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Abstract. Given a compact manifold M, let vM = min{»F: F is an m-function, vF is the
F

number of critical points of F and F|oM}. We prove, by using an appropriate form of the handle
theory, that if M and @M are simply connected and dim M>6, then »M depends only on the map
is: Hy(OM; Z)—>Hy(M; Z) induced by the inclusion &M C M and on a family of homology oper-
ations. In particular, it is an invariant of the homotopy type of the pair (M, 9M). In some cases ¥M
is explicitly determined.

1. Introduction. A real-valued smooth function F on a compact smooth mani-
fold M is called an m-function if both F and F|dM have only non-degenerate critical
points and F has no critical points in a neighbourhood of the boundary.

It follows from the Morse inequalities that for a Morse function on a closed
manifold M the number of critical points of index g is not less than b, M+t M+
+14-1M, where b (X, A) denotes the rank of H (X, 4) and 7,(X, A) is the number
of torsions in H (X, A4). By the celebrated theorem of Smale [11], there exists a Morse
function on M which realizes the lower bounds for all ¢ provided M is simply con-
nected and dim M > 6. The same is true if we consider a compact, simply connected
manifold with boundary, dimM>6, and define Morse functions to be constant
and maximal on the boundary.

The case of m-functions is more delicate, although the Morse inequalities are
still available [2], [6]. Denote by c,F the number of critical points of F of index g,
by d; F the number of critical points of F|0M of index ¢ with the gradient of F
pointing outwards, and by d, F the number of critical points of F|0M of index ¢
with the gradient of F pointing inwards. The Morse—Cairns proof can easily be
improved (cf. Proposition 1 below) to give the following Morse inequalities for
m-functions:

b (M, M)+t (M, M) +7,_(M,dM)<c F+d,_,F,
bM+t, M+7,_ M<c,F+d, F.

For some manifolds, however, these are strict for any m-function F. Let
vM = min Y (c,F+d, F+d, F), and let uM be the Morse number of M, i.e., the
F gq L
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minimal number of critical points of Morse functions un M (constant on dM).
Our main aim is to find the number

%M = pM+p(OM)—vM .

An easy argument shows that M >0, but it may be non-zero (e.g. xD" # 0).

The standard technique of handle theory yields a reduction of our problem
to algebra provided M and dM are simply connected and dim M > 6. Sections 2 and 3
contain preparatory material, the most important item there being Theorem 1 ex-
tending Smale’s Cancellation Theorem. In Section 4 we characterize »M on the chain
level (Theorem 2) and in Section 5. we determine it, using homology groups of M
and M, the homomorphism induced by the embedding i: dM — M, and some
homology operations. If the (integral) homology of 0M or cohomology of M has
no torsion, then xM can be explicitly shown to be

max {card (8 N Imi,): B is a minimal set of generators of Hy M}
]

in the first case and

max {card(y n Imi*): y is a minimal set of generators of H*(6M )}
Y

in the second case. Finally, in Section 6, we compute the minimal number of critical
points of a Morse function on M which extends to an m-function with no interior
critical points.

2. Some results concerning s -functions. We shall work in the category of
smooth compact manifolds. Let F be an m-function on M. By definition, critical
points of F lie in the interior of M and we shall call them interior critical points.
The index of each such point is defined as usual [10]. A point x is called a boundary
critical point if it is a critical point of F|dM. Its index is a pair (g, €), where g is the
usual index of x and & = 1 if the gradient of F at x points outwards or ¢ = —1 if
the gradient points inwards.

We start with a simple lemma which shows how to replace a critical point of
index (g. €) by a point of index (g, —¢) at the price of adding one critical point in
the interior of M. The lemma is proved in [2] and [], but we present a proof which
we shall exploit in the sequel.

LemMa 1. Let. V = {(x1, .., X)) € R": Xy < —Xi— =X 4+x24, +.. +x2_,} and
let U be a neighbourhood of the point (0, ..., 0). Then there exists an m-function F
on V such that:

() F(xyyen X)) = X, for (xy,....,x)e(V=U)u dV,
(ii) F has one interior critical point of index q+1,
(iii) the gradient of F at (0, ..., 0) points inwards.

Proof. Let U, = {x,, ..., X,)€ V: x1+...4+x2_, <&, —e<x,}. Choose & such .
n

that U,,c U and a smooth non-increasing function #: R — R equal to 1 for x<0
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and to O for x>e¢. It is not difficult to find another smooth function é: R— R
such that:

t(x)=0 for x =0 and x>¢,

0<é(x)<(max|y’|+1)"t for O<x<e
and also

¢0)>1,
(A) the equation ¢'(f) = 1 has only one solution x, in the interval (0, ¢),
E"(x)<0 for 0<x<x, -

One can check that the function
2 2
F(x;y .o X,) = x,,+rl(x1+...+x,’,_1)£(—x3—...—x:+x3+, ot xi o =x)

has the required properties.

Condition (i) is easy.

Straightforward computation shows that an interior critical point of F must
have coordinates (0, ...,0,¢) where ¢ satisfies the equation &'(—t)—1 =0, but
this has exactly one solution by (A). The hessian at the interior critical point is
a diagonal matrix with g elements on the diagonal equal to —2, n—g—1 elements
equal to 2 and one equal to £”(xy)<0. The gradient at (0, ..., 0) has coordinates
(0, ...,0, 1=¢(0)), and hence points inwards. The lemma follows.

Lemma 1 and the results of [6] give the following result, equivalent to
Theorem 10.1 in [2].

PROPOSITION 1. Let F: M — R be an m-function and let p e M be a boundary
critical point of index (q—1, 1). If p is the unique critical pcint in an open set W, then
there exists an m-function G such that:

(i) G(x) = F(x) for xe(M—W) v M,

(ii) G has one interior critical pcint in W and it is of index gq,

(iii) p is a critical point of index (q—1, —1).

LEMMA 2. Let F be an m-function on M, and U an open subset of 0M. If the indices
of all boundary critical points in the closure of U have signs +, then there is an m- - func-
tion G with the same set of critical points, such that the gradient of G points outwards
in U.

Proof. Let £ be a gradient-like vector field for F (see [10]). Cover U with a finite
number of closed cells such that their interiors cover U. Choose a Riemannian
metric such that £(x) is orthogonal to the boundary if and only if x is a boundary
critical point. We shall proceed by induction. Suppose that &(x) is an exterior vector

for xe |J B,. Using the trivialization given by the Riemannian metric, we may
Jjsi-1

consider &¢|B; as the map &;: B; — R". Assume that the lower half-space R, of R"
corresponds to the exterior tangent vectors and the vectors orthogonal to dM cor-
respond to the x,-axis. By assumption, &; maps B; to R" minus the non-positive
1e
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part of the x,-axis. A deformation of R" to R, fixed on a neighbourhood of the
positive part of the x,-axis induces a deformation of &; to a map sending B; to R
and such that:

(1) there is no change in a neighbourhood of critical points of F,

(2) x is sent to a vector orthogonal to dM if and only if it is a critical point
of F,

(3) the property “x is mapped to an exterior tangent vector” is preserved during
the deformation.

