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Spaces of order arcs in hyperspaces
by

Carl Eberhart, Sam B. Nadler, Jr. *
and William O. Nowell, Jr. (Lexington, Ky.)

Abstract. Let X be a metric continuum and let 2X and C(X) denote respectively the space of
closed subsets and the space of subcontinua of X topologized with the Hausdorff metric. An order
arc in 2X (C(X)) is an arc a contained in 2¥ (C(X)) such that if 4, Be a, then 4C B or BCA. Let
reX) (I'(C(X))) denote the space of order arcs in 2X¥ (C(X)) together with the smgletons {4},
Ae2X (C(X)), topologized with the Hausdorff metric on 2:*. In this paper we prove that if X is
locally connected, then I'(2X) is homeomorphic with the Hilbert cube Q and if, in addition, X con-
tains no arc with interior, then I'(C(X)) is homeomorphic with Q.

1. Introduction, Let X be a continuum (i.e., a compact connected metric space
containing more than one point). The hyperspaces of X are the spaces 2%, consisting
of all nonempty closed subsets of X, and C(X), consisting of the connected elements
in 2%, each with the Hausdorff metric H. Basic facts about hyperspaces may be found
in [13] and [9].

An order arc in 2% (resp., C(X)) is an arc a=2% (resp. acC (X)) such that if
A, Bea, then A< B or B A. Order arcs in hyperspax:cs were first constructcd in [2],

. as a part of the proof of the followmg

1.1, TueoreM. For any contmuum X 2¥ and C(X) are each arcw;se ‘connected
continua

However, the fact that the construction ip [2] yielded an arc was not noted until
later in [10, Lemma 5]. Since the publication of these two papers, order arcs have
been used extensively in studying hyperspaces. However, spaces of order arcs have
undergone almost no investigation. In this paper we investigate the spaces

(%) = {&=2*: a is an order arc} U {{4}: A4e2"}
and

r(CXx)) = {ac=CX): o is an order arc} U {{4}: 4e C(X)}

* The second author was parﬂally supported by National Research Council (Canada) grant
no. AS616.


GUEST


112 C. Eberhart, S. B. Nadler, Jr., and W. O. Nowell, Jr.

with the metric obtained from the Hausdorff metric for 23, which we denote by H*

(see also [13, (1. 31.1)]). Elements of the form {4}, 4 €2 or C(X), are included
in order that the two space$ be compact. Such singleton elements are, of course,
not arcs, but, without confusion, we will call I (2¥) (resp., I (C (X)) the space of order
ares in 2% (resp., C(X)). We will also use the notation Fy(¥) = {{y}: ye ¥} to
denote the subspace of singletons in 2, where Y is any contmuum Note that F;(Y)
is naturally isometric to Y.

Except for the compactness of the spaces, which was proved in [10], and some
results in [13], stated as 2.1 through 2.3 below, no results about I'(2¥) and I'(C(X))
have appeared in the hiterature. Our main purpose in this paper is to study the structure
of I'(2%) and I'(C(X)) when X is a Peano continuum (i.c., a locelly connected con-
tinuum). We also obtain some results for X not necessarily Peanian.

The following important results in the theory of hyperspaces motivate much
of our discussion. (The symbol ~ means “is homeomorphic to”, Q denotes the

Hilbert cube, and a free arc in X is an arc y =X such that y withoutt its endpoints is

an open subset of X.)

1.2. THEOREM. Let X be a continuum. Then the followmg are equzvalent [171 V

(a) X is locally connected; (b) 2% is locally connected; (c).2% is an. AR (i:e;, absolute
retract); (d) C(X) is locally connected; (&) C(X) is an’ AR.

1.3. TeeoreM. Let X be a Peano continuum. Then 2%~ Q and, furthermore,
CX)~Q if and only if X contains no free arc ([4] and [5]).

In [13, (1.27.3)] it was noted that I'(2*) has the same homotopy type as 2¥
(see 2.3 below), and questions were raised concerning possible analogues of 1.2
and 1.3 for spaces of order arcs. Theorem 4.3 below provides an analogue for 1.2.
We also show (Theorem 5.2) that, if X is a Peano continuum, I'(2%)~ Q and, if, in
addition, X contains no free arc, then I'(C (X))m 0. Example 5.3 shows that X Pea-
nian need not imply that I'(C (X))~ Q. We do not know which Peano continua X
have the property that I'(C(X))~Q.

