are cozero-sets O} of w(F) with Oin (v(ﬁ)—-X) = 0,
It is easy to see that v(#)—X<U) 0. By Lemma 2.2, {0}~ X} isa R(X, w(F))-
border cover of X and hence it is refined by a R(X, w(#))-border cover {G;} of X of
order<n+1. By Lemma 2.2, there are cozero-sets {Gi} of w(#) with G} n X = G,
and o(F)— X< G;. Itfollows from the density of Xin w(#) that order {Gir<n+1.
Consider sets Gin (0(#F)~X). It is easy to see that {G;n (v(#)—X)} is
a €Z (v(F)— X, w(F))-cover of v(F)—X of order<n-1. In order to prove our
theorem it will suffice to show that G; n (v(F)—X ) 0,. 1t follows from the pre-
ceding reasonings that G,0;n X and hence X —G;2X—(0; n X). Then

c],,(y,-)(X—Gi)EC],,(g)(X— O;n X))
and
0(F) —clys (X~ G) S0(F) ~ el X— (0} X))
On the other hand,
G N o(F) = v(F)—cly(X-G)
and
0i 0 v(F) = o(F)—clyg(X—(0} n xX)).
(Propositions 0.3 and 0.4 from [S]). Hence G}n o(#)< 0| v(#) and s0,
Gin (v(F)-X)=0; n (v(#F)-X) = 0,.
The proof is complete.
2.4. COROLLARY. R-dimX = d(vX~ X, fX).

2.5. COROLLARY. Let # e Z(X) and v(F)—~X is z-embedded in w(&F), then
R-A(X, w(#)) = dim((#)—X).
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2.6. COROLLARY. If bX be an arbitrary bicompactification of a pseudocompact
space X satisfying the bicompact axiom of countability [10], then R-d(X, bX)
= dim(bX—-X).

2.7. COROLLARY. Let X< Y. Then R-d(X, Y)<d(X, Y).

Proof. Let # denote a collection 2 (X, Y). It is easy to see that & e £ (X).
By Theorem 2.2 from [12], # (X, w(#)) = & and hence R-d(X, ¥) = R-d(X, w(F))
and d(X, Y) = d(X, w(#)). So, in order to prove our corollary it will suffice to
show that R-d(X, w(#))<d(X,w(%)). By Theorem 2.3, R-A(X, w(F))
= d(v(#)~X, w(#)); by Theorem 2 and Proposition 1 from [61, d(x, w(&F)
= dimw(#) and d(v(F)~ X, w(F))<dimw(F). Thus R-d(X, w(F)<d(X, w(F)).

o0
2.8. THEOREM. Let X< Y and X = |} B; with B;e # (X, ¥) and R-d(B;, Y)<n.
i=1
Then R-d(X, Y)<n.

Proof. Let & denote a collection & (X, Y). It is easy to see that & e Z (X).
By Theorem 2.2 from [12], Z(X, w(%)) = & and hence R-d(X, ¥) = R-d(X, w(F)).
It is not difficult to see that the following equalities also holds: R-d(B;, Y)
= R-d(B;, w(#)). So, in order to prove our theorem it will suffice to show that
R-d(X, w(F))<n.

It is clear that X<{J cl,(B)<v(#F). By Proposition 1.5, cly#y(BY is real-
compact with respect to (&) and hence, by Proposition 1.3, {J cly (B also is
realcompact with respect to w(#). By Proposition 0.1 from [5], v(Z) is the smallest
space between X and w(&), which is realcompact with respect to w(#). Hence
U ely#y(B)) = v(F). Then we have

v(F)~ XU {cly#(B)—B;} .

It is easy to see (cach B;, as an element of a collection &, is a closed subset of X ),
that the converse inclusion also holds. Thus
o(F)-X =) {Clu(m(Bi)—Bi} .