It extends to a deformation of ¢ also satisfying the three conditions and we may
assume that the deformation is supported in a neighbourhood of the boundary
without interior critical points. Finally we get a deformation of ¢ to a vector field
with no interior vectors in U. The deformation induces a deformation of the m-func-
tion as described in [10]. In a neighbourhood of the critical points we have avoided
changes and by (2), new critical points can not appear, whence we get an m-function
with the required properties.

It follows from [6] that an m-function yields a decomposition analogous to
a handle decomposition. We shall now describe such decompositions in some detail
(omitting the discussion of smoothing corners, however). If X is a smooth manifold
with a submanifold ¥, X = V' u D*x D" %and V n D*x D""% = §*"1x D"V,
then D?x D"~%is called a handle of index q on V. The embedding $7~ ! x D""9— oV
is called the attaching map. A handle of index (g, —1) on the pair (V, W), where
WcdV, is a disc DTx D" 17! x D! such that

Dix D' lx DAV =S8"1xD"1" xD'cdV
and
ST D" DI AW = ST DI I x {—1}cOW.

A handle of index (g. 1) on the pair (V, W) is a disc D*x D""9"1x D! such that
D'x D" ' x DAV =811 x D" x DU D'x D" x {l}cdV

and
Dix D" 1 DA W=S8"1xD" " I x{-1}coW.

In both relative cases the disc D?x D""?7! is a handle on W which we call the
restricted handle

If M is a smooth compact manifold with boundary, then an m-decomposition
is a sequence of submanifolds

F=M_,cMycM,c..cM, =M

such that

(i) M; = M;_; U h, where h is a handle of index ¢ on M;_;—0M or a handle
of index (¢, £1) on (M;_,, M;_, 0 OM),

(ii) the sequence M_, " dMcMyn dMc..cM,ndM = dM is a handle
decomposition of oM.
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The handles of indices g, 0<g<dim M, are called interior handles, the others
are boundary handles. The left (right) sphere of an interior handle is S? ! x {0}
({0} x 8"~%71), its left disc is D?x {0} and the a-disc of a boundary handle of index
(g, 1) is D*x {0} x D'.

We have a natural operation on m-decompositions which corresponds to the
operation described in Lemma 1. Decompose the handle D%x D" 971 x D! of
index (g, 1) as D'x D" 'x[0,1] U D*x D""?"'x[—1,0]. The second part is
a boundary handle 4 of index (g, —1) and the other part is an interior handle /' of:
index g+1 whose left sphere intersects the right sphere of 4 at just one point and
transversally. Moreover, the left disc of A’ is the part of the a-disc of the given
handle contained in 4’. An inspection of the proof of Lemma 1 shows that the
corresponding operation on m-functions also has these properties, when left spheres,
discs, etc. are defined as in the case of Morse functions.

Every m-function determines an m-decomposition. On the other hand, for
any m-decomposition of M we can find an m-function F on M such that there is
a 1-1 correspondence (preserving indices) between handles of the decomposition
and critical points of F. Thus, as long as we deal with quantitative problems, we can
replace m-functions by m-decompositions. Also, if we ignore m-functions and
consider m-decompositions, the results of the paper are valid in the PL category.

Let hy, h, be a pair of adjacent handles in an m-decomposition, say,
My =MyUhy, My, =M,,, Uh,. We call the pair complementary if one
of the following conditions is satisfied:

a) hy and h, are of the same type (both interior or both boundary) and there
exist a relative collar (U, U’') of (an-aM,a(quaM)) in (My, M, 0M)
and a diffeomorphism (M,, M, n 0M)— (M, ,, M,,, n dM) which is isotopic
to the inclusion M, —M ., through an isotopy supported in U U h, U h,,

b) hy has index (g, —1), h, is interior of index g+1 and (M,,,, M,,, 0 IM)
is diffeomorphic to (M, U ', (M, U k') N M), where k' is a boundary handle of
index (g, +1) restricted to the same handle in the boundary as /, and the diffeo-
morphism is supported in a collar as above,

©) hy is of index g, h, of index (g, 1) and (M, ,, M, , n M) is diffecomorphic
to (M, U I',(M, U ') n M) for a handle 4’ of index (g, —1) and the diffeomor-
phism supported in a collar as in a).

The most important tool for minimalization problems in the case of Morse
functions is the Smale-Morse cancellation theorem, which provides a characteriz-

ation of complementary critical points (cf. [10]).We shall extend this characterization
to cover the case of boundary critical points.

THEOREM 1. a) If h is an interior handle of index q, i’ a boundary handle of index
(g, 1) the right sphere of h and the a-disc of k' intersect transversally and at a single
point, then the pair h, h' is complementary.

b) A pair of boundary handles is complementary if and only if the signs of their
indices are equal and the restricted handles are complementary.
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Proof. a) Replace the handle 4’ by the sum of an interior handle k and a bound-
ary handle k' of index (g, —1). We can choose the decomposition of A’ into k and k'

such that the left sphere of k contains the intersection point of the a-disc of A" with.

the right sphere of 4. By the Smales-Morse theorem ([10], Th. 5.4), the pair h, k is
complementary, and this gives the required diffeomorphism.

b) If we add a boundary handle 4 to a manifold M, then M U h has the same
homotopy type as M if and only if the index of 4 has the sign +. This implies the
“necessity of the first condition. The restriction of the diffeomorphism provided by
the definition of the complementary handles ensures that the restricted handles are
complementary, hence the second condition is also necessary. Let N=0M,n oM).
There exists a neighbourhood U of N of the form Nx[-1,1]x[0, 1], where
Un oM = Nx{1}x[0, 1] and N is identified with Nx {1} x {1}. Tt follows from
the uniqueness of collars that, given the collar Nx [0, 11x {1}, we may isotop the
attaching map of h (and afterwards that of 4’) to the product of the attaching map
of the restricted handle by id;o,,;. Thus we can assume without loss of generality that
h=((hnoM)x[0,1] and &' = (W n dM)x[0,1] and the smooth structure of
[—1,1]x[0, 1] coming from U is induced by the embedding in R? pictured below:

(=L

(0,0) .
(-1,0) (1,0)

Let ¢: [—1,1]1x[0,1]—[0,1]x[0,1] be a homeomorphism such that

(p(—l’ 1) = (010)»

90,0 = (4,0,
([)(—1,0)=(&,0),

o, ) =(@1),

e(l,0)=(,1) for 0<t<l,

and ¢ is a diffcomorphism except at (—1,0). The map idyx ¢ can be extended by
identity to a diffeomorphism (ignoring for a moment the point (—1,0))
Yy: UuhUuh' — Nx[0,1]x[0, 11U hu k', By the assumption we have a diffeo-
morphism f: M, n 0M — (M, U h U h’) 0 OM which is isotopic¢ to the inclusion
M,noM— (M, hoh)noM through an isotopy H,, s e [0, 1]. We can take
H, equal to the identity on an open set containing the closure of the complement
of U dM. Define an isotopy of the inclusion U— U u h U k' by

ﬁs = '//_I(Hind[o,u)('I/IU) .

