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6. Now we can prove the main theorem of the paper.

THEOREM. The cohomological dimension dimyR of the ordered set of real num-
bers R is equal to three for any commutative ring K.

Proof. It is sufficient to prove that the sequence 0 — 7T 4 T, does not split.
Suppose the converse, thus there exists a map g: T) — T3 such that gdy = 1g,.

Let us remark that a mnon-zero map R(.,)®R(b, D= R(., YQR®, )
exists if and only if aa’ and B'<b, morcover each map R(., d)@R(b,.)
— @ R(., a,)®R(b,, .) factorizes through a finite direct sum.

'

We denote by =,: Ts— @ R(., r,( p))@R(s,,(p), .) a projection map thus
901 R(, DOR(5,(2), )~ S R(., n(p)®R(s(p), )

and m,gv,,, = 0 becayse p>r,(p) for all n. Similarly we show that Ty, = 0.
There exists a countable set 4 < R such that all maps gu,,, factorizes through @ @.

. . red
We fix a 2-irrational element p € R\ 4, then- %3GV = 0 for all m, n and by the above

equalities we get
Tplpn = Tpddsty, = 7,9 (vn,p,n'_vn‘{-l,p,n'l'l_U+vkn(l7),n)
= oGVt~ TGVt 1, pin+1
In—Gn+1
where g, = p9npms 2 =0,1,.. and v =v,, or Up- Maps f, = m,t,, are
structural injections of a direct sum @ R(., rn(p))®R(sn(p), .)-and let =, be 4 cor-
" e

responding projection onto nth summand. Then we have In = t,+g,+q and siﬁ‘ce‘ do

factorizes through a finite sum then there exists such k=0 that n,g, = 0 for n>F.
Since

I

Go = lot gy = lotti4; = .. = fot oot tyi  FGies
then iy, 19 = My tieq = 1 because
Tri1Gis2t R, ’k+z(P))®R(Sk+z(IJ), ) —R(., "k+1(P))®R(Sk+1(P)= )
is a zero map. We get a contradiction thus d; does not split.
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The space of maximal convex sets
by

Robert E. Jamison (Clemson, S.C.)

Abstract, This paper is devoted to the study of hypercones (also called “semispaces™) ~— maximal
convex sets missing a point in a vector space of arbitrary dimension over a totally ordered field..
It is shown how the hypercones can be organized into a compact Hausdorff space with an intrinsic
system of “convex” sets. Relationships of “convexity” to topology on the hypercone space are
studied. Also metrizability, separatility, and other topological properties of the hypercone space are
characterized in terms of the underlying ordered field and the dimension of the given vector space.

1. Introduction. Maximal convex sets missing a given point have arisen nat-
urally in connection with separation properties of convex sets. In a series of lectures
in 1951, T. S. Motzkin [15] described such sets in detail for 3-dimensional Euclidean
space and used them in some separation theorems. Kothe [12] also makes use of
the maximal convex sets missing a point — which he calls hypercones — in his proof
of the geometric form of the Hahn-Banach Theorem. Related ideas are attributed
by Kelley, Namioka, et al. [10] to Stone and Kakutani. In 1955 Preston Hammer 41
independently noted some of the elementary properties of hypercones in real vector
spaces. (Although Hammer’s term “semispace” is often used, K&the’s term “hyper-
cone” seems better. There is a Jarger class of convex sets deserving to be called
“semispaces”, and the term “semispace” is inappropriate in situations as in [71
where spaces more general than vector spaces are treated.)

The first deeper results on hypercones were given in [11] by V. L. Klee, who gave
(among other results) a complete characterization of hypercones in real vector spaces.
In the setting of topological vector spaces, a certain class of hypercones compatible
with the topological structure was studied by C. E. Moore [14]. Using his separation
results, Moore achieved a mew characterization of reflexive Banach spaces.

In this paper the structure of hypercones will again be investigated — not
individually, but rather as a space. It will be shown that the collection of hypercones
can be made into a totally disconnected compact Hausdorff space which can be
endowed in a natural way with a notion of “convexity”. The questions of metriz-
ability, separability and first countability of the hypercone space will be investigated.
In addition, we shall study the basic similarities and dissimilarities of its convexity
structure with ‘ordinary convexity.
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The construction is not limited to the real field and will be given for vector spaces
over an arbitrary totally ordered field. If the construction here seems reminiscent
of the construction of the Stone space of a Boolean algebra or the maximal idzal
space of a vector lattice or Banach algebra, this is no accident. All are special cases
of a general procedure which is applicable in a wide range of situations (see [7]).

Since every hypercone corresponds to a total order on the underlying vector
space and.vice versa, the results here may also be regarded as a contribution to the
study of ordering on vector spaces.