2. Preliminaries. In this section we summarize the results from the theory of
hyperspaces and continua and from infinite dimensional topology which will be used
later in the paper. For sets 4 and B, 4\B denotes the complement of B in 4. By
a mapping or map we mean a continuous function.

The first tool we need is the notion of segments, which is due to Kelley [9].
A Whimey map for 2¥ is a map »: 2¥ — [0, + ) such that w({x}) = O for each
x e X and w(A)<w(B)if 4, Be2¥ and A =B # A. A segment with respect to o from
Aoe2¥ to A;€2¥ is a map o: [0,1]1—2% such that o(0) = 4,, o(l) = 4,
o(t)co(ty) if 0<t,<1,<1, and

o(e() = 1-1)-0(c@)+t-a(o(1))
for each t€]0, 1] Let

SL2%) = {a [0, 1} ——»2"] cis a segment or a constant functlon}

e ©
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and

S{CX) = {o€ S,@N)| () e C(X) for each reo, 1]},

and let each of these be topologized by the usual “supremum metric” for continuous
functions. These two spaces are called spaces of segments. The following theorem
indicates the fundamental relationship between. spaces of segments and spaces of
order arcs.

2.1. THEOREM [13, (1. 30)] For any continuum X and any given thtney map @
for 2%, S,2NRTQY and S(CX)~I(C(X)). Moreover, the function
Joi So2X)— I (2% defined by fu(o) =0o([0,1)) is @ homeomorphism and
folSo(C(X))) = T(C(X).

Thus spaces of order arcs and individual order arcs are parametrized in'a well-
behaved manner by segments. For this reason, the study of spaces of order arcs is
facilitated by using segments. Throughout the paper we will refer to the homeo-
morphism f,, defined in the statement of Theorem 2.1.

Properties of hyperspaces are reflected in spaces of order arcs. For example,
the following retraction theorem guarantees that a hyperspace has the same homo-
topy type as the corresponding order arc space.

2.2. THEOREM (see [13, (1.203.3)]). For any continuum X, F|(2%) and Fi(C(X))

are strong deformation retracts of I'(2X) and F(C(X)) respectively,
. Proof. Let f,, be the homeomorphism defined in Theorem 2.1. Define homo-
topies k: S,¥)x[0,11—I@*) and h: Q¥ x[0,1]-TQ% " by k(o,s)
= o([0, 1—5]) and h(x,s) = k(f; *(«), s). Then & is clearly a strong deformation
retraction. Moreover, it follows from the final equality in Theorem 2.1 that the
restriction of & to I'(C(X))x[0,1] is a strong deformation retraction onto
F(CX)). &

2.3. COROLLARY (see [13, (1.27.3)]). For any continuum X, I'(2¥) and I'(C(X))
are arewise connected continua of the same homotopy type as 2X and C(X) respectively.

Proof. By [10, proof of Lemma 4], I'(2¥) and I'(C(X)) are compact. Therefore,

" the corollary is an immediate consequence of Theorems 1.1 and 2.2. H

We now state four lemmas about order arcs which will be used throughout
this paper. The first three are a mixture of results and parts of proofs in [10]. The
fourth one is, for the most part, 2.3 of [9]. We indicate where they appear in [13] so
that their proofs may be found easily by the reader.

24, Lemma (see [13, (1.4)]). Let A be a nondegenerate subcontinuum of 2%
Then A is an order arc if and only if A, Be A implies Ac=Bor Bcd,

2.5. LemMa (see [13, (1.5) and (1:6)]). If o is an order arc in 2%, then (\é: and Ue
are ‘elements of o and, in fact, aré the two end points of ok

2.6. LemMA (see [13, (1.11)D. If e T(2x) such thwt ﬂfx € C(X), then lch(X)
Hence. T(G(X))‘— {aeﬁ(zx)x a !
o0 27 Leva (see [ i
3—F 1 CXII

Then the followmg are equlvalent"
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(]) For any Whithey map o, there exists some o € S,,(2%) such that a(0) = 4,
and o(1) = A; :

(2) There exists some ae I'(2¥) such that \a = A, and Ja = A;

(3) do=A, and each component of A, intersects A,.