Since A, is equal to an identity near N x {1} x {0}, the new isotopy is smooth (even
at (—1,0)) and’it is the identity in a neighbourhood of Nx[-1,1]x {0} U Nx
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x {=1}x[0, 11, which allows us to extend H, smoothly to M o by the identity. This
gives the required isotopy.

Remark. Theorem 1 may be used to detect all types of complementary pairs
of handles, type b) being dual to the case a) of the theorem.

3. The chain complexes associated with an m-decomposition. We shall now
describe an algebraic object arising from an m-decomposition and containing all
the information needed to resolve our minimalization problem. The object is a homo-
morphism of chain complexes of based free groups. Homology groups of the
chain complexes are isomorphic to H,(0M) and H, M, respectively (integer coef:
ficients). The bases correspond to handles of the decomposition. Three operations:

— introduction of a complementary pair of handles,

— cancellation of a complementary pair,

— change of the attaching map of a handle by an isotopy
introduce some useful operations on the chain complexes and on the homo-
morphism (compare Lemmas 4 and 5 below). All the statements in this section have
well-known analogues in Morse theory (cf. [1], [2], [3], [10]) and their proofs,
which only need easy alterations (if any), will be omitted.

An m-decomposition is called nice if there is a sequence of submanifolds

Q=M_cMycMycM,cM,c..cM,cM,=M
such that

DM, =M,_,Uh U..Uh UK U..U K, where hy, ..., h, are handles of
index i on M;_,—(0M n M;_,) and hy, ..., h; are handles of index (i, —1) on
M-y, 0M N M;_,),

2) M; = M;Uh{ u..UH,/ where hY, ..., h are handles of index (i, 1) on
(M;, oM ~ M),

3) for any two handles of the same index the attaching maps have disjoint
images.

LeMMA 3. For any compact manifold M there is a nice m-decomposition of M.
If M and OM # @ are simply connected, diim M =6, then there is a nice m-decomposition
with no handles of indices 0,1,n,n—1,(1, £1),(n—2, £1).

Consider a nice m-decomposition of M and choose orientations for D, D"~i1,
D! in any boundary handle D'x D"""~1x D! and for D', D"™* in each interior
handle D'x D"~%. In the free groups

Ri = H,(Ml-(\aM, Mi—l C\@M),
S; = H(W, 0 @M ~ M), M;_, U (@M A M,_)))
Tl' = Hi(Ml'U (aMﬂ Mi)’ Mi—l U(aMn M,))

the oriented discs determine bases which we call preferred bases. The connecting
homomorphism of the triple M; n OM, M;_, n 0M, M;_, n 0M is a homomorphism
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o%: R,— R;_; and R = {R;, 3} is a chain complex. Similarly, we get complexes
S’ ={S},d}}, T = {T;, 8]} and inclusions induce the exact sequence

(*) 0—-R—-S—>T—0.

The CW-complex associated with an m-decomposition of M has the homo-
topy type of M. Since the image of M; U (0M n M) under the natural projection
is the ith skeleton of the CW-complex, we have isomorphisms

Hy(R) = H,(0M),
Hy(S") = Hy (M),
H(T) = H,(M, M) .
Let D;f denote the free abelian group generated by the set of handles of index (i, £ 1),
and let C; be the group freely generated by handles of index i.
We have isomorphisms
-Ri = D i— @ D i+ s
Si=C @D @D ®D,,
Ti = -Di+—l @ Ci s
where generators corresponding to C; are given by the left discs of interior handles,
those from D;, D}t by the left discs of restricted handles and those in D}, by the
a-discs of boundary handles. When we use these identifications, the matrix of
d': S;> S;_, has the form
X; 0 0 4,
Y, I_al-(. B;’
0 —l— idD‘t 1
0 0 0 o,

i.e., for any c¢,e C;, di € D], di e D, di"; e D, we have
a’(C,+di_+d‘++d‘+_1)
= X{(c)+ Yi(e)+0f(d +d)+ ALdi- D)+ B ) +dE, +8,(dy),
where

X

: ;> Ciy,
:Ci—> Dy,
: Di+—1_')ci—_1 s
B;: D::l—"Di——l

Lol

are some homomorphisms determined by attaching maps of handles and o, is
the composition of 8%, with the projection on D;",. The maps B;, 4;_, reflect
how the handles of index (i—1, +1) are attached to M;_,. Since the addition of
handles of index (g, 1) to a manifold is always a trivial operation from the point
of view of homotopy, one can replace the complex S’ by a homotopy equivalent
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chain complex S = {S; = H(M;, M;_.), 3]}, where 3} is the connecting homo-
morphism of the triple (M;, M;_,, M;_,). The groups S; are isomorphic to C; @ D;
and »
0 (ci+di ) = Xie)+ Yie)+(dpr ,— 4, — B)(dr)) .
The chain maps
n: S—>S":¢c;+di Ci+dl__ai+ @)
and

Y: 8 — S eitdi +df +dily b citdi — Ay () - Biy o (d))

(the latter induced by (M;u (0M n M), M, ; v (OM n M;_\))=(M;, M,_,))
are homotopy equivalences, because Y o n = id and the homotopy 4: id~noyy
is given by 4;: S{ — Si.;: ¢;+d; +d; +d;-., »d;'. All this is verified by straight-
forward and rather tedious computations, using the equality 20; +0;" 4;,, = 0, .
which in turn is an immediate consequence of the rule ¢’ 09’ = 0.

The exact sequence (¥) can now be completed to a homotopy commutative
diagram

0->R—>S"->T—-0

el
R-> S->T
?

where ¢ is the composition of the inclusion of R into S’ with . The homology of S is

isomorphic to H,(M) and the homomorphism induced by ¢ in homology is the

homomorphism induced by the inclusion dM = M. Note that ¢| D; is the inclusion.

A generator h of D;" goes by ¢ to an element represented by k n M;. Thus, if

o(h) =Y a,9,, where {g,} is the preferred base of C; @ D;, then a, is the inter-
a

section number of the boundary of the a-disc of A with the right sphere of g, (when
orientations are chosen properly).

The complexes R, S and the chain map ¢.: R— S depend only on the m-de-
composition under consideration and the orientations chosen. By an abuse of language,
we shall not distinguish ¢ from the m-decomposition. The following two lemmas
describe some operations induced by changes of m-decompositions. Given a preferred
generator r € R and an element s € Imd, there is an isotopy of the attaching map of
the handle corresponding to r such that, in the new decomposition @, we have
@(F) = o(r)+s (cf. [7]). Thus we get (for dim M >6): '

LEMMA 4. Any map chain-homotopic to ¢ is determined by an m-decomposition.

Let {a,, ..., a,} be a preferred base of R; (or S;). We say that a, can be added
to a, if there is an m-decomposition and an automorphism 4 = {4} of R (or §)
such that 4; have the identity matrices for j i and the matrix of 4, corresponds
to the passing from the given base to the base {a, +a,, a,, ..., 4;}, the automorphism
induced by a change of the m-decomposition (cf. [3], [11]). Additions of handles are
realized by alterations of attaching maps by isotopies and the result is just a change
of the preferred base.
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LEMMA 5. Any two preferred generators of R; can be added if 2<i<dimM —3.
" Two clements of a preferred base of S; can be added if cither both belong to C;=S;
or both belong to D =S; and 2<i<dimM —2. Thus, when 2<i<dimM -3, any
base of R; (and also C;, D{ for 2<i<dim M —2) is the preferred base of an m-de-
composition.