2. Basic topological properties of the structure space. Throughout this paper ¥
will denote a vector space over a totally ordered field F. (See [3] for examples.)
A subset K of Vis convex provided Ax+(1—2)y is in K whenever x and y are in K
and A is a scalar in F with 0<A< 1. Many of the rudimentary properties of convex
sets in real vector spaces are valid aver any ordered field. Some of these are listed
below.

(1) The empty set @ and the whole space are convex.

(2) Any intersection of convex sets is convex.

(3) The union of any chain (i.e., totally ordered by inclusion) of convex sets is
convex.

Any subset § of ¥ is contained in a smallest convex set called the convex hull of S
and denoted by conv(S). The following useful formula is easily established over
any ordered. field.

(4) If A and B are convex, then
conv(4 v B) = ) {conv(a, b): ucd,be B}.

From (1), (3), and Zorn’s Lemma, it follows that maximal convex subsets of
V~{0} exist.

Following K&the [12] we shall call such sets Aypercones. The collection of all
hypercones in V7 will be denoted by Z(¥) and called the structure space of V. This
space may be topologized by the so-called “Zariski topology” in which a subbase
of closed sets is given by all families of the form

A* = {HeZ(V): AcH}

where 4 is any arbitrary subset of V. Those *sets of the form x* := {x}* will be
called principal *sets. Since for any family (4,) ie I of subset of V

&) N{dF: iel} = (U {4;: ie})*,

every *set is an intersection of principal *sets. Thus the principal *sets are also a sub-
base of closed sets for the Zariski topology.

THEOREM 1. The structure space X(V) is a totally disconnected compact Hausdorff
space. ‘ S S e
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Before giving the proof, we record for future use three easy facts [4], [11], [12]
about hypercones.

(6)  Any hypercone H is a cone over O in the sense that 3 e H whenever 1>0
and he H.

(7) A convex set H is a hypercone iff O ¢ H and for each x # 01in V, exactly one
of x and —x belongs to H.

(8) If H is a hypercone, then —H := {=h: he H} is also a hypercone and
VeH = —H U {0} is convex.

Proof of Theorem 1. If H and X are distinct hypercones, then there is an
x € H which is not in XK. Thus —xe K by (7). Also by (7) the *sets x* and (—x)*
partition Z(¥), so they are open as well as closed. Thus x* and (—x)* are disjoint
open sets containing H and K, respectively, establishing Hausdorff separation. It is
also clear that no connected set containing H can contain K. Thus the component
of H in Z(V) contains only H, so Z(V) is totally disconnected.

‘We now show that (¥) is compact. Since the principal *sets from a subbase
of closed sets in X(V), it suffices by Alexander’s Subbase Theorem [9] to prove that
any family of principal *sets with the finite intersection property has nomempty
intersection. Let {x*: x e 4} be such a family. The set 4 is of course some subset
of V. 1f O e conv(4), then O € conv(E) for some finite subset E of 4. But by a<~ 1mp-
tion there is some hypercone H in the finite intersection

E* = {x*: xeE}.
But then conv(E)< H since H is convex and contains E. As O ¢ H, this is a con-

tradiction. Whence O cannot be in conv(4), so conv(4) can be extended by Zorn’s
Lemma to some hypercone K. Then since 4 Sconv(A)=K, we get

Ke A* = [} {x*: xe 4}
as. desired. B
It will be convenient to have an alternate description of the topology on (V).
In general, if X is any set, identifying each subset of X with its characteristic function
allows the power set Pow(X) to be considered as a product of two point discrete
spaces {0, 1} indexed by X. In the product topology thereby induced on Pow (X),
the families of subsets of X of the form

[LE]'={dcX: Ic4d and En A = &}

where I and E are finite subsets of X, coustitute a base of open sets. For this reason,
this topology has been called the inclusion-exclusion topology on Pow(X) [6], [7], [8].

PRrOPOSITION 2. The Zariski topology on. Z(V) coincides with the inclusion-
exclusion topology on (V) as a subspace of Pow(V). A base of open sets in Z(V) is
given by the collection of all *sets E* where E is finite.
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Proof. It follows from (7) that the principal *sets are open as well as closed

and in fact form a subbase for the open sets as well as for the closed sets in X (V).