By Theorem 2.3, d(clys)(B)—B;, w(#F)) = R-d(B,, w(F))<n. By Prop-
osition 0.3 from [5], cly#(B;) is an element of a collection Z(v(&), w(&F )) and hence
clys)(B)— B, is an element of Z(v(F)— X, w(F)). By the countable sum theorem
for relative covering dimension d (Theorem | from [6]), dv(F)- X, w(F))<n
and hence, by Theorem 2.3, R-d(X, w(F))<n.

" It is easy to find realcompact spaces whose subspaces are not necessarily real-
compact. Hence a general monotone property for covering realcompactness degree
is not possible, But we have the following

2.9. PROPOSITION. If"X; Yand BeZ(X,Y), then R-d(B, Y)<R-d(X, Y).

Proof. Suppose R-d(X, Y)<n, and let {O;} be a R(B, Y)-border cover of B.
By Definition 2.1, there are sets O; with O;e 42 (X, Y) and Ojn B = O,. It is
edsy to see that {0} u {X—B} is a R(X, ¥)-border cover of X, and hence it is
refined by a R(X, Y)-border cover {H;} of order<n+1. Then, by Proposition 1.5,
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{H;~ B} is a R(B, Y)-border cover of B of order<n-+1, refining {0,}. Hence
R-d(B, Y)<n.
2.10. CorOLLARY. Let X< Y and R-d(X, Y)<n. If B be a subset of X which
is a countable union of elements of collection % (X, Y), then R-d(B, Y)<n.
Proof. This follows from Theorem 2.8 and Proposition 2.9.

2.11. COROLLARY. If G be a cozero-set of a space X, then R-dimG<R-dim X,
2.12. Remark. Let A< B< C and B is realcompact with respect to C. If B satis-
fies the first axiom of countability, then A is realcompact with respect to C. Really,
it is easy to see, that each point b of B is an element of a collection 2 (B, C), and
hence, by Proposition 1.3, B—{b} is realcompact with respect to C. By Prop-
osition 1.6, 4 = [} (B—{b}) is also realcompact with respect to C.
beB—A

2.13. THEOREM. Let M= NS X and N satisfies the first axiom of countability,
then R-d(M, X)<R-d{N, X).

Proof. Suppose R-d(N, X)<n, and let {O,} be a R(M, X)-border cover of M.
There are elements H; of collection €% (N, X) with H; " M = O;. Aset H = ) H,,
as a finite union of elements of collection ¥ (N, X), also is an element of % (N, X)
and hence, by Corollary 2.10, R-d(H, X)<n. It is easy to see that a cover {H,} of H
is.a R(H, X)-border cover of H and hence it is refined by a R(H, X)-border
cover {G;} of H of order<n+1. A set H—|J G;, as a subspace of N, satisfies the
first axiom of countability and hence, by Definition 2.1 and Remark 2.12,
M ~ (H=-{) G;) is realcompact with respect to X. Consider a collection {G; n M}.
It is easy to see that {G; n M} consisting of elements of collection ¥% (M, X),
refining {O;} and has order<n+1. Now we show that {G; n M} is a R(M, X)-
border cover of M. Consider a set M~—{) (G; n M). Tt follows from the above
reasonings that :

M-UGnM)={M-)0}u{MnH-JG)}.
Evidently, both members in the right part of this equality are realcompact with
respect to X and hence, by Proposition 1.3, their union M—|J (G; n M) is also

realcompact with respect to X. Thus {G; n M} is a R(M, X)-border cover of M.
Hence R-d(M, X)<n.