4. Computation of vM on the chain level. For the rest of the paper, fix a compact
manifold M of dimension n>6 and assume that M and dM are simply connected.
We shall determine vM, the minimum over all m-functions F on M of the number of
points which are critical for F or for F|oM.

It is a simple exercise on the collar neighbourhood theorem to show that, given
a Morse function F on M (constant and maximal on M) and a Morse function f on
OM, there is an m-function F with the following properties:

(i) F restricted to dM is equal to f up to a constant,
(ii) the gradient of F points outwards at any point of oM,

(ili) Fis equal to F outside a neighbourhood of dM and it has not critical points
in that neighbourhood.

It follows from Lemma 2 that up to unimportant changes an m-function F is

the result of this construction if and only if d; F = 0 for all /, i.e., if and only if F

has no boundary critical points of index (i, —1). Corresponding m-decompositions

- are those with D; = 0 for all i. Any such a decomposition induces a handle de-

composition of M and a decomposition of M. An m-decomposition with D™ = 0

may not be minimal, but starting from it we shall obtain a minimal one. One way

to do this is decreasing the number of handles with the help of the following lemma,
a partial converse of Proposition 1.

LEMMA 6. Let 2<i<n—3 and x€ D;', ye C;. If x, y are preferred generators
and @x =y, then the handle determining y can be removed from the decomposition
changing the index of x to (i, —1). Algebraically, R is unchanged and in S the free
summand generated by v collapses and the summand generated by x passes from D
to D; .

Proof. The equality ¢x = y means that the intersection number of the a-disc
of x and the right sphere of y is 1. Since all assumptions of the Whitney lemma are
" tulfilled, there is an isotopy of the attaching map of x making the intersection one-
point and transversal. The lemma follows from Theorem 1(a).

The following lemma is essentially known (cf. [7]).

LEMMA 7. Let X be a simply connected manifold of dimension n>5. Using the

operations of the alteration of attaching maps of handles by isotopies, addition and

cancellation of complementary pairs of handles, one can transform any non-minimal

* handle decomposition of X to a handle decomposition with the same number of handles

and at least one complementary pair. In this way any handle decomposition can be
transformed into a minimal one.

Proof. Just as in the case of m-decompositions, the handle decomposition
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determines the based chain complex {C;, 0;} with the homology isomorphic to the
homology of X. If the decomposition is non-minimal, then there is a base element
helmd,,,, as follows from the characterization of minimal Morse functions on
simply connected manifolds [11] (cf. also [7]). If 2<g<n—2, then any base of C,
can be obtained from the preferred one by using additions of handles and reorienting
some handles, see e.g. [3]. Thus, after some rearrangement, we can find preferred
generators such that dg = A and the Whitney lemma implies that it is a complemen-
tary pair. When he C,, one must apply the more complicated procedure from [7],
which results in replacing /& by a handle of index 3. In this way we may replace all
handles of index 1 by handles of index 3 and handles of index n—1 by handles of
index n—3, and this provides the reduction of the general case to the onec already
dealt with. The complementary pair can be cancelled and we can continue this process
till we get a minimal handle decomposition.

For a homomorphism ¢: G — G’ of free, finitely generated abelian groups
denote by r(¢) the maximal rank of a direct summand of G’ contained in Ime.
For a matrix A with integer coefficients denote by r(4) its rank. Thus r(g) is the
maximal value of r(A4), where A4 ranges over all matrices of ¢, which in turn is the
maximal number k such that some matrix of ¢ has the k x k identity matrix as a direct
summand. Therefore r(p) = R(G)—R(G'/Im¢), where R(X) denotes the minimal
number of generators of an abelian group X. The following theorem expresses vM
by uM, u(@M) and r(p).

THEOREM 2. If M and dM are simply connected and dim M > 6, then vM = uM+
+u(OM)—xM, where xM is the maximum of r(¢p) over all m-decompositions with
D~ = 0 which induce minimal handle decompositions of M and oM.

Proof. Given an m-decomposition realizing M, we may cancel M interior
handles with the help of Lemma 6. We do not bother about handles of indices 1, n—1,
(1, 1), (n—2, 1), because handles of index 1 cannot appear in a minimal handle
decomposition of M or M [11]. Similarly, no handles of indices equal to n can appear
in a minimal handle decomposition of M corresponding to a Morse function maximal
on M. In any minimal handle decomposition of M or dM there is exactly one
handle of index 0 and ¢@,: R, — S, is an isomorphism. Since there is no handle of
index 1, the connectivity of M implies that the index of the boundary handle is (0, 1).
The sum of the two handles is the sum of two discs glued together along a common
subdisc in boundaries, hence still a disc. This shows that any pair of handles consist-
ing of a handle of index 0 and another of index (0, 1) may be replaced by one handle
of index (0, —1), which is an extension of Lemma 6 to handles of index 0. Thus
yM< M+ p(@M)—xM. In order to show the opposite inequality, consider a mini-
mal m-decomposition of M. If the decomposition induced on the boundary is not
a minimal one, we can rearrange it to find a complementary pair of handles (Lemma7)
and make the signs of their indices equal, possibly adding one interior handle. By
the cancellation of the two complementary handles (Theorem 1(b)) we decrease the
number of handles. Therefore the restriction to the boundary applied to a minimal
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m-decomposition gives a minimal handle decomposition. Now, by the procedure of
Proposition 1, make all indices of boundary handles equal to (g, +1). To do this we
must add a number, say p, of interior handles. This alteration introduces the identity
matrix of rank p as a direct summand of ¢, because ¢ is given on a boundary handle
of index (g, +1) by the intersection numbers of the a-disc of the handle with right
spheres of interior handles. Therefore r(p) = p. If the induced handle decompo-
sition of M is not minimal, then by Lemma 7 we may cancel a number of comple-
mentary pairs to get S’ which is minimal. If there are s complementary pairs, then
for the resulting m-decomposition ¢’ we have

r(@)—r(’) = 2s—R(S/Im@)+R(S'/Im ') <2s,

since the natural map S/Im¢ — S’'/Im¢’ is onto. The decomposition ¢’ belongs
to the class considered in the definition of %M, whence xM>=r(¢p)=p—2s. But
vM+p = p(0M)+uM+2s, what in turn gives

YMA+xM2vM+p—2s = pM+pu(0M) .

The proof is complete.

5. Determination of xM. We shall now describe »¥M (hence vM as well) in terms
of homology. First we shall construct some homology operations which are used
(besides homology groups and the homomorphism induced by the inclusion
i: OM — M) in the description of x¥M.