The second assertion of the proposition follows at once from this observation. Also
by (7) one sees easily that the restriction of the open set [I; E]in Pow(¥) to Z(V) is
just (I v —E)*. Thus on Z(V) the Zariski topology and the inclusion-exclusion
topology have the same basic open sets. H

3. A closer look at hypercones. Before presenting the development over arbi-
trary ordered. fields, it may be helpful to review the real case. In the real line, there
are only two hypercones — namely, the upper and lower half lines. The corresponding
structure space is thus a 2-point discrete space. )

To construct a hypercone in the plane, one starts with an open halfplane with O
in its boundary and then adjoins half of the bounding line. The structure space
Z(R?) may be visualized topologically as a circle in which each point has been split
in half. Namely, with each hypercone H associates the point on the unit circle given
by the unit normal to the boundary of H. Now split this point in two, one for each
of the halves of the bounding line which H may contain. One may unwrap this “splin-
tered circle” simply by pulling apart the two halves of some “split point” until the
whole space lies straight. Tn’ this way one can see that X(R?) is homeomorphic to
the space Y consisting of the top and bottom sides of the unit square where ¥ has
the crder topology coming from the lexicographic order restricted to Y. Tn fact,
for any ..~derd field F, one can see that X(F?) carries a similar order topology by
describing the hypercones in F? in terms of their intersections with a line missing O.

The process is analogous in R3. A hypercone is formed by taking an open half-
space and adjoining a hypercone in the bounding plane. Hence X(R®) looks like
a sphere in which each point has been replaced by a copy of the “splintered circle”.
For d dimensions this procedure yields a mnatural map from the structure space
Z(R% to the sphere $%~! such that the inverse image of each point is Z(R?~1). Top-
ologically this map is continuous. Indeed, for any p 0 the inverse image of the
open hemisphere

{xe S (p, x> <0}

is the union of all open *sets E* where E is a finite subset of R? with p € intconv(E).
Since Z(R% is compact and $%7* is Hausdorff, the map is a quotient mapping.
However, it is not a fibration in any usual sense because S$%! is connected but
T(R% is totally discommected.

The classification of hypercones by Klee [11] essentially formalizes and extends
the method of construction above to arbitrary real vector spaces. In general, sup-
pose @ is.a family of linear functionals from ¥ to F. A total ordering < of & is
admissible if for each x # 0 in ¥ there is a first (with respect to <) member ¢,
of @ such that ¢ (x) 5 0. If < is admissible, one easily sees that the set

H@®, <) = {xeV:x 0 and ¢(x)>0}
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is a hypercone in ¥. In [11] Klee proved that every hypercone in a real vector space
arises this way. However, his result is true only for the real field.

PROPOSITION 3. Suppose F is an ordered field other than the reals and that
dimg V=2, Then there is a hypercone in V which does not have the form H(®P, <)
Sfor any admissibly ordered family of functionals & on V.

Proof. Clearly any hypercone in a subspace W of ¥ can be extended to a hyper-
cone in V. If the extension has a representation as H(®, <), then by restricting the
functionals in @ to ¥ and keeping the same ordering, one obtains a Klee represen-
tation of the original hypercone in W. Hence it suffices to prove the proposition in
the case ¥ is 2-dimensional.

Now any hypercone H(®, <) on ¥ must contain a line. Indeed, there will be
points x and y in H(®, <) such that ¢.<¢,. For any A€ F, it follows that ¢, is
the first functional in @ which does not vanish at x+Ay and that

|0+ 1) = p,09>0.
Thus the proposition will be provéd if we exhibit in Fx F' a hypercone which con-
tains no line.

Let Z be any bounded set of positive elements of F such that for any ze Z
there is a z’ € Z with z<z'. Then the set

J(Z) = {(x, y): for some {€Z, y<nx for all neZ with y>{}

is a convex set not containing (0, 0). Given (x, ) (0, 0) and {<#<#6 in Z, the

three relations
y<0x

y<lx, y=nx,

cannot all hold. From this it follows easily that either
(x’y)EJ(Z) or ("‘xs "y)EJ(Z)a

50 J(Z) is a hypercone by (7). Since Z is bounded, J(Z) can contain no vertical
line. But suppose J(Z) contains a line whose equation is

y=o0x+1.
Then for any x e F and all sufficiently large n in Z, we have
(&) ox+T<HX.

Taking x = 0 yields 7<0. If o<{ for some { € Z, then taking x = t({—0)"*<0
and dividing (9) by x yields for all large > { the contradiction {>#. Thus o is an
upper bound on Z. If o>, taking x = 7(B—0)"1>0 and dividing (9) by x yields
B<n for all large % in Z. Thus ¢ = supZ.

As is well-known, the real field R is the only ordered field that is (relatively)
complete with respect to its order. Thus since F # R, there is a bounded set Z of
positive elements in F with no supremum in F. Thus J(Z) contains no line for
such a Z. H

4 — Fundamenta Mathematicae z. 111/1
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Remark. For a nonarchimeadean ordered field F, one can aiso choose the
set Z to be the copy of the positive integers contained in F,

4. Convexity in the structure space. It is possible to endow the structure
space X (V) with a system of “convex” sets whose properties to some extent parallel
those of ordinary convex sets. This will be done via the notion of alignment as de-
veloped in [6], [7], [8]. Although we shall require a portion of the general theory,
the emphasis will be kept on properties of the structure space.