2.14. COROLLARY. If A be an arbitrary subspace of perfectly normal space X,
then R-dim ASR-dimX.

2.15. THEOREM. [f M, N X, then R-d(M U N, X)<R-d(M, X)+R-d(N, X)+1.

Proof. Suppose R-d(M,X)=n, R-d(N,X)=m, and let {0;} be
a R(M U N, X)-border cover of M u N. Consider a collection {O; n M}. 1t is
eagy to see that O; n M e 4% (M, X) and hence M' = |J (0;n M) is also an ele-
ment of collection ¥2(M, X). By Corollary 2.10, R-d(M’, X )<n. Hence a cover
{O:n M} of M’ is refined by a R(M’, X)-border cover {G,} of order<n+1. By
Definition 2.1, M'— G; = Z, is realcompact with respect to X, By Lemma 1
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from [6], there are sets Hy, ..., H, of order<n+1 with H;e€Z(M U N, X),
H;nM = G; and H;<0,.

We can use the preceding process (but with respect to N) to find sets Tiy ey Ty
of order<m+1 with T; e 4% (M U N, X), T;<0; and a set Z,, which is realcom-
pact with respect to X,

Consider a family w = {H,} U {T,}. In order to provethat wisa R(M U N, X)-
border cover it will suffice to show that (M v N)-U (H; U T) is realcompact with
respect to X. Tt is not difficult to see that .

Mo N)-U (H,uTY)s{M U N)~| ojuz, uz,.

Each member in the right part of this inclusion is realcompact with respect
to X, and hence, by Proposition 1.3, their union is also realcompact with respect
to X. (M v N)—{ (H; u T, is closed in this union and hence, by Proposition 1.5,
wis a R(M U N, X)-border cover of M U N. It is easy to see that o refines {0}
and order {w}<n+m+2, Thus R-d(M U N, X)<n4+m+1.

2.16. COROLLARY. Let M and N be subsets of X. If M U N satisfies the first
axiom of countability and N is realcompact with respect to X, then R-d(M u N, X)
= R-d(M, X).

Proof. By Theorem 2.15, R-d(M U N, X)<R-d(M, X)+R-d(N, X)+1
= R-d(M, X). By Theorem 2.13, the converse inequality also holds.

2.17. COROLLARY. Let X be a perfectly normal space with X = M U N and N is
realcompact, then R-dim X = R-dim M.

In general, when the first axiom of countability does not hold, we have

'2.18. PROPOSITION. Let BEXS Y and B be a countable union of elements of
collection % (X, Y). If X—B is realcompact with respect to Y, then R-d(X,Y)
= R-d(B, Y).

Proof. By Theorem 215 R-d(X,Y)<R-d(B, Y)+Rd(X-B, Y)+1
= R-d(B, Y). By Corollary 2.10, the converse inequality also holds.

2.19 TueOREM. Let F & £(X). If d(B, w(F))<n for every element B of col-
lection & which is realcompact with respect to w(F), then dim w(F)<R-d(X, w(F))+
+n-1. i

Proof. Suppose {O;} be a %F-cover of X. By Definition 2.1, {0} is
a R(X, w(#))-border cover of X and hence it is refined by a R(X, w(F))-border
cover {H;} of order<R-d(X,w(#))+1. Consider set B = X—|) H;. By Defi-
nition 2.1, Be & and is realcompact with respect to w(#). So, d(B, w(F))<n. By
Theorem 3 from [6], there are elements {G;} of collection ¥# with B<|J G,,
G;< 0, and order {G;}<n+1. Evidently o = {H,} U {G,} is a ¥F -cover of X of
order <R-d(X, w(#))+n+2 refining {O,}. Thus (X, w(F)<R-d(X, w(F)+
+n+1. It is easy to see now that dimw(#)<R-d(X, w(F))+n+1 (Proposition 1
from [6]).

2.20. CoROLLARY. Let bX be an arbitrary bicompactification of a pseudocompact
space X. If dimB<n for every bicompact element of collection % (X, bX), then
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dimbX<R-d(X, bX)+n+1. Furthermore, if X satisfies the bicompact axiom of
countability, then dimbX<dim(pX—-X)+n+1.