Let A = {4,,d,}, B={B,,d,} be chain complexes of frec abelian groups
and let ¢: A — B be a chain map. Choose a splitting B = kerd @ coimé. Equiv-
alently, we can fix a base f = {b;: ie I} of Bextendinga base p' = {b;:iel'cl}
of kerd. It determines the projection

Pp: B—Vkera: Pp(z Aibi) = Z )’ibi'
) iel iel’

For any such base we can define an operation @, which leads from tor Hy 4 (the
" torsion part of H, A4) to the family of subsets of H,B. Let ord(x) denote the order
of x. For xetorH,A and £ € x we have ord(x)¢ € ImJ; thus the set

Pyd; Y(ord(x)&)+ord(x)kerd,

is non-empty and contained in kerd. It generates a set @y(x) of homology classes
which is a coset of ord(x)H,; 1B+ ¢«(H,.; A). For example id: 4 — 4 induces
@p(x) = H‘I+1A'
Suppose that ¢’: A" — B’ is another chain map and the diagram
L4
A—>B
1y A
Al _; Bl

commutes up to chain homotopy. If f, g are homotopy equivalences, then we say
that (f,9): ¢ — ¢’ is a homotopy equivalence.
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PROPOSITION 2. The operation @ﬂ' is well defined and the family {©z} depends
only on the homotopy type of chain maps. More precisely, for any homotopy equiv-
alence (f,g): ¢ — @', the operation O(y) = g4O4 f« () belongs to the family of
operations generated by ¢'.

Proof. If &, & € x so that ¢ —¢' = da and € 0~ (ord(x)¢&), n’ € ™ (ord (x) &),
then there is an o' ekerd such that n—n" = ord(x)a+a’. Thus Pgo(n—n’)
= ord(x)Psp(«)+ @ (') € ord(x)kerd+¢(kerd); hence ¢ and ¢’ define the same
sets.

Now we must show that for any f there is a base y of B’ such that g, 0,(x)
= 0,(fyx) for any xetorHyA. Let (exe HyA. If ned '(ord(x)¢), then
£ (n) € (@) *(ord(x) f(&)). Denote by § a homotopy inverse to g and let g§ = idp +
+6'4'+ 4’8" and §g = idg+A45+64, where 4,0 By — B,y and A4 By — By, .
Let P, = gPgj—0'A": B'— kerd’. It is easily verified that P,|kerd” = id, hence
it induces a splitting B’ = kerd’ @ kerP,. Modulo Imé" we have

gPsp (M) —P,o’f (1) = (gPg—P,g)¢(n) = (gPpA5+gPgé4—0"A'g) (1)
= gPgdéo(n) .
But

gPz45¢p(n) = gPpAdg(ord(x)¢) = ord(x)(gPg 4@ (&) € ord (x)kerd’ .

This yields the inclusion g,04(x)c @,(fxx) and the reverse inclusion follows in
the same way.

For any two m-decompositions ¢, ¢’ of a manifold M the identity map induces
a homotopy equivalence ¢ — ¢’. Thus the family of homology operations induced
by an m-decomposition depends only on the manifold. More generally, we have

COROLLARY. The fumily {©4} of homology operations defined by an m-decompo-

sition of a manifold M depends only on the homotopy type of the pair (M,0M),

For the rest of the paper we assume that all groups under consideration are

finitely generated and abelian. In any chain complex {C,, d,}, C, will be a free

abelian, finitely generated group and @ C, will be finitely generated. Note that
q

complexes arising from m-decompositions of compact manifolds satisfy these con-
ditions.

Denote by ((xy, ..., x,)) the subgroup generated by the set {x,, ..., x,}. By
a base of a group G we mean a sct {by, ..., b,} =G such that G = ((b)) @...® ((b,))
and ord(b)|ord(b;.,) for i =1, ...,r—1. The number r, equal to the minimal
number of generators of G, as well as the sequence of orders are determined by G.

Any set of generators f<G induces a free resolution 0 — F; — Fp — G—0
of G, where F, is the group freely generated by B, z is the natural homomorphism
induced by the inclusion f=G and §: F; — F, is the inclusion of kerw. We shall
call a free resolution minimal if it is the result of this construction for a minimal set
of generators. Easily, minimal resolutions are those with F, of minimal rank.

The free part of G gives no elements in F;. If B is a base of G, then we have G
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split into the free part and the torsion part, and when we restrict ourselves to the
torsion part, then for the choice of the base in F; the matrix of § is diagonal. The
diagonal entries must form the sequence of orders of torsion base elements of G.
Such based resolutions will by called canonical.

If G is graded, we consider only homogeneous generators. The corresponding
gradation of F; @ F, is given by

(Fo)q = ((ﬁ n Gq))’ (Fl)q = 6_1(F0)q—1 .

In this way we get the based chain complex {F, @ F;, 6}. Given a group homo-
morphism f: G — G’ and free resolutions of G and G’, there is a set of covering
homomorphisms, any of them provided by the commutative diagram

0 0

L.l

Fy — F;
| b
Fo — Fy
nl s ln'
G — G

There is a 1-1 correspondence between the possible choices of f, and the matrices
of f when the resolutions are canonical. In the graded case we assume that fo, f; pre-
serve the gradation. Note that if we add to f,+f; an arbitrary gradation preserving
map y: F, — F, then the resulting map is still a chain map and the set of maps
of the form f, +f; +V such that §’f; = f,é and fr = ='f, is the set of chain maps
covering f. '

We shall denote the functor Hom(+, Z) by * and call A* (resp. f*) dual to 4
(resp. f). Applying this functor to the diagram above, we get — under the assumption
that G, G' are finite — the homomorphism of free resolutions

Ext(Sf)
Ext(G, Z) <— Ext(G', Z)
1.
F} <~———— (F)*
J‘T* s Tf&":‘
Fo <—— (Fo)

| |

0 === 0

Since the matrices of 8, &’ are diagonal, each entry on the diagonal dividing the
following one, the bases of F; and F; induce bases of Ext(G, Z) and Ext(G’, Z),
which we call dual bases.

We shall now describe a construction which associates with any chain complex
with based homology a homotopy equivalent chain complex of minimal rank and
with any chain map a set of chain maps between the resulting complexes, In fact,
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this construction will use only homology groups and the family of homology oper-
ations induced by f. Applied to a handle decomposition of M, this construction will
give a standard model for a minimal handle decomposition of M. In the relative
case we obtain a set of models of the map of handle decompositions induced by
i: OM — M.

Let C be a chain complex of free, finitely generated groups with based homology

and 0— F, A F, e H, C the canonical resolution of H,C. Let C° = F, @ F,
and 6°: F, @ F, —» F, @ F, be given by 6°|F, = 0, 6°| F, = 6. We obtain a chain
complex {C?, 6°} = {F, ® F,, 6°} with the gradation and bases coming from H, C.
This complex is called the homology model of C.

For a chain map f: C — C’ define a chain map I': C°®— C'° in the following
way: For any base eclement betorH,C choose an element Xx, such that
'(x,) € O4(b)= Hy C'. Any base element bV e F, corresponds to a base element
betorH,C, the 1-1 correspondence being given by the condition &(b‘")
€ (Fo)gn n~'(b). We define a map y: F; — F putting yb” = x,, and assume
that it preserves the gradation. Let

r = 0f°}I: : Fp@® F, > Fy® Fy,
where f, @ f; is a map induced by f.
The condition f,é6 = d'f; is equivalent to

216 8- 21

and therefore it says that I' is a chain map. We shall call I a homology model of f.
Note that while {C?, §°} is unique for a complex C with based homology, there are
many homology models of f. In the sequel we shall use the notation introduced
here: the homology model of C will be denoted by {C°, 6°}, F,, F; will always come

~ 3 T
from a free resolution F, — F, — G and (f,, f,) will be a map of resolutions cover-

ing f: G—G'.
LEMMA 8. Any chain complex is homotopy equivalent to its homology model and
any chain map is homotopy equivalent to its homology model.

