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Plane indecomposable continua no composant
of which is accessible at more than one point

by

Michel Smith (Auburn, Al)

Abstract. A method is described for. constructing plane indecomposable continua that have
the property that no composant of the continuum is arcwise accessible from the compliment of the
continuum at more than one point. Further the pseudo-arc is embedded in the plane with this
property.

Introduction. Beverly Brechner has an example of an embedding of the pseudo-
arc in the plane which she conjectures has the property that no composant of it is
accessible at more than one point. Here such an embedding is constructed and a tech-
nique for producing plane continua with this property is presented. (The author
wishes to acknowledge the fact that Wayne Lewis has recently announced similar
results.)

DErFINITIONS and NOTATIONS. Space is assumed to be the plane, denoted
by E?, with the standard Fuclidean dista:ice 4. By a disc is meant a homeomorphic
copy of the square disc [0, 1]x [0, 1]. If Z is a bounded set or a point and ¢ is a posi-
tive number, then S(Z, &) denotes the open set {x| d(x, Z)<se}. If H is a set, then
Int(H) denotes the interior of H and Bd(H) denotes the boundary of H. If M is
a set and H is a subset of M, then H is said to be accessible from the complement
of M if there is a point x in A and an arc o with x as one of its endpoints so that
a—{x}=E*—M and the set H is said to be accessible frcm the complement of M at
the point x.

THEOREM 1. Suppuse S is the square disc [0, 11x [0, 1], I is [0, 1]x {0}, K is the
Cantor set lying in I and D, D,, ... is a sequence of discs lying in S so that:

(1) D,y =D, and D, = S,

(2) K=Bd(D,) for all positive integers n, and

(3) if e>0 and P is a point of I—K then there exists an integer N and an integer
n>N so that Pe Dy— D, and every point of D, lies within ¢ of the component of
Dy—D, containing P.

Then the common pait M of the discs Dy, D,, ... is an indecomposable plane con-
timum uncountably many composants of which are accessible from the complement
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of M, in particular no two points ofK —{(0,0), (1, 0)} lie in the sume composant of M.

o«
Proof. Suppose M = () D;and Dy, D,, ... satisfy the hypothesis of the theorem,
- i=1

Since K e D, for each ithen K € M. Suppose x and y are two points of X and neither x
nor y is (0, 0) or (1, 0). Let  be an arc with endpoints x and y so that a—{x, y}
lies in E2—S. Suppose further that x and y liein the same composant of M and H is
a proper subcontinuum of M containing x and y. Let z be a pomt of M~ H. Now
H U o separates E? into two open sets U and ¥, one of which, say U, is unbounded;
and ze E2~Hua=Uu V.

Case I. Suppose z lies in the bounded component ¥ of E 2 H U a. There is
a positive number ¢ so that S(z, ¢) is a subset of V. Let P be a point of /— K which
lies in U, there is such a point since neither x nor y is (0, 0) or (1, 0). There is an
integer N and an integer n> N so that P ¢ D, and every point of D, lies within ¢ of
the component W of Dy— D, containing P. Thus z lies within & of W so there is
a point Q in W n S(z, €). But then there is an arc f§ lying in W containing P and Q
but Qe S(z,e)<V,PeV, and WcE*—H U « which is a contradiction.

Case IL Suppose z belongs to the unbounded open set U. Then let P be a point
of I—K which lies in ¥, and the argument used in Case I applies only now f would
be constructed fo be a subset of W which would lie in V.

Thus no proper subcontinuam of M contains both x and y. So no two pomts
of K—{(0,0), (1, 0)} lie in the same composant of M. So uncountably many com-
posants of M are accessible. The indecomposability of M follows from the fact
that M is irreducible between each pair of points in K—{(0, 0), (1, 0)}.

TBEOREM 2. There exists a pseudo-arc M in the plane such that no composant of M
is accessible from the complement of ‘M at more than one point.