2.21. COROLLARY. Let bX be an arbitrary bicompactification of a pseudocompact
space X satisfying the bicompact axiom of countability. If dim B<O for every bicom-
pact element of collection % (X, bX), then dimbX<dim(bX—X)+1.

3. Large inductive realcompactness degree. By replacing the empty set in the
definition of relative large inductive dimension (Definition 1.9) we get

3.1. DeFINITION. Let X< Y. The large inductive realcompactness degree of
a space X with respect to Y, denoted by R-I(X, ¥), is defined inductively as follows:
R-I(X, Y) = —1 if and only if X is realcompact with respect to Y. For a non-
negative integer n, R-I(X, Y)<n means that for each pair Z,;, Z, of disjoint el-
ements of collection % (X, Y) there are Ze Z (X, Y), 0;, 0, ¢Z(X, ¥) with
X—Z=0,V0,0,n0,=0,Z,20;(=1,2) and R-I(Z, Y)<n—1. R-Ind, X
denotes the large inductive realcompaciness degree of X with respect to X.

The small inductive realcompactness degree R-i(X, ¥) of X with respect to ¥
is defined by analogy with definition of relative small inductive dimension (X, Y) [5].

3.2. TaEOREM. If & € L(X), then R-I(X, w(F)) = I(o(F)— X, w(F)).

Proof of this theorem is given in [5] (Theorem 1.9).

3.3. COROLLARY. R-Indy X = I(vX— X, BX).

34. CoROLLARY. Let & € L (X).and v(F)— X is z-embedded in w(F), then
RI(X, w(F)) = Indo(v(F) - X).

3.5. CorROLLARY. If bX be an arbitrary bicompactification of a pseudocompact
space X satisfying the bicompact axiom of countability, then R-I(X,bX)
= Ind,(bX— X).

3.6. COROLLARY. Let X< Y. Then R-I(X, Y)<SI(X, Y).

Proof. Let & denote a collection Z (X, Y). It is easy to see that #F e & (X).
By Theorem 2.2 from [12], # = % (X, w(#)) and hence R-I(X, ¥) = R-I(X, w(%))
and I(X, ¥) = I(X, w(#)). So, in order to prove our corollary it will suffice to

-show that R-I(X, w(#)<I(X,w(#)). But this follows from Theorem 3.2,
Theorems 1.1 and 1.9 from [5].
3.7. COROLLARY. Let X< Y. Then R-d(X, Y)SR-I(X, Y).

o0
3.8. THEOREM. Let XS ¥ and X = |J B, with B;e #(X, Y) and R-I(B;, Y)<n.
i=1

Then -R-I(X, Y)<n.
Proof of this theorem is such as a proof of Theorem 2.8.
3.9. PROPOSITION. If XY and Be Z(X,Y), then R-I(B, Y)SRI(X, V).

Proof. Suppose R-I(X, ¥) = k. For k = —1 the result follows from Prop-
osition 1.5. We assume its validity for k<n—1 and suppose k<n.

Let Z,;, Z, be disjoint elements of collection % (B, Y). It is easy to see that
Zy,Z,e Z(X, Y), and hence there are Ze Z(X, Y), Oy, 0,e%% (X, Y) with
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X-Z=0,0V0,0,n0;=8,Z,c0;( =1,2)and R-I(Z, Y)<n—1. Consider
sets ZNnBeZ(B,Y), 0,nB, O0,nBe¥Z(B,Y). Clarly B—(Zn B)
=(0;"nB)U(0;,nB), (0, "B (0,0 B)=0, Z,=0;n B (i=1,2) and by
the induction hypothesis R-I(Z n B, Y)<SR-I(Z, Y)<n—1. Hence R-I(B, Y)<n.
3.10. COROLLARY. Let X< Y and R-I(X, Y)<n. If B be a subset of X which is
a countable union of elements of collection % (X, Y), then R-I(B, Y)<n.
Proof. This follows from Theorem 2.8 and Proposition 2.9.