Proof. Choose a base of C inducing a decomposition C = kerd @ coimad.
Define the map «: C — C° first on kerd, sending any base element b to an element
of F, representing the homology class [b]. For any base element ¢ e coimd we have
adc = 6, where & € Fy. If we put ac = &, then the resulting map is a homotopy
equivalence since it is a chain map inducing an isomorphism on homology.

To prove the second part of the lemma it is enough to check the commutativity,
up to homotopy, of the diagram

c
(A) ]
C

0

f
._>C'
0

r

éta,
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where o is defined in the same way as o. As can easily be seen from the definitions
of a, o’ and I', for any base element b € kerd elements I'w(b) and o'f (b) differ by
6'(¢y), where &, € F{. Thus the homotopy defined on the base by

; » for bekerd,
ie) = {0 for becoimd
makes diagram (A) commutative after restriction to kerd.

In the rest of the proof the free part F of H, C plays no important role: if
C = F@ C, where C is a subcomplex with finite homology groups, then the homo-
topy defined above is final on F. Thus we shall exclude unimportant details by the
assumption that H, C is finite. We now specify the base of C (hence the map « as
well) to be a base y = 9 U y, U 9, such that

1) yo<kerd—ima induces a base 7 of H, C such that any element of 7 is uni-
quely represented by an element of y,,

2) the subgroup generated by p, is disjoint from kerd,

3) y,<Imad,

4) the matrix of d is diagonal.

The existence of such bases may be proved by elementary considerations of
matrices of d; and induction on i (cf. [3]). Let D be the subcomplex generated by
¥, U 8”19, It is an acyclic complex and therefore we may suppose that «|D = 0.
‘We have the decomposition C = D @ D’, where D’ is generated as a group by
9o = {by, ..., by} and those elements of y, which miss D, say {b{", ..., b{"}. The
matrix of dp = 8|((BY", ..., b{")) is diagonal, and diagonal entries a,, ..., @, give
the orders of elements of the base = H, C. Assume also that a’ has been defined
with the help of the base g of C’, which intervened in the construction of the given
homology model I'. Let go = Pgo (f|coimd), g; = Preoimer © (f|coimd).

Denote by {ey, ..., &}, {€i", ..., ei"} the given bases of F,, F; and by («;)), (%)
the matrices of a|kerdp, o]cokerdy, respectively. The diagonal matrix of
6: F; — F, is equal (permuting bases if necessary) to the matrix of 0y, since in both
matrices the diagonal {a,, ..., a;} is the sequence of orders of base elements in H, C,
which is unique. The fact that « is a chain map is expressed by the equality
o0, = &,0,. We shall check that the homology class represented by yo(b{") falls
into @y([b;]). If ;€ D’ represents [e;] € H, C, then for some ;e ker 0’ we have

mpa b)) = n (; & (e5') 2 X, &(Ppf0™ " aij+a;B))
= ;Pﬂfa“a,,aié,+ zj:a,,a,ﬁ,
= P fo taf 7—; ;&) +af ZJ: a;iB)) € Xe Oylel],

-

by the definition of ©, and the fact that ) a;,; represents [b,].'
J

Since the set @4(x) is a coset of Im f,+ord(x) HyC’, the elements ya(b{")
and o'go(b{") differ by r,+a,r;+5'¢,, where r, € fo(kerd®), ri is an element of ker 6"
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and ;e Fy. Since in the definition of o we could take the values on coimd up to
kerd®, we can redefine o by adding to «(b{"’) an element s;ekerd® such that
So(s;)) = r;. Finally, for any c € y, there exists a ¢ e 9, such that 8¢ = ¢. The homo-
topy 4: I'ea~a'of is given by

A =ri+4®) if b;ey,,

Ay = ¢ if bPey nD,
A(c) = Ya(@—a'gy(@+4(c) if cey,,eeDnd~ o),
A4(x)=10 if xey, nD.

It is easy to check that 4 has the required properties on y, U y,. It remains to
verify the equality I'e—a'f = 6’4440 on y,. We have

0'(Tu—a'f) = fodoa—a'df = foad—a'( f|kerd)d
= (40+6'4)0 = 6'40 = 6'(40+5'4) .
Decompose C’° as Fy @ Fy. The F} = kerd’ components in Ta—of and 49+8'4
are equal by the definition of 4. Since 6’ is a monomorphism on Fj, the equality
above gives I't—a'f = 40+6'4 on y,. The proof is complete.
An acyclic complex is always a finite sum of complexes of the form ... — 0 —
0
X— —> X—>0— .., where § = idy.

Two chain complexes will be called equivalent if there are acyclic complexes E, E’
such that rank E; = rank E, for each g and an isomorphism w: C@® E— C' @ E'.

Any chain map homotopic toC“-C@®E i C’ @ E’ — C'is called an equivalence.
Two chain maps ¢": C'— D', i =1,2 are called equivalent if there are equiv-
alences f: C' — C? and g: D' — D? such that the diagram

commutes up to homotopy. Note that it is an equivalence relation. It imitates passing
from a minimal m-decomposition to another minimal one by stabilization, homotopy
and destabilization. Compare the following example:

Let Dy =D,y =2, 0, =5id, Dy=0 for i # ¢, q—1, Cp_y =Z, C; =0
for i # q—1, ¢,—y: Cyy — D,_, is the multiplication by 3. By stabilization and
homotopy we get

D,®Z
G) lo.,e;idz
-1 D; 1 ®@Z
The base {3, 2), <5, 3)} induces a splitting of D,_; ® Z such that the summand
generated by <5, 3) is contained in Im(9,+id). After destabilization @ ,_;: C,_; —
2 — Fundamenta Mathematicae CXI. 3
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— D),_; = ((<3,2))) becomes an isomorphism. To get it we must pass through the
stabilization.

LEMMA 9. Given two minimal resolutions of a graded group, there is an equivalence
of the resoluticns inducing identity on the group. Any two homology models of a given
chain map are equivalent.

Proof. By the theory developed in [8] (especially Th. 2, p. 52) we know that
any homotopy equivalence f: C— C’ is stably homotopic to an isomorphism,
i.e. there exist acyclic complexes E, E’ such that the map f @ 0: C® E—~C' @ E’
is homotopic to an isomorphism. Thus any homotopy equivalence f: C— C" is
an equivalence provided rankC, = rank C; for any g. This implies that the first
part of the lemma holds and also that homotopy equivalent chain maps between
minimal resolutions are equivalent. But two homology models of the same map are
homotopy equivalent by Lemma 8.