Next we recall some notions which will be used in case X is a Peano continuum.
A metric d for X is said to be convex provided that, given x, y € X, there exists some
z e X such that d(x, z) = d(z, y) = 3d(x, y). If d is convex, then for any two distinct
points x, y € X, there is some arc y< X which is isometric to the interval [0, dx, »]
and whosc end points are x and y [11]. Consequently, balls with respect to a convex
metric, that is, sets of the form {y e X: d(x, Y<Kt} xe X, 120, are always arcwise
connected.

If X is a Peano continuum, then there is a convex metric for X which yields the
original topology ([1] or [12]). Thus, for the sake of simplicity, we will assume tha
the given metrics for Peano continua are convex. '

For any >0 and any A4 2%, we define

K(A) = UA{x eX: d(x,d)<e.

We will use the following well known result.

© 2.8, LEMMA. If a continuum X has a convex meltric d, then the function

@: 2Xx[0, +00) —2¥ defined by ¢(4, 1) = K(A) is continuous.

For an arbitrary metric d, the function ¢ defined above need not be continuous.
For necessary and sufficient conditions for such: “continuity of balls”, see [14].
Also note that, if X has a convex metric, then, for any « € I'(C(X)) and for any
t20, {94, 1): Aea}el(C(X)): i

We conclude this section by observing that the proof of Theorem 5.2 uses
Theorem 2.9 below, which is a version of a recent result by Toruniczyk. The proof of
this theorem utilizes a considerable amount of Q-manifold theory, but its application
in this paper demands only an understanding of the following basic terminology.
A closed subset 4 of a separable metric space Y is a Z-set in Y provided that, for
each &>0, there exists a mapping f,: ¥ — ¥\4 such that d(f(y), »)<e for each
yeY. A mapping g: Y — Yis a Z-map provided that g[Y]is a Z-setin Y. (Basic
properties of Z-sets may be found in [3].) ' ‘

2.9. THEOREM [16]. Let Y be a compact AR. If the identity map. of Y onto Y is
the uniform limit of Z-maps, then ¥~ Q.

3. The order arc spaces as retracts. The results of this section concern the exis-
tence of retractions onto the spaces of order arcs. In the next section we use these
results to characterize when the spaces of order arcs are in fact absolute retracts.

3.1. LeMMA. There exists a retraction R: I'(2X)— I'(C(X )) if and only if there
exists a retraction r: 2¥ — C(X). X ‘

Proof. Suppose the retraction R is given. Let i: 2¥ — I'(2¥) be the natural
embedding i(4) = {4}. Let o: I'(C(X)) — C(X) be defined by ¢(@) = (\a. By
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the proof of Theorem 2.2, ip is a retraction. It therefore follows easily that
r = oRi: 2X — C(X) is a retraction. ‘ .

Now suppose the retraction r is given. Note that, for any segment ¢ € S,(2%)
and any t€ [0, 1], r o 0 ([0, #]) is a continuum. Let f,, be the homeomorphism from
Theorem 2.1. Since union is continuous [9, p. 23], it is routine to verify that the
function y: I'(2X)x [0, 1]— 2¥ defined by

Y, ) =U{ree@®: te0,1], 0 = o ')}
is continuous. a :

Define R by R(%) = {y(2,): te [0, 1]}. If « is any fixed order arc in 2%, then
R(2) is the continuous image of [0, 1] and thus a continuum. Moreover, if t; <t;,
then by definition y(a,t,)<7(%,t,). Thus by Lemma 2.4 R(x) is an order arc.
Since (YR(@) = y(2,0) = r(N®) e C(X), by Lemma 2.6 R(x)eI'(C(X)). The
continuity of R follows immediately from the continuity of y. Since r is a retraction,
it is clear that R is a retraction. B

3.2. COROLLARY. If X is a Peano continuum, then I'(C (X)) is-a retract of I @%.

Proof. If X is a Peano continuum, then it follows from Theorem 1.2 that C(X)
is a retract of 2. W : :

Remark. C(X) is not always a retract of 2¥ [7], so I'(C(X)) is not always
a retract of I'(2¥). At the present time, there is no known example of a non-locally
connected contimium X for which C(X) is a retract of 2*.