First some definitions which will be used in the construction must be made:

Suppose D is a disc and X is a Cantor set in Bd(D) then the sequence {S;},Z,
is said to be a defining sequence of segments in BA(D) for K if it is true that each ele-
ment of {S;},Z, is an arc minus its endpoints which lies in Bd(D), no two elements

0
of {S;};2; intersect, and K = Bd(D)—{) S;.
i=1

Suppose that o is an arc with endpoints x and x', H s a point set and H inter-
sects a. Then the point p is the first point of H in « in the order x for x' means'that
p e Hand either p = x or x ¢ H and the component of «— {p} containing x contains
no point of H. If H is closed and H intersects o then there always exists such
a point p. '

If G is a finite collection of open sets, then the collection C of open sets is said
to refine G if the closure of every element of C is a subset of some element of G.
The collection G is called a chain if G is a finite collection gy, g,, ..., ¢, of open
sets called the links of G so that g, intersects g; if and only if |i—j|<1,-and g, inter-

sects g; if and only if |i—j|<1. If G is a chain, £>0, and for each link ge G

diam(g)<¢ then G is called an &-chain.
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If G is a chain and C is a chain then C is said to be crosked in G if and only if
it is true that:

1) C refines G;

2) if ' is a subchain of G having at least five links and C’ is a subchain of C
whose first and last links lie in the first and last links of G’ respectively, then there
are links ¢; and ¢; of C’ with ¢; preceding ¢; such that ¢; lies in the next to the last

- link of G’ and ¢ lies in the second link of G ; and

3) every link of G contains the closure of some link of C. For theorems con-
cerning crookedness the reader should consult Bing [1] and Moise [3]. The following
theorem will be needed in the construction. ’

THEOREM A. Suppose Cy, C,, ... is a sequence of chains so that Ci4q Is crooked
in C; and for each positive integer n C, is a (1/n)-chain. Then the common part

o0
M =\ CF is a pseudo-arc.
n=1

Suppose D is a disc and ¢>0, by an &-partition P of the disc D is meant a col-
lection py, py, ..., p, Of discs with diameters less than & whose union is D so that if
two elements of P intersect, then they do so along a common boundary which is an
arc; so that p; n p; = Bd(p;) n Bd(py). A partition is an s-partition for some po-
sitive number e. By a chain-like partition P of a disc is meant a partition p,, p,, ..., p,
so that p; intersects p; if and only if |i—j|<1; note that if i< j, thenp, U pyyy U ... U p;
is a disc.

The chain-like partition P = p,, p,, ..., p, of the disc D is said to induce
a covering C = ¢y, ¢, ..., ¢, of D if it is true that:

) pieey, i=1,2,3,...,n

2) the elements  of C are the interiors of discs;

3) ¢; intersects Z; if and only if p; intersects p;; and

4) p;n ¢ s a disc or & for all i,/ =1,2,...,n

The following lemmas are needed for the proof of the theorem. Lemmas 1
thru 5 are fairly elementary and are stated without proof. Lemmas 6 and 7 define
an embedding of the pseudo-arc in the plane as the common part of a sequence of
discs. Leroma 8 states that the continuum obtained in Lemma 7 satisfies the con-
clusion of Theorem 2.

LemMa 1. If 6>0, D is a disc, and P is a chain-like partifibn of D; then P induces
a covering C = ¢,,C5, ..., ¢, such that for each integer i=1,2,..,n diam(c)
<diam(py+0.

LeMMA 2. If >0, D is a disc, and P is a chain-like g-partition-of D, then P induces
a covering' C of D which- is an ¢-chain.

LemMA 3. Jf§>0, D is a disc, G is a covering of D, P = py,p,, ..., D, IS a chain-
like partition of D each element of which is a subset of some element of G; then P
induces a covering C which is a chain which covers D and refines G so that diam(c;)
<diam(p)+d for i =1,2,..,n
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LemMa 4. Suppose D is a disc, G is a chain which covers D, J is an arc lying in
BA(D), and e>0. Then there exstis a disc D' such that:

(1) D’=D and J does not intersect Bd (D),

(2) there is a chain-like e-partition Q of D' which induces a covering C of D’
which is an &- chain which refines G and so that every element of G contains an element
of C, and

(3) every point of D' lies within ¢ of some point of the component of D—D'
containing J.

LEMMA 5. Suppose D is a-disc, C = Cq,Cp5-ees € I8 @ chain covering D, and
e>0. Then there exists o disc D', and a chain-like g-partition P' of D' so that:

(1) D'eD,

(2) P’ induces an e-chain covering D' which refines C, and

(3) every point of BA(D) lies within ¢ of D'. .