DerINITION. A family o of hypercones in X (V) is convex provided, for any
finite collection Hj, ..., H, of hypercones in o, every hypercone which contains
their intersection H; n ... H, is also in X"

The collection € of all such convex families satisfies properties (1), (2), and (3)
and hence is an alignment on Z(V) in the sense of [6]. Evidently every *set is €-con-
vex, and it can be shown [7] that € is the smallest alignment on Z(¥) containing the
*sets. Every family & of hypercones is included in a smallest convex family —
the G€-hull of # — which will be denoted €(#). If & is a finite family, say
& = {H,, ..., H,}, then the €-hull of & is called a €-polytope, and directly from
the definitions we have ' Co

C(F) = (H, ... n H)*,

a *set. Evidently every *set is both closed and G-convex. A principal objective of
this section is to show the converse, thereby establishing a fundamental connection
between the topology and convexity on X(¥). Another goal is to prove the analogue

of (4) for the alignment €. This will permit a simplification in the description of
G-convex families.

LemMA 4. In the vector space V, let A be a convex cone over O which misses 0,
and let B be a convex set missing O. If A"\ B = @, there is a hypercone H at O with
A<H and Hn B =0,

Proof. If O belongs to conv(—B U A), then by (4) there are elements a in 4,
bin B, and 1in Fwith 0<1<1 suchthat0 = Aa+(1~2)(=b). Since O is in neither 4
nor B, 7 can be neither 1 nor 0. Thus the above equation can be solved for b, resulting
in an expression of b as a positive multiple of a. This implies that b is in the cone 4,
contrary to A n B = @. Hence O ¢ conv(~B U A), so there is a maximal convex
set H containing conv(—B U 4) but not 0. Clearly 4< H. Since —~Bc H, it follows
from (7) that HNB=Q. B .

LeMMA 5. Let sf be a nonempty closed subset of I (V) and let A = (\ of. Then
c C() = 4*.

Proof. The closed convex family 4* obviously includes o7 and hence ¢l € ().
To show the reverse inclusion, consider any H e A*. Then ~H R 4 = I by (D.
For any finite dimensional subspace L of ¥, define :

Ay ={PnL:Peo}.
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As we have seen, X(V) is compact and carries the inclusion-exclusion topology.
Thus & is also compact in this topology. As intersection is easily seen to be con-
tinuous in the inclusion-exclusion topology (see p. 43 of [6]), it follows that &/
is a compact family of ordinary convex sets in Pow(¥). Now ‘

(~HADA(N &)= -HALnA=0.

Since L is finite dimensional and hence has finite Helly number (see p. 33 of [2]),
the extension of Helly’s Theorem to compact families in [8] applies. Whence some
finite number of sets from «&f; have empty intersection with —H n L. Say,

(—HnLynP,n..nP, =0

where each P; is in . . ‘
Now the cone Py n ... N P, is digjoint from the convex set —H n L and hence
is contained by Lemma 4 in a hypercone P; with

(10) —HnNLnP, =0.

From the construction it is clear that P, e €(«).

Since Z(V) is compact, the net (P,), indexed by the finite dimensional sub-
spaces, has a subnet which converges to some hypercone Q e cl€(«/). By continuity
of intersection in the inclusion-exclusion topology, in the limit (10) becomes

—~HnVnQ=6g.

Thus — H is disjoint from Q, so by (7) we get Q< H. But the maximality of Q the
implies Q = H whence HeclC(«) as desired. H .

THEOREM 6. Every closed €-convex family in Z(V) is a *set.

Proof. If A is closed and convex, then " = cl€(X"). Thus by Lemma 5 we
have o = (N o)* B

THEOREM 7. If & is a closed family in £(V), then the closure of C(f) is again
convex. .

Proof. As in Lemma 5, cl€(«) = A* which as a *set is clearly convex. B

These two results are by no means consequences of a general theory of con-
vexity, as the examples in [7] and [6] show, but are measures of the good behaviour
of the structure space convexity. As we shall see later, however, the closure require-
ment in Theorem 7 is indispensible: there are €-convex families whose closures are
not €-convex. So in this sense the alignment € is not as well behaved as the alignment
of ordinary convex sets. .

The next result is the analogue of property (4) which is known in abstract settings
as “join-hull commutativity” [1], [16] or “well-fittedness™ [5]. Because it forces a very
strong resemblance to the geometry of ordinary convex sets, it has been a popular
axiom in abstract theories of convexity, particularly among the followers of
Prenowitz.