3.11. COROLLARY. If G be a cozero-set of a space X, then R-IndyG< R-Ind, X.
As in the case of covering realcompactness degree, a general monotone property
for large induetive realcompactness degree is not possible. But we have the following
3.12. THEOREM. Let M=N< X and N satisfies the. first axiom of countability,
then R-I(M, X)<R-I(N, X).
 Proof. Suppose R-I(N, X) = k. For k= —1 the result follows from the
Remark 2.12. We assume its validity for k<n—1 and suppose k<n.
Let Z,, Z, be disjoint elements of collection Z(M, X). There are

7 F,FeZWN, X)withF;nM =2, (i=1,2). Evidently, G = N—(F, n F,) is an

element of % (N, X), and hence, by Corollary 3.10, R-I(G, X)<n. This means
that there are FeZ(G,X), G;,G,e%Z(G,X) with G—F= G UG,
Gy NGy =@, F,n GG (i = 1,2)and R-I(F, X)<n—1. Considersets Z = Fn M
and O;= G; n M. Evidently, Ze Z(M, X), 0y, 0, €% (M, X, M—Z=0,00,,
0, n 0, =@, Z,=0; and by the inductive hypothesis (clearly, FEN), R-I(Z, X)
< R-I(F, X)<n—1. Hence R-I(M, X)<n.

3.13. COROLLARY. If A be an arbitrary subspace of perfectly normal space X,
then R-IndgA<R-Indy X.

3.14. TueorREM. [f M, NS X, then R-I(M U N, X)<R- I(M X)+R-I(N, X)+1.

Proof. Let R-I(M, X) = ky, RI(N, X) = k,. For ky = k, = —1 the result
follows from Proposition 1.3. Let k; <n, k,<m and assume the theorem for the
cases ky<m, ky<m—1 and k;<n—1, k,<m.

Let Z,;, Z, be disjoint elements of collection Z (Y, X) where ¥ = M U N.
Choose 0y, 0, ¥Z (Y, X) and Fy,F,eZ(¥,X) with Z,S0;SF; i=1,2)
and F; n F, = @. Since R-I(M, X)<n, there are G, G,e4%(M,X) and
De#(M,X) with M—-D=G UG, G nG =0 FnMsG and
R-I(D, X)<n—1. By Lemma 1 from [6], there are Vi, V,e€2(Y, X) with
VinM=G; and V,nV,=@. Then =(V,~F)u0; and
U, = (V,—F;) U O, are disjoint elements of collectwn (Y, X) with Z;,cU;
(i=1,2 and M—(U,uU;)=D, and hence RI(M—(U, v U,), X)
= R-I(D, X)<n—1. By Proposition 3.9 (evidently, N —(U,u Uy)e Z(N, X)),
RI(N—(U, O Uy), X)<SR-I(N, X)<m. By the induction hypothesis

RAI(Y—(Uy v Uy, X)<n+m.
Thus R-I(Y, X)<n+m+1.

3 — Fundamenta Mathematicae z. 111/1
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As in the case of covering realcompactness degree we have the following
corollaries.

3.15. CorOLLARY. Let M and N be subsets of X. If M U N satisfies the Sirst
axiom of countability and N is realcompact with respect to X, then R-I(M v N, Xy
= R-I(M, X).

3.16. COROLLARY. Let X be a perfectly normal space with X = M O N and N
is realcompact, then R-Indy X = R-Ind, M.

3.17. COROLLARY. Let BEX<S Y and B be a coimtable union of elements of
collection % (X, Y). If X—B is realcompact with respect to Y, then R-I(X, Y)
= R-I(B, ). ‘

3.18. THEOREM. Let & € Z(X). If I(B, w(F))<n for every elemént B of collec-
tion F which is realcompact with respect to w(F), then I (v(F), w(F )]
SRI(X, w(F))+n+1. :

Proof. Suppose R-I(X, w(ﬁ’)} = k. For k = —1 the result follows from the
Definition 3.1. We assume its validity for k<n'—1 and suppose k<n'.