Now the homology model construction applied to an m-decomposition with
D~ = 0 (or equivalently, to the chain map induced by i: M — M between chain
complexes given by handle decompositions of dM and M) will give us a model of
an m-decomposition minimal on 0M and M. We shall show that the set of maps
cquivalent to such a model is the very set of m-decompositions considered in
Theorem 2.

Let ¢: R— S be an m-decomposition with D~ = 0. The decomposition gives
handle decompositions of M and M such that R and S are their associated chain
complexes and ¢ is induced by i: M — M. Consider an arbitrary homology
model I' of ¢. Define (M) to be the set of all chain maps equivalent to I'.

In the definition of homology models we do not use the map ¢ directly, but
only the family {€,} and iy: H,dM — Hy,M induced by it, and these are the same
for all m-decompositions of M. By Lemma 9 any two homology models of ¢ are
equivalent, and thus (M) does depend only on M.

THEOREM 3. We have xM = max{r(4A): Ae (M)} for any simply connected
manifold M of dimension greater than 6, such that 0M is simply connected. Conse-
quently, vM = uM+u(@M)—xM depends only on iy: HyOM — HyM and the
Samily {©,} of homology operations.

Proof. By definition, %M is the maximum of r(¢) over chain maps ¢: R— §
induced by the inclusion 8 — M and minimal handle decompositions of M and M.
We claim that (M) is the set of such maps. From Section 3 we see that with our
assumptions on M any change of bases of R and S may be achieved by changes of
decompositions and acyclic complexes can be cancelled. The addition of an acyclic
complex to R or S is always possible and a chain homotopy of ¢ is realized by
Lemma 4. Thus any map cquivalent to ¢ is induced by a handle decomposition and
therefore if one element of (M) can be realized as ¢, then so can any other. By
Lemma 8 cach ¢ is homotopy equivalent to its homology model and if R, S are
minimal, then the homotopy equivalence is an equivalence. Thus each ¢ induced by
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minimal handle decompositions of dM and M belongs to U(M). This establishes
our claim and implies the theorem.

COROLLARY. For simply connected manifolds with simply connected boundaries,
of dimension greater than 6, the number vM is an invariant of relative homotopy type.

In fact, for such manifolds the Morse numbers as well as xM depend only on
the relative homotopy type. In the non-simply connected casec one can prove by
methods of [9], [4] that vM is an invariant of relative simple homotopy type.

We shall now show that Theorem 3 yields some explicit computations. First
we shall prove a lemma.

LemMMA 10. Let f: G— G’ be a homomorphism of graded groups and let

F, 3 F, %G F, L Fy ~ G’ be minimal resolutions. Suppose that B is a minimal set
of generators of G' such that {b,,...,b,} = B lImjf. Then for any chain map
I': (Fo ® F,,8) — (Fy ® F,, 0) covering f there exists a chain map I': (Fo+Fy, 8) —
— (Fy+F1, 8" equivalent to I' and such that r(I'|Fy)>r.

Proof. Let f[x;] = b; for some x;€ F,, i = 1,...,r. Consider the minimal
prime summand of F, containing the set {x,, ..., x,} and choose a base {y;, ..., Vs}
of the summand. We have s<r and {b,, ..., b} = fr({y;, ..., ys}). We now consider
the new set of generators of G': B’ = (B—{by, ... b,}) U fa{yy,.., ¥}, which is-
obviously minimal (and therefore s = r). The minimal resolution (Fo @ F{,é’)
of G’ given by B’ is equivalent to (F, @ F,, §). Composing I" with this equivalence,
we get a map equivalent to I and covering f. Since r = s clements of the base f’
belong to the image of the induced homomorphism G — G', for the resulting homo-
morphism fy: Fy— Fy we have r base elements of Fy in fo{y,, ..., ¥, +imd’.
Changing f, on {y,, ..., »,} by the appropriate homotopy, we obtain fg: Fy — Fg
of rank r.

THEOREM 4. Let M be a simply connected manifold with a simply connected bound-
ary, dim M > 6. Suppose that a, B are minimal sets (i.e., sets of minimal cardinality)
of generators of He M and H*OM, respectively. Then

(i) *M=>card(x N Imiy)+card(f N Im(i*|tor H*M)),

(il) if H M has no torsion, then xM = maxcard(ax » Imiy),
a

(iii) if H*M has no torsion, then xM = maxcard(f n Imi¥*).
]

Proof. (i) We must find in (M) a map of rank card(ex n Imiz,)+
+card (B N Im(i*|tor H *M)). Since at this point we regard i* restricted to torsions,
we assume that B is a minimal set of generators of tor H*dM only. We start with

0
the minimal resolution E, — E, — tor H*@M induced by f and define F, = Eg,
Fy, = Ef ® Hom(H*0M,Z), 6§ = 6* ® 0. The Universal Coefficient Formula

T 3 n
gives a map F, — H,d0M and F, — F, — H,dM becomes a minimal resolution
of HydM. Let I': (F, @ F,, 6) — (F, @ Fy, &) be the map of minimal resolutions
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provided by Lemma 10 for r = card(e nImi,) and a homology model
I': (F, @ Fy, 8) > (Fy+F,, 8) of an m-decomposition of M. We have I' e A(M)
and r(I'|F,)>card (¢« n Imiy). There is a free group E of rank r(I'| F,) such that
F,=F,® E, Fj = F, ® Eand I'| F;, = f,+idg. In the dual complexes this induces
splittings Fof = F @ (keré*+E*) and F;* = F' @ (kerd’*+E*), so that

r(I'*|(ker6*+ E*)) = r(T'| Fp) .
Consider the diagram
Q.
F' —F
"l ¥ "
’ 0

Iz i
Fy"—E,

N

G —G

|

0 —0

where ¢, ¢4, ¥ are induced by I. Obviously the columns are minimal resolutions
and @y +¢, +y .forms a chain map. The maps Fg* — tor H*M, E, — tor H*oM
induce epimorphisms G’ — tor H*M, G — tor H*8M and the commutative diagram

!
G —G

Pl

H*M — H*oM

The resolution (F, @ F;, §) has been chosen in such a way that g gives a base of
F¥ = E,. It induces in turn a minimal set of gencrators § of G such that
card (B n Im f)>card (B n Im(i*|tor H*M)). Now, applying Lemma 10 to f: G’ — G

and B, we get a minimal resolution K, 5 K,-+G and an equivalence
e: (F® Fy, %) — (K; @ Ky, n) as well as a chain map = equivalent to @, + ¢, +V
such that

r(E| F1¥)>card(B n Im(i*|tor H*M)) .

We construct a minimal resolvent of H*0M as follows: Add keré*+E* to K,
extend # by zero on kerdé* and put n(x) = E6'*(x) for xe E*. Then define
Y’ kerd*+E* — K, by y'(x)en” ! [pps*(x)] for all elements of a base of
kero'*+ E*. Straightforward verification shows that the chain map

E+4po([|kerd"*+E*+yY’,
where p is the projection Fy — kerd*+ E*, is equivalent to I'*. Since its rank is at
least card(x N Imi,)+card(f N Im(i*|tor H*M)), inequality (i) follows from
Theorem 3.