4=
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THEOREM 8. If & and T~ are ©-convex subsets of % (V), then
CFuN=U{SnT)*: Se& and TeT}.

Proof. Since €(& n 7) clearly includes the union above, it suffices to show
the reverse inclusion. If He €(& u ), then from the definition of convexity it is
clear that

Pin..aP,n0in..nQcH

for some finite number of sets P,e % and Q:ed.
Thus the cone Q@ ... n Q, is disjoint from the convex set — H A Pin..nP
and hence can be extended by Lemma 4 to a hypercone T with

m

~HAPin.AoP,nT=0@.

But then the cone P; n ... n P, is disjoint from the convex set —H T and hence
can be extended to a hypercone S disjoint from —H A T. That is, S T'< H. From
the construction, it is clear that $ &% and Te 7 since & and 7 are convex. B
An immediate consequence of the above result is that €-convexity, like ordinary
convexity, can be defined purely in terms of segments.
COROLLARY 9. 4 family # = Z(V) is convex iff for each pair of hypercones P
and Q in A", every hypercone’ containing P Q is also in A",

Proof. To show 4 is convex, one must show, for any n hypercones H,,
in X, that 2 contains

(H n ..

s I:{u

n lfn)* = G((HJ Nn..n I“[u—l)* v {Hrn}) .

By an induction using Theorem 8, it follows that the condition in the corollary s
sufficient for convexity. H

To conclude this section, we give a proof of a basic separation theorem for
€-convex sets. In any alignment a convex set whose complement is also convex is
called a hemispace. In the ordinary alignment on ¥ all open (or closed) halfspaces
are hemispaces as are all hypercones. In Z(V) the principal *sets are hemispaces
since by (7) the complement of x* is (—=x)*,

SEPARATION AxioM S,. Given two disjoint convex sets, there is a hemispace
containing one which is disjoint from the other [6] g

THEOREM. 10. The alignment of €-convex Jamilies on X (V) satisfies Sa4-

Proof. By Theorem I. 9 of [6], if any pair of disjoint polytopes can be separated
by a hemispace, then dxiom S, holds for all disjoint pairs of convex sets. Since
€-polytopes are *sets, it suffices to show that any two disjoint *sets A* and B* can
be separated, ’

Without loss of generality, we may assume that 4 is the intersection of all hyper-
cones in 4* and similarly for B, so 4 and B are convex cones over O. Now if
An(~B)=@, then by Lemma 4 there is a hypercone H with AcH and
—Bn H = 0. But then H is a hypercone in 4* n B* which was supposed to be
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empty. Thus there is some x in 4 n (—B), so the hemispace x* contains A* but is
disjoint from B*. B

5. Continnity of structure space convexity. When confronted with an alignment
on a topological space, it is natural to ask about the continuity of the convex hull
operator. Within the framework developed in [6], the upper semicontinuity of the
hull operator is equivalent to a “regularity” condition on the convex sets. As we
shall see in Theorem 12, the structure space alignment satisfies a strong form of this
condition. The lower semicontinuity is equivalent to the validity of the so-called
“Blaschke Selection Theorem”: that the compact convex sets are closed in the Vie-
toris topology on the space of all compact subsets (see p. 64 of [2]). This does not
hold for convexity in £(¥). For lower semicontinuity implies that the closures of
convex sets are convex (see Proposition 1117 of [6]), and as shown in Theorem 13
below the closure of a €-convex family need not be €-convex.

It is convenient to give first an embedding principle that will be useful in the
sequel.

If ¥ and W are isomorphic vector spaces over F, then their structure spaces
Z(V) and Z(W) are homeomorphic and isomorphic in the obvious sense. Thus for
any cardinal » we may denote by X(F, ) a canonical representative of the structure
space of a vector space over F of algebraic dimension .

ProrosITION 11. If n<dimgV, then every nonvoid open set in % (V) contains
a copy of X(F,n). If V is infinite dimensional, this is true even Sor n = dim;V,

Proof. By Proposition 2, it suffices to prove this for any nonvoid open set of
the form E* where Ec ¥ is finite. If H is any hypercone in E*, then EcH, so
conv(E)S H. Whence O ¢ conv(E). Hence there is a linear functional ¢ on V such
that ¢(x)>0 for all x e conv(E). (See [17] or p. 113 of [61.) :

Under the hypotheses on #, it is clear that the null spacé of ¢ contains a linear
subspace L of V' of dimension n. Choose a convex set A in ¥ maximal with respect
to the conditions

MnL=0

and conv(E)cSM.

Using (7) it is easy to check for any hypercone J in (L) that J U M is a hypercone
in X(V). This procedure identifies Z(L) & X(F, n) with the *set M* in Z(V) in
a way which preserves both topological and convex structure. By choice of M,
we also have M*c E* as desired. B

The following result is the promised theorem on the regularity of the align-
ment €. .