Let Z,, Z, be disjoint elements of collection #. There are Z & #, , 01,0, 66F
with ¥~Z' = 0,0 05,0, "0, =@, 2,0, (i = 1,2) and R-I(Z, w(F)sn' ~1.
By the induction hypothesis and by Theorem 1.7 from [51, I1(Z, w(F ))S -+
+n+1 and hence I(X, w(#))<n'+n+1. By Theorem 1.7 from [5],

10(F), w(F)SRI(X, w(F) +n+1.

3.19. COROLLARY. Let bX be an arbitrary bicompactification of a pseudocompact -

space X. If Indy B<n for every bicompact element of collection % (X, bX), then
IndobX<R-I(X, bX)+n+1. Furthermore, if X satisfies the bicompact axiom of
countability, then IndgbX<Indy(bX—X)+n+1.

3.20. CoROLLARY. Let bX be an arbitrary bicompactification of a pseudocompact
space X satisfying the bicompact axiom of countability. If dimB<0 for every bicom-
pact element of collection & (X, bX), then IndybX: <Ind,(bX - X)+1.

4. Product theorems, The following theorem is to be contrasted with an absolute
case ([8], Exercise 91 and 9.15), where counterexamples to the corresponding state-
ments for the Hewitt extensions to be found; these counterexamples involve products
of just two factors.

Suppose F, & L(X,), o€ A. Consider a collection Z([] X, TIw(#,) and
. a L3
denote it by ] #,. Cleady []#,e2([] X)).
« « ®

4.1. Tusorem. []o(%,) = o([] #,).
Proof. By Proposition 1.7, []v(#,) is realcompact with respect to I w(.
By Theorem 1.2 then, we need only show that every nonempty element of collection

Z([To(#), [Tw(#)) meets T1 X,- Let B be such an element; it is not difficult
to show that B is a countable intersection of finite unions of sets of the form pr;'Z,

with Z, an element of collection & (v(#,), w(#Z, ) (or, is the projection of [Tw#F)
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on w(ﬁ/"'a)). Fixing b e B, we replace each of these finite unions by one of the sets
whose union is taken, choosing this one to contain . In this way, we find B'c B
such that B’ is nonempty and is a countable intersection of sets of the form pry Z,.
Thus we may write:

n

@K
B = (pr.'z,
n=1

where Z, € % (v(#,), w(F «.)) and without loss of generality, suppose that Oy, Uy e
are distinct, Since each nonempty element of collection 2 (v(#,), w(F,)) meets X,
(Proposition 0.4 from [5]), we may choose, for each n, an x, €Z,, N X,,.Choosing
any x e [] X, such that pr, x = x, for all n, we have xe B' [Ix.esBn]]x,.
Hence B n [] X, # &, which completes the proof.

4.2. COROLLARY. Let F;e #(X) (i =1,2), then

o(Xy X Xy, Fy x Fp)— (X X X3)

= {{p(F)-X)x0v(F} U {v(F)x (o(F)—X,)} -
4.3. ExampLE. Now we show that a natural formula
R-d(X; % Xy, w(F )X w(F )< R-A(X, w(F 1))+ R-d( Xy, w(F))

does not hold in general.

Let Y be any space’ with dimY =n (n>1). Clearly, dimpY =n. Let
X = BY—{p} with pe BY—Y. It is easy to see that dim X = # and R-dim X = 0.
By Corollary 4.2,

K =o(X%, 27(X))-X* = ({p}x BX) L (BXx {p}) -
Evidently, d(K, (8X)*) = dimK>n and hence
R-d(X2, (BX)*) = d(K, (BX)?)>2(R-dim X) = 0.

4.4. PROPOSITION. Let ‘!’i i €L(X) ((=1,2). If X; is not realcompact with
respect to w(F;), then -
RA(Xy % Xy w(F ) X W(F NI Xy, w(F D))+ (X, w(F ) .