(ii) Provided H*0M is torsion free, any minimal resolution of it is isomorphic
to H,0M with trivial differentials; thus any chain complex induced by a minimal
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handle decomposition of dM is of this form. Theorem 2 says that xM is the maximal
rank of ¢: R— S, where R and S are minimal. For ¢ realizing the maximum there
is a base of S such that xM base elements of S are contained in Im¢ ckerd. Since
the base of § determines a minimal set of generators of H, M, we have the inequality
xM<maxcard(x n Imi,). The converse inequality follows from (i).

(iii) This follows by using dual complexes and the same arguments as in (ii).

6. Other minimalization problems. Any manifold with a non-empty boundary
allows a function without critical points [5]. One can ask what is the minimal number
of critical points of a Morse function on dM extendable to an m-function of this
kind.

THEOREM 5. Let M be a simply connected manifold with a simply connected bound
ary, dimM>6. The minimal number of critical points of a Morse Jfunction on OM
which extends to M without interior critical points is equal to HOM)+2(uM—xM).

Outline of the proof. The following geometrical argument shows that the
number equals at most p(dM)+2(uM—xM). Consider a minimal m-function
on M (by Th. 2, it has uM--»M interior critical points). We can join all the interior
critical points of f by an arc L. Moreover, assuming that any critical level contains
only one critical point, we can find L which is a part of the boundary of a 2-disc D
embedded in M such that critical points of | D are interior critical points of f and
the disc intersects the boundary of A along an arc in 0D disjoint with L. Deleting
from M a carefully chosen collar of D, we get a submanifold M’ diffeomorphic
to M and f| M’ with no interior critical points. The collar can be chosen so that any
interior critical point of f gives two boundary critical points of f|M’; hence the
resulting m-function has u(0M)+2(uM—xM) critical points.

Let f be an m-function without interior critical points. As we are interested in
the lower bound for d7f+d*f, we can assume that d~f = uM, because d™f can
be decreased, by Lemma 7, if d~f>puM. Changing all indices (g, —1) to (¢, 1), we
get an m-function with uM interior critical points and d~f+d*f boundary critical
points, all the indices being of sign +. The complex induced by the restricted handle
decomposition of the boundary may be given the form R® @ R’, where R° is minimal
and R’ is acyclic. By Theorem 2 at most M base elements lie in ¢ (R°). Since
¢: R® @ R’ — S'is onto and ¢ (kerd®)<=Ima®, there is an epimorphism coimd® —
— coimd® @ H,S. We have rankR’ = 2 rank coimd® and R(coimd® @ H,S)
= rank S (be the minimality of S); hence rank R'>2(uM—»M). This inequality
gives in turn d"f+d*f = rank(R® @ R")>p(dM)+2(uM —xM).

Remark. A Morse function f on M extends to an m-function without interior
critical points if and only if the number of critical points of f is not less than
n(@M)+2(uM—xM). )

Another minimalization problem for simply connected manifolds of dimension
greater than 6 which can be attacked by means of the theory developed in this paper
is the question posed in [6]: given a Morse function f of M, what is the minimal
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number of critical points of an m-function extending f? It should be possible to
obtain similar results as in our case if one consider the chain complex induced
by f in place of homology model R® in the definition of A(M).

For non-simply connected manifolds the minimalization problems are much
more difficult and even for Morse functions no satisfactory calculations are known.
However, Theorems 2 and 3 are uneffective enough to have straightforward gener-
alizations to that case. OQur arguments ought to work if the homology groups of M
and OM are replaced by the homology groups of universal covering considered as
modules over the integer group rings Zm; M and Zm;0M, at’ least when
iy: m,0M — = M is an isomorphism.

References

[1] D. Braess, Morse-Theorie fiir berandete Mannigfaltigkeiten, Math. Annalen 208 (1974),
pp. 133-148.

[21 S.Cairnsand M. Morse, Critical Point Theory in Global Analysis and Differentiable Topology,
New York 1969. .

3] J. Derwent, Handle decompositions of manifolds, J. Math. and Mech. 15 (1966), pp. 329-345.

{41 B. Hajduk, Comparing handle decompositions of homotopy equivalent manifolds, Fund.
Math. 95 (1977), pp. 3547.

[S1 M. Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. 73 (1961),
pp. 566-571.

[6] A.Jankowskiand R. Rubinsztein, Functions with non-degenerated critical points on mani-
folds with houndary, Comment. Math. 16 (1972), pp. 99-112.

171 M. Kervaire, Le theoreme de Barden-Mazur-Stallings, Comm. Math. Helv. 40 (1965),

: pp. 31-42.

[8] S. Maumary, Type simple d’homotopie, Lecture Notes in Math. 48 (1967), pp. 37-55.

[91 B. Mazur, Differential topology from the point of view of simple homotopy theory, Publ.
IHES 15 (1963). :

110] J. Milnor, Lectures on h-cobordism Theory, Princeton 1965.

[11] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), pp. 387-399.

Accepté par la Rédaction le 18. 10. 1978

FUNDAMENTA
MATHEMATICAE
CXI (1981)

Special bases for compact metrizable spaces
by

Erick K. van Douwen (Athens, Oh.)

Abstract., Each compact metrizable space has a base B such that

(1) for every finite £c B, if any two members of {4: A € A} intersect then N4 # @; and

(@) if R is the ring generated by $B, then R consists of regularly open sets and
NF)~ = (Y{A: AeF} for every finite FcR.

This implies that every compact metrizable space is regularly supcrcompact. The construc-
tion of B is complicated but elementary.

0. Conventions and definitions. As usual, if X is a space, ~, °® and € denote the
closure operator, the interior operator and the complementation operator in X;
if # is a family of subsets of X we write e.g. & for {F: Fe #}.

If X is a space and & is a family of subsets, then & is called a closed subbase
if it is a subbase for the closed sets, i.e. #° is a subbase for the open sets, a ring
fFnGeFand FuGeZF forall F,Ge %, linkedif FNG # Qforany F,Ge &
(not necessarily distinct), binary if every linked subfamily has nonempty intersection.

A space is called supercompact if it has a binary closed subbase, regularly
supercompact if it has a binary closed subbase & such that the ring generated by &
consists of regularly closed sets, regularly Wallman if it has a closed subbase which
is a ring and which consists of regularly closed sets.

1. Introduction. The notion of supercompactness was introduced by de Groot
in [dG]. It is a trivial consequence of Alexander’s Subbase Lemma, [A], that every
supercompact space is compact. An easy example of a compact T,-space that is not
supercompact was given by Verbeek, [V, II. 2.2(8)]. The question of whether all
compact HausdorfT spaces are supercompact was settled in the negative by Bell, [B],
this is a nontrivial result in spite of the fact that the answer was to be expected, [dG].
Subsequently van Douwen and van Mill showed that every infinite supercompact
Hausdorff space has many nontrivial convergent sequences, [vDvM]; this gives
a rich supply of compact Hausdorff spaces that are not supercompact.

This paper deals with de Groot’s conjecture that all compact metrizable spaces
are supercompact, [dG]. The first result is due to de Groot who proved that compact
polyhedra are supercompact. An erroneous proof of dec Groot’s conjecturc wag
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