THEOREM 12. Let A" be a closed convex family in Z(V) and % an open family
with A" <. Then there is a closed and open convex family N in X( V) such that
HeNSU. .

Proof. By Theorem 6 4" = K* for some set K. If H is a hypercone not in K*,
then there is a point x € X such that x ¢ H. By (7) —x € H, so the open sets ( —x)*
with x € K cover the complement of # and in particular the complement of %.
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Since % is open and ¥(V) is compact, there is a finite subcover given by, say, (—x.)%,
(=x2)*, oo, (—x,)*. Now taking

N o=y, e, X = _Ql(xﬁ*

yields the required neighborhood of o B

THEOREM 13. If dim V=2, then Z(V) contains a convex set whose closure is not
convex.,

Proof. By Proposition 11 it suffices to give the construction in the case
¥V = Fx F. For each r>0 in F, define the cone

C, = {(x,7): x<0 and ry<x}.
As r decreases, the cone C, shrinks so the corresponding *sets C,* increase. Thus
A = {CF: r>0}

is the nested union of convex families and hence convex. Define points p = (0, 1)
and g = (1, 1). For any s € F with 0<s<1, the point v, = (s, 1) lies.on the segment
from p to g whereas —u,e C, for all r>s.

Thus no hypercone containing p and ¢ can lie in any C;'. Thus {p, q* is an
open family disjoint from #" and hence from clf. But {p, g}* is not empty, since
the segment from p to g is a convex set missing zero which can be extended to
a hypercone containing p and ¢. Thus ¢l is not all of Z(¥).

Now the hypercone

H = {(x,¥): x<0 or both x =0 and y>0}

includes the cone C,; and hence belongs to X#. We will show that —Heclx .

Given a finite subset E of — H, let E’ consist of all points (x, y) in E with y>0.
By definition of H, each of the ratios x/y where (x, y) € E' is strictly positive, so the
minimum such ratio is also strictly positive.

Let » be a positive element of F strictly less than this minimum. Take r = 1 if

= @. We claim ry<x for all (x, y) € E. This holds by choice of r if y>0. If

<0, this holds trivially since x>0 for all (x, y) e E< —H. It follows that ry<x
for any (x,y) in K := conv(E u C,). Hence (0,0) ¢ K, so K may be extended to
a hypercone. This hypercone belongs to C* and hence to " and also belongs to £*,
Thus every basic neighborhood of —H in Z(V) contains an element of 4, so
—HeclA as desited.

But €(—H, H) = @* = Z(V), so since cl#" is not all of X(¥), it cannot be
convex. B

Visualizing the above construction in the “splintered circle” model of Z(F2),
-one sees that the set 4 corresponds to a semicircle, closed at one end but open at
the other. In taking the closure, one obtains a pair of “antipodal” hypercones whose
®-hull is the entire circle. Using the full strength of Proposition 11, one obtains the
following stronger corollary.
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COROLLARY 14. If dimp V23, then every open set in (V) contains a €-convex
set whose closure is not €-convex.

6. Metrizability and G, points. In the last two sections, specific properties of the
underlying ordered field played no role, the arguments being the same in the general
case as over the real field. However, in examining more special topological propet-
ties of the structure space, the nature of the underlying field becomes an essential
factor. In this section we shall determine criterja for the metrizability, first countabi-
lity, and separability of Z (V). We begin with a characterization of G; points in X (V).

LemMA 15. A hypercone H in 2(V) is a G5 point in (V) iff, for some countable
subset C of V, H consists of all positive multiples of points in conv(C).

Proof. By Proposition 2 the families E* where E is finite form a base of open
sets in Z(¥), so H is a G, iff there is a sequence (£,) of finite sets such that H is the
only hypercone in

0 B
n=1

That is, H is the only hypercone containing the countable set C = E; U E, U ...-
Let K be the smallest cone over O containing C. If x # 0 is not in K, then applying
Lemma 4 with 4 = K and B = {x}, we obtain a hypercone missing X but contain-
ing K and hence C. Thus K is the intersection of the hypercones containing C, so
K = Hiff His the only hypercone containing C. Since K clearly consists of all
positive multiples of points in conv(C), the lemma is proved. B '

If the dimension of ¥ is uncountable, the criterion in the lemma can never
be satisfied. Indeed, for any countable set C with O ¢ conv(C), there is a point p not
in the linear span of C. Thus O belongs to neither of the sets conv(C U p) and
conv(C U —p) which may be expanded to two necessarily distinct hypercones con-
taining C.

THEOREM 16. If dimV>2, then X(V) is metrizable if and only if V is a
countable set.