3.3. LeMMa. For any continuum X, Fy(I'(2Y) is a retract of 27®.

Proof. Let f, be the homeomorphism from S,(2¥) onto I'(2*) defined in 2.1.
For each o €2"® and each te [0, 1], let

¥, 1) = U {[fa ' @](t): xe .

By using the continuity of £, * and of the union function [9, p. 23}, it follows easily
that the formula above defines a continuous function y: 2" x [0, 1] 2*. For
each of € 27?9, let

R() = {y(o,1): 1€]0,1]}.

Since y is continuous, R() is a subcontinuum of 2% for each o € 2"*™, Also, for
each & € 27", y(of, ;) =y(of, 1,) if #;<t,. Thus, by Lemma 2.4, we have that
R(afye I (2%) for each o 27, Also, since y is continuous, R is continuous. There-
fore, by letting r(af) = {R(sf)} for each of €2"*, we see that r is the desired
retraction from 27 onto F,(I'(2%)). W

4. Locally connected spaces of order arcs, In 4.1 and 4.2 below we assume that X
is a Peano continuum whose metric d is convex. In Section 2 we noted that, under
these assumptions, the function @: 2% x [0, +00) — 2¥ defined by ¢(4, t) = K(4)
is continuous. We now consider a similar function &: I'(2¥)x [0, + o) — I'(2%),
defined by aresmsl TN B sl e e sl B e B

- o o (1) e {Ki(d)s deod.

[ o4
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We.first note-that the range of @ is indeed I"(2%).-The proof of this statement uses

Lemma 2.4 in the same way this lemma was used to prove similar statements in 3.1.

and 33. . o
‘4.1. LEMMA. The function diAq'eﬁned above is continuous.

Proof. The lemma follows. easily by using the homeomorphism £, of 2.1 and

by using Lemma 2.8. B
4.2. LemMA. For any .« € I (2¥) and any £>0, the set
L #={pel(M: B, p<e}.
is pathwise connected. ' o
Proof.2 Choose any f € #. We will prove that there is a path in % from o. to .
Let-r = H*(u; ), so r<e. Then for any ¢e [0, r], it is clear that )
HY({K(4): Aea},m)<r<s.

Thus we can define a path f: [0, r] — & by f(t) = &(a, ), where & is the map from
Lemma 41 Lety = f(r) = {K,(4): 4 a}. Since f(0) = «, fis a path from a to y.
We will complete the proof by showing that there is also a path in & from Btoy.

The pi’ctur? abngv illustrates the strategy. We begin the construction by proving
;1;2.1(: th;;:e isa seglrlnent from (ﬂ-ﬁ to (Vy. It'is an elementary. exercise to show that
H*(e, p) = r implies that H(N\a, f)<r. It is also obvious that =

Thus 'we have : | ‘)\ : ‘ 7= &)

@ NB=Ny.

‘ Now let .C be any‘. component of {}y and let ¢ be any element of C. Since
Ny = K(N«), there exists some ae e such that d(a, c)<r. Let

D= {xeX: de,x)<r}.

As was noted i‘n‘Section 2, since d is a convex metric; D is arcwise conﬁected. M.ore-‘v
over, by definition DeK, () = (7, so. D<C. Bot since H{a, (\f)<r, there

e ©
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exists some b € (B such.that d{a, b)<r and, thus, be C. Since C .was arbitrary,
we have BEREEST o o

(b) Each component of (\y contains some point of ()p.

Therefore, by Lemma 2.7, it follows from (a) and (b) that there is some segment
o € S,(2%) such that ¢(0) = OB and ¢(1) =Ny o SR

Define a map g: [0, 11— I'(2¥) by g(ty = {c(t) v B: Be f}. The continuity
of g is obvious and it is easy to use Lemma 2.4 to verify that, for each t € 10,1},
g(t) is indeed an element of I'(2%). Moreover, for any te[0,1] and any A€ ¢,
o )=y K,(4). Thus it follows that if 4ea and Be f such that H(4, B)<r,
then H(d, o(z) L B)<r. Therefore, it is clear that H 2w, g (1)) <, that is, g(t) & B,

for each ¢ € |0, 1]. Finally, note that g(0) = f and, although g(1) need not be the -