LEMMA 6. Suppose D is a disc, £>0, §>0, P = py, s, s Py is a chain-like
partition of D, C is a covering of D induced by P, K is a Cantor set lying in Bd(D),
anid J is an arc in BA(D)— K. Then there exists a disc H and a chain-like e-partition Q
of H which induces an &-chain E covering H so that:

(1) E is crooked in C,

(2) K=Bd(H),

(3) JeD—H, and .

(4) every point of H lies within 8 of the component of (E*—H) n D which con-
tains J.

Proof. There is a homeomorphism 4 from E? onto itself which maps D onto
[0,7]x[0,1] so that h(p;) = [i—1,i]x [0, 1]. There is a number y so that if x
and y are points of D and d(x, )<y, then d(h™*(x), h™*(»))<Min{s, §}. There
is a number @<}y so that some vertical or horizontal segment lying in h(J) has
a diameter greater than a. Let 4 be the annulus [0, n] % [0, 1]—[a, n—a] x [, 1—a].
There is a horizontal or vertical line segment L and a positive number b so that L
Ties in 4 and intersects 2(J) and both components of Bd(4), S(L, b) 0 Aisa rectangle
which does not intersect A(K) and 4—S(L, b) is a disc. Let B = A—S(L, b), so B
ig a disc. ‘

The collection {w| w is a component of [i—1, ] %[0, 1] n B for some integer i}
is a partition W of B.

. In particular suppose # is an integer and i(p;) does not intersect S(L, b); then
if iis 1 or n h(p;y n Bis an element of W, and if i is neither 1 nor » h(p;) N Bis
the union of two elements of W.Now if 4(p;) intersects S(L, B), h(p;) could be the
union of three elements of W. W induces a covering C of B which refines the covering
{h(¢)| ceC}. In particular suppose the element & of € is chosen to be S(w, &y)
thén &, can be chosen small enough so that (except for the elements of W lying in
h(py) or A(p)) S(w,8,) N B is a rectangle; in any case §,, can be chosen small
enough so that if Z is a horizontal or vertical line segment lying in 4 with endpoints
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on the two components of Bd(4) then Z is a subset of every element of C that it
intersects. Let us say that C satisfies condition Z if it satisfies this latter condition.
Further 8, can be chosen so that Bd(S(w, 4,)) does not intersect 2(X).

There is a disc 7 and a chain-like }y-partition R = ry, rs, ..., Iy of T which
induces the }y-chain ¥ which covers I so that ¥ is crooked in C and so that V*
intersects both components of Bd(S(L, b)) n Int(4) and lies in IntA. Thus any
horizontal or vertical line segment intersecting both components of Bd(4) and which
does not intersect S(L, b) must intersect some element of V.

TN W) L /Si
'/ i s W’
3 H }/ ?
\ . ’m% 3 = 7/// ”/ —
—
b

=

There is a finite collection G of regions covering K so that:

1) the élements of G are the interiors of circles of diameter less than %y,
2) the closures of two elements of G do not intersect,

3) the closure of each element of G intersects neither V* nor A(J), and
4) each element of G is a subset of every element of C that it intersects.
Define a corner of B to be any element in the set: .

{[0, a]x [t ~a, al, [0, a]x [0, ], [1 —a, 1]x [1—a, 1], [I-a, 11%[0,al} .

5 — Fundamenta Mathematicae z. 111/1
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For each element g; of G not intersecting a corner of B there is an arc ; so that:
a; is a horizontal ot vertical line segment, o; intersects g; at one of its endpoints and
only one element 7;, of R at the other endpoint, a; is a subset of every element cf C
that it intersects, and «; does not lie in the boundary of any element of &; con-
dition (Z) insures that this can be done (care need be taken to insure that «; does not
intersect a common boundary point of r,, and r,_, or of r, and ry,,,, as there are
only four such points this is easily accomplished.) Note that diam(x;)<%}y. For
each a; there is a regular open set Uy S(x;, ) 0 B with y,<%y containing o, so
that U, intersects no element of Ru G distinct from r, or g, and so that
@: n B) L U; U r,is adisc which is a subset of every element of & which contains [/
furtherif s, = (@, 0 B) U U, U ry,, then sy, intersects s, if and onlyif ry intersects ry,.
If Fis one of the corners of B then pick an element ry intersecting Int(F) and an
arc o, connecting ry, and all of the elements of G which intersect Fand an open set U,