Proof. If ¥is countable, then ¥ has only countably many finite subsets. Hence
the open families E*, where E is a finite subset of V, form a countable base for (V).
Whence Z(V) is metrizable [9].

Suppose Z(¥) is metrizable. Then each point of X(¥) is a G, so the dlmenswn
of ¥ must be countable. To show the denumerability of V, it thus suffices to prove
that the scalar field is countable. Since X (V) is metrizable and compact, every base
of open sets contains a countable subfamily which also forms a base. Thus there is
a countable collection {E,: n=1,2,..} of finite subsets of V~{0} such that
{Ef: n=1,2,..} is a base of open sets in I(¥). Let

C=E VEu

Now in defiance of our desire, suppose F is uncountable. Then every line in ¥
is also uncountable. If L is any line in ¥ not passing through O, then the lines
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L, = {rx: re F} where x is in L have only O in common and are uncountable in
number. Since C is countable, there is some L, that contains no point of C. Extend p to
a vector space basis for V. Since ¥ is of countable dimension, this basis can be enu-
merated: p, by, b,, ... Let &, be the co-ordinate functional corresponding to b;,
and define: '

K = {xeV: for some n, $,(x)>0 and &,(x) = 0 for all i<n}.

Let H* = Ku {rp: r>0} and H™ = KU {rp: r<0}. Then H* and H~ are
hypercones. Furthermore, H* and H~ contain exactly the same points of C. Thus
it is impossible to separate H* and H ~ by open sets from the basis {Ey:n = 1,2, ...},
This is a contradiction as the topology on X(¥) is Hausdorff. H

The next result is a characterization of those structure spaces which satisfy the
first axiom of countability. An ordered field F is called completely sequential [8]
provided every monempty subset S of F contains a sequence s, € S such that for
each se S there is an n with s<s,. Equivalently, F is completely sequential iff the
order completion of F (which is not a field) is first countable in the order topology.
Clearly any ordered field with a countable order dense subset is completely sequential,
but there are completely sequential fields that are not order separable [8].

THEOREM 17. If dim V22, then Z(V) is first countable if and only if F is completely
sequential and the dimension of V is at most countable.

Proof. Suppose Fis completely sequential and dim ¥ is countable. By the main
theorem of [8], these hypotheses on F and V imply that any hemispace in V is the
convex hull of a countable set. In particular, every hypercone in ¥V satisfies the G,
criterion of Lemma 15 since by (8) all hypercones are hemispaces. But in a compact
Hausdorff space, any G; point has a countable neighborhood base. Thus first
countability follows for Z(V).

In showing the converse, we may rule out the case that dimV is uncountable
since no point of X(¥)is a G5 point in that case. Suppose now that Fis not completely
sequential. We shall exhibit a non-G; point in X(F?). As Z(F?) can be embedded
in Z(V) by Proposition 11, this will finish the proof.

If F is not completely sequential, there is a bounded set Z of positive elements
of F with no cofinal increasing subsequence. Consider the hyperccne J(Z) as deimed
in the proof of Proposition 3.

Suppose C is any countable subset of J(Z). For each point ¢ = (¢y, ¢,) in C,
there is a {, & Z such that ¢, <ne, for all #>{,in Z. Since Z has no countable cofinal
subset, there is a ff € Z such that f>{, for all ¢ in C. Thus ¢, <S¢, for each (¢y, ¢,)
in C. It follows that if (x, y) is a positive multiple of a point in cony(C), then also

y<fx.
Clearly the point p = (1/8, 1) does not satisfy this inequality. However, for any
n>f in Z, we have 1 <#/B, so p belongs to J(Z). Thus J(Z) is not generated as a cone
by any countable set, and therefore by Lemma 15 J(Z) cannot be a G, point in

Z(v) &
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The separability of X(¥) can also be characterized in terms of simple proper-
ties of ¥ and F. However, it is also equivalent to the separability of the algebraic
dual 7' of V. (Given F with its order topology, ¥’ has the topology of p01ntW1se
convergence as a space of functions from ¥ into F.)

THEOREM 18. Suppose dim V2. Then the following are equivalent:

(i) Z(V) is separable,

(i) the dual V' of V is separable,

(iii) F is order separable and dimV<e, the cardinality of the reals.