Proof. By Corollary 3.6,
RI(Xy % Xy, W(F ) xW(F D) KI(Xy % Xo, w(F 1) x w(F))
By Proposition 1 from [7], ‘
I(Xy % X, w(F ) xw(F ) <I X, wF D)) +1(X,, w(F)) .
This completes the proof. ) _
4.5. PROPOSITION. Let &F;€ Z(X) (i=1,2). Iff X, is not realcompact with
respect to w(F,) and X, is realcompact with respect to w(F,), then
RI(X % Xy, w(F ) X W(F DK RI(Xy, w(F D) +1(Xq, w(F)) -
Proof. By Corollary 4.2, we may write
K= 0(F x F)— (X, x Xp) = (0(F )~ X, ) xv(F)) .
3 i )
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By Proposition 1 from [7],

I(K, w(F)x W(g’-z))<l(“(y1)—X1a W(F )+ I((F,), w(F ).
It is easy to see that (Theorem 3.2 and Theorem 1.7 from [5]) the right part of this
inequality is equal to R-I(X,, w(F D)+I(Xy, w(F ). Finally, it is easy to see that
Theorem 3.2 completes the proof.

4.6. COROLLARY. If X is not realcompact and X, is realcompact, then
R-I(X, % X, BX, x BX,)< R-Ind, X, +1Ind, X, .
Furthermore, if X, x X, is z-embedded in BX, 1 X BX,, then
R-Indo(X; x X;) < R-Indy X, +Ind, X, .

It should be observed that the corresponding statements (Propositions 44,45
and Corollary 4.6) hold also for covering realcompactness degree.
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The cohomological dimension of the ordered set
of real numbers equals three

by

Stanistaw Balcerzyk (Torur)

Abstract. The purpose of the paper is to show that the cohomological dimension of the ordered
set of real numbers equals three. An appropriate resolution is constructed.

We preserve the terminology and the notation of [1].

Let C be a small K-category where K denotes a commutative ring, then
C® = C*®yC is an enveloping category of C and Homg(= C for abbreviation) is
a K-functor C®— K-Mod. The cohomological dimension dimgC is defined as
homological (projective) dimension of C in the category of K-functors K-Mod®”,

Any partially ordered set = may be viewed as a small category with a set of
objects = and 2 unique map x — y for any x< yin 7. dimg Kr is denoted by dimg,
where K7 is a K-category generated by 7. Let R denote the ordered set of real
numbers.

The purpose of the present paper is to show that dimg R = 3 for any commuta-
tive ring K. We construct a particular projective resolution of R. In [1] Mitchell
proved that 2<dimy R<3 assuming continuum hypothesis and expected this di-
mension to be 3; he proved even more, that dimg R<n+2 if |R] = ,.

I like to thank Dr. Andrzej Prészysiski for correcting a detail of the proof.

1. We denote by R(x,y) for x, ye R a K-free generator of Homygp(x, )
(i.e. a unique map x — y of R) if x<y and zero in the opposite case. ® means .
We remind that R(., ))®R(b, .) denotes a K-functor R®— K-Mod which is re-
presented by the object (a, b) of R°. It associates with an object (x, ) of R the free
K-module on R(x, ) ®R(b, y) if x<a, b<y and zero in the opposite case. Functors
R(., ))®R(b, .) are projective in the category (K-Mod)®® of K-functors.

We denote by Q the ordered set of 2-rational numbers, i.e., numbers of the
form m/2" for some n = 0,1, ... and some integer m. We define a projective re-
solution 0—P, 3 P, % p, 5 Q — 0 of the functor Q in the category (K-Mod)®”
as follows :

Po= @ 0(, 980, ),

0

Pi=P=® @ Q(.m2)®0(m+D)2,.)

n=0 m=-cw


GUEST