so that r, U (T,, U B)u {¢g| g€ G and g intersects F}*is a disc which does not
intersect s for k’ so that |k'—k|>1. Now if § = s, §5,..., 5, then S* is a disc,
S is a chain-like partition of S* which has the property that if ¢ e C, then s,</h(c)
if and only if r;ch(c). Note that diam(U) <y, diam(r,) <%y and diam(g) <%y

so each element of .S has diameter less than y. Thus S is a chain-like y-partition of
the disc S* and so induces a y-chain E = &, &,, ..., &, which covers S* and is
crooked in C. ‘

Let H=h'(s9; Q=h"'(s),
h™Y(2,), ..., h7Y(E,). Then:

1) E is crooked in C since E is crooked in C;

2) K<=Bd(H) because h(K)=G*<=S8*; and -

3) Jo D—H since no element of G intersects 4#(J) and each element of R lies
in Int(4). Condition (4) follows from the fact that if Z is the component of
(E*—H) n D which contains J then A(Z) contains the bounded component of E?—
and every point of B lies within \/ia of this component. Hence every point of h(H)
lies within \/ia of h(Z) and a<%y so every point of H must lie within § of Z.

From the preceding lemmas it follows by induction that,

P11P2= ey Kls KZ, T {Sll}r;li
so that for each positive integer n:

B4s5), s BTNs); and  E = hTY(E),

LeMMA 7. There exists sequences Dy, D,, ...;
{SHH2 10 i Ry Ry w3 T1u Ty vy and Uy, Uy,

(1) D, is a disc and D,=D,_4 for n>1;

(2) P, is a chain-like 1/n-partition of D, which induces a 1/n-chain C, which
covers D, so that if n>1 C, is crooked in C,_y, and so that d(D,, E*~C})< |n;

(3) K, is a Cantor set in BA(D,), if n>1 K, contains K,_, {SI}, is a defining
sequence of segments in BA(D,) for K, which are ordered in non-increasing order by
diameter, diam(S7)<1/n for each positive integer i, and Max{diam(SPH},
<Max{diam(ST")}2,;

(4) R, = S} and R, is an element of U (82— (R which has diameter
J= ]
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Max{diam(S})| S{ # R, for positive integers i, j, and k with ]<n and O<k<n}
(so that if R, = S}, then j<n) and J, is a point lying in R,;

(5) if n>1 D, does not contain J,_, U,_, is the component of D, — D, con-
taining J,_, where k, is the last integer so that J,_, € BA(D,); and

(6) every point of D, lies within 1/n of U,_, for all n>1.

It follows from Theorem A that if M is the common part of a sequence of
discs Dy, D,, ... which satisfy the conclusion of Lemma 7, then M is a pseudo-arc.
To complete the proof of Theorem 21t is only necessary to show that M is irreducible
between each pair of points accessible from the complement of M. Since not all the
conditions of Lemma 7 are needed to show this the following lemma is proved.
K, K, K3, o3
vy and Uy, Uy, Us,y o

LEMMA 8. Suppose that there exist sequences Dy, D,, Dy, ...;
{Sg};il’ {Slz}iy—)“—‘ls {Sis}:;l’ e -Rn st R31 [T Jl)JZ>J3:
so that for edach positive integer n:

(1) D, is a disc and D,cD,_y for n>1;

(2) K, is a Cantor set in Bd(D,), K, contains K,_,, {Si}i~ is a defining sequence
of segments in Bd(D,) for K, which are ordered in non-increasing order by diameter,
diam(S})<1/n for each positive integer i, and

Max{dmm(S")}i 1 <Max{diam(S]"9)}2, ;

(3) R, = S}, R, is an element S of U {SH ) —{R}iZ Y which has dicmeter

Max{d1am(S{)[ Si # R, for positive zntege;s i, j, and k with j<n and O<k<n;,

(4) if n>1 D, does not contain J,_, and U,_, is the component of D, — D,
containing J,., where k, is the last integer so that J,_; e BAd(Dy), J,€R,; and

(5) every point of D, is within 1/n of U,_, for all n>1.

o
Then if M = [\ D, then M is an indecomposable plane continuum no composant
n=1
of which is accessible at more than .one point.