Proof. (i)-;a(iii) Let 4 be a countable family of hypercones which are dense
in Z(P). Choose a line L in ¥ with parametric form {fp+q: t € F}for somenonzero p
and ¢ in V. For each He ¥, define

o(H) = sup{te F: tp+ge H}

wherc the supremum is to be taken in the order completion F of F. Then
= {o(H): H e %} is countable; we claim it is order dense in F. Any open set in F'
contams an interval of the form [a, b] where a<b are in F. Now {—bp—¢, ap+q}*
is open in Z(¥) and nonvoid. Hence it contains some H e &. For this H we have
a<o(H)<b as desired. Now for each pair c<din D, choose some ¢ € Fwith c<t<d.
The set of all such ¢ is then countable and order dense in F. Thus Fis order separable.
‘Now let B be a basis for V. Associate with each p € B, the subset
%,={He%: peH}.
If g e B is different from p, then the segment from p to —¢ misses O and thus lies in
a hypercone. Hence the open set {p, —q}* is nonvoid and thus contains some
He%. It is clear, then, that He %, but H¢ %,. Therefore the map p— %, is an
injection of B into Pow(%) which has cardinality ¢ since % is countable. Hence
dimV<c as desired.

(iii)—(ii) If dim V" is finite, the separability of F immediately implies that of V’.
In case dim V is infinite, we shall use a modification of the standard proof that the
real-valued functions on the unit interval are separable.

For dim ¥ infinite, choose a subset B of [0, 1) which contains the rational points
and has cardinality [B] = dim V., We may identify ¥V with the space of functions
f: B— Fwhich vanish on all but finitely many points. The dual ¥ is then the space
of all functions g: B~ F with the pairing

g:/> = 1,;; g f®)

where the sum is defined, as it is only a finite sum if fe V. Let D be a countable
subset of F which is dense in Fin the order topology. For each finite partition of B
by rational points

0= x;<x,<... <X,

and values 7y, ..., r, in D, consider the function h: B— F which assigns the constant
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value r; to all points in fx;, x;4) for i = 1,...,n (where we set x5, = 1). The
set C of all such functions is clearly countable. It is also easily checked that C is
dense in ¥ under the topology of pointwise convergence on B. But pointwise con-
vergence on B implies pointwise convergence on V since B is a basis for ¥ and the
elements of ¥’ are linear on V. .

(i)—() Given a countable dense subset C of ¥, choose for each & e C a hyper-
cone H, which contains the halfspace {xe V: h(x)>0}. The collection % of the
hypercones so chosen is countable, and we claim it is dense in Z(V).

Consider any nonempty open set E* where E is finite. Evidently F* @ iff
O ¢ conv(E), so by the basic separation theorem (see [17] or p. 113 of [6]) there is
a linear functional g on ¥ such that g(x)>1 for each x e conv(E). Since C is dense
in ¥, there is an 4 in C such that |g(e)—h(e)] <% for each e e E. Thus E*c H,,
s0 H,e E* as desired. H

It should probably be remarked that both metrizability and first countability
of Z(¥) are strictly stronger than metrizability and first countability in ¥’. The
dual of any finite dimensional vector space over an order separable field is
metrizable, although the field need not be countable — take the reals, for example.
If Fis a first countable ordered field, the dual of any finite dimensional vector space
over F, as a product of a finite number of copies of F, is also first countable. But
such a field ¥ need not be completely sequential. To construct such a field, start
with any hyperreal residue class field X as in [3] (see pages 171-188). Such a field
cannot be completely sequential. (In [3] compare Theorem 13.8 with the remarks
on p. ]8}3.) Now form F by adjoining to X any transcendental  larger than all el-
ements of K. Any point p e Fis then the intersection of the sequence of intervals
(p—t""p+r™".

7. Concluding look at the reals and rationals. It seems appropriate to end with
some observations on the real and rational structure spaces Z(R") and 2(Q%) for d
finite. We know that Z(Q% is compact, metric and totally disconnected. As ¥(V)
is obviously dense-in-itself when dim V32, it follows from a well-known result [13]
that 2(Q0%) is homeomorphic to the Cantor set for all finite d3>2. These spaces can,
however, be distinguished on the basis of their convexity. Analogues of the classical
theorems of Carathéodory and Helly for ordinary convex sets [2] can be proved
for (V). As shown in [7] the Carathéodory and Helly numbers of Z(V) are d and
d+1, respectively.

The spaces Z(R?) are compact, first countable, and separable but not metric
if d>2. However, it is possible to distinguish Z(R%) from Z(R? topologically.
Since X(R?) is separable and carries an order topology, one can show that any
discrete subspace of X(R?) is at most countable. (This can then be used to show
that every subspace is separable.) But £(R?) contains an uncountable discrete sub-~
space. Indeed, let T be a circle in R® contained in a plane away from the origin. Then
for each ze T the convex set :

conv(T'~{t} u {~t})
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misses the origin and hence can be extended to a hypercone H,. Let J be the
(uncountable) collection of these hypercones. Then J is discrete since

T (0% = {H)

Tt is unknown, whether or not one must resort to convexity to distinguish the
higher structure spaces X(RY). .

for each z.
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