Proof. Some preliminary observations need to be made. It follows from con-
ditions (2) and (3) that if R, = S/, then j<n. If ¢>0 and 7 is a positive integer
then the set {S?] diam(S?)>¢} is finite so that the sets {R,| n=1,2,3,..} and
{Sili,j=1,2,3,..} are equal.

Suppose that x and y are two points of M lying in the same composant C,
of M and that C, is accessible from the complement of M at both x and y. Let «
and B be non-intersecting arcs so that x is an endpoint of «, y is an endpoint of
B.on M ={x}, and B M = {y}; further choose « and B so that the end-
points x' and »' of o and B respectively which do not belong to M also do not belong
to Dy. There is a proper subcontinuum H of M containing x and y. Let z& M —H.

The three cases are similar; the-most complicated will be presented: neither x
nor y lies in any of the sets of the sequence {K,};%,. Let N be a positive integer so
that 1/N<d(z, B). For each positive integer n the set {i| « intersects Si} is finite,
5%
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otherwise & would intersect K, and hence M. (In the other cases if x K, for some n
then o can be chosen to intersect D, at only one point.) Let Sﬂ be the element of
{81 i=1,2,3, ..} first intersected by « in the order from x to x’, and let S¥ be
the element of {SN | i=1,2,3,..} first intersected by f in the order from y to 3,
Since diam(SY)<1/N and d(, ﬁ)>1 IN it follows that Sf} # Sfi, and hence SV
and S,.’: do not intersect.

Let x"" be the first point of « in the order from x to x' lying in Sﬁ and y’' be the
first point of § in the order from y to y lying in Sj. There is an arc y with end-
points x* and' ¥’ so that y—{x", »""} does not intersect Dy. Let o« be the subarc
of « from x to x” and let B’ be the subarc of f from y to y”, so that o’ U yup
is an arc from x to y. Thus H U &’ U y U B’ separates £ into two mutually exclusive
open sets U and ¥, both of which contain o’ Uy U ' in their boundary, let U be
the unbounded domain and let ¥ be the bounded one. Let & be a positive number so
that S(z, &) does not intersect Hu o' U y U B, so that S(z, ¢) is either a subset
of U or a subset of 7.

// / //// //5//

x Jn

Case (i). Suppose S(z, &)< U. The set of elements of the sequence {S7},
which belong to ¥ is infinite. There is an mfeger N’ so that 1/N’<e. Thus there is
an mteger n>Max{N, N’} so that R, = SY for some integer i and S¥< V. So
J,eSY. Let W be the component of Dy— D, containing J,. W does not intersect
y~{x", »""} since We Dy and y—{x", y"'} does not intersect DN If W intersects o
then there is an arc A4 lying in W U «' intersecting both Y and Si‘ and missing M but
then 4 U (a'—{x}) separates Dy into two sets both of which intersect M and whose
union contains M which is not possible (note that for all positive integers j both end-
points of S} lie in A). Similarly W does not intersect B'. So W does not intersect
Hwu o uyu f, and hence must be a subset of ¥ since W intersects sy, U_ycW
since U, is a component of Dy ~ D, which is a subset of Dy— D, and Uy—yand W
intersect (from the definition of U,_.k, >N since J,_,eR,_ 1©D,_y=Dy so
J, € Dy). So every point of D, lies within 1/n of W, Some point of S(z, &) intersects W
since 1/n<1{N'<e. So S(z, ¢) intersects both U and ¥, which is a contradiction.
A similar argument can be used in case (ii): S(z, 8) < ¥ Thus it has been shown that x
and y lie in diﬂ‘f.rent composants of M, so the theorem has been proven.
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OBSERVATION. There exists an indecomposable continuum M is the plane which
is not hereditarily indecomposable such that no composant of M is accessible at
more than one point of M. To see this let D, = [0, 1]1x[0, 1] and let « be the
arc {4} x [0, 4]. Then a sequence Dy, D,, Dj, ... can be constructed satlsfymg the

hypothesis of Lemma 8 so that o< D; for all positive integers 7. Thus g M = {'] D;.

i=1
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