same as p, we have Ng(1) = Ny.
Define a map A: [0, 1] —I'(2%) as follows: Let # be any homeomorphism of
[0,1] onto y such that h(0) = (\y and A(1) = Uy, and let
h(t) = {n(s): s<t} L (@) U B: BeB}.
It is again routine to prove that A is continuous and that h(t) € & for each t € [0, 1].
Note, moreover, that h(0) = g(1). Finally, it is an easy eXercise to show that
H%(x, B) = r implies that {J f< K,(Ua). Then, sirice E(Ue) = Uy = n(1), it follows
that (1) U B = (1) for each Be f and hence r1y =9y
Therefore, the maps g and k'can be used to define the desired path in @ from g
toy. B : : L L _
We now combine our previous results to conclude that the spaces of order arcs
are locally connected (in fact, are AR’s) precisely when X is a Peano continutm.
A3, Tueorem. Ler X be a continuum. The following are equivalent:
(&) X is locally connected, : -
(b) I'(2%) is locally connected.
©) T'(?%) is an AR. vt
"(d) T(C(X)) is locally connected.
(e T(CX)) isan AR. - = R
Remark. Theorem 5.2 m the next section will allow us to add to this list of
‘equivalent conditions the following: S ' - o
(f) I'(2%) is a Hilbert cube.

Proof of theorem. Statement (a) implies statement.(b) by Lemma 4.2. State-

ment (b) implies statement (c) as 8 consequence of Theorem 1.2 and Lemma 3.3.
Statement (c) implies statement (a) as a consequence of Theorems. 2.2 and 1.2.
‘Therefore, (a), (b) and (c) are equivalent. . " - - . :

Together (a) and (c) imply (e) as a:consequence of Corollary 3.2.. Clearly,
(e) implies (d). Finally, (d) implies (a), again as: a consequence of Theorgms 2.2
and 1.2. W R T A

5. I(2X) a Hilbert cube. The following lemma is used iri the proof of Theorem 5.2.
The proof of the lemma is.an adaptation.of [6; Lemma 5.4] and 15, Lemma 4.2].

-


GUEST


118 C. Eberhart, S.B. Nadler,.Jr.,; and W..0. Nowell, Jr,

5.1, LeMMA. Let X be a Peano continuum and let- Y be a closed subspace -of
having non-empty interior. Then .

- Ty(2®) = {eeI'(2%): Yo}
is a Z-set in I'(2%). If Y contains no free arcs in X, then

' IyCX)) = {ae I'(CX)): Y=o}

is a Z-set in I'(C(X)). }
Proof. Suppose first that ¥ contains an arc J which is free in X. Without loss

of generality we assume that X has a convex metric and that J is isometric to the in-

terval [—1, 1] with the asual metric; so, in order to simplify notation, we identify J

with this interval. Let '

M= {de2%: Q?¢A and 4n[-1,1] # B} .

For each deM, if An[-1,0]1# O, let ,a'; = suj)A N [-1,0], and if
An{0,1]# @, let a* ='inf4 n [0, 1]. The following defines a map f: M — 2%,

. {a*} if An[-1,0]1=@,
f@=4} i Anlp,1]=92,
{a*,a”} if An[-1,01# D # An[0,1].

Now let N = {(4, Bye 2¥x2¥: A< B}. It is easy to verify that the following defines
a map g: N— 2%, Whenever 4 [—1,1] # @, let ¢ = inf{!s]: sedn[~1,1]}.
Then let .
B fdn[-1,11=¢@,
Buf(4) if $<r<1,
(BUSf() U 2t—1,1-20)N\@r—1,1-2¢) * if O<t<},
Bul-1,1D\(~1, 1) ift=0.

Note that, for every 4€2%, J#g(d4, A). Now define a map &: T¥)—I 2X)\I'y(2%)
by '

'g(A! B) =

k(B) = {g(n B, B): Bep}.
It follows easily from Lemma 2.4 that, for any f e T'(2%), h(B) is indeed an element
of I'(2%), and it follows from the definition of g that h(8) ¢ I'y(2%). The cdntinuify
of  follows from the continuity of g' and of the map which takes B to NP [13,
(1.203.3)]. Finally, given any £>0, it is clear that J can be chosen sufficiently small
that / is within ¢ of the identity map on I'(2*). We have thus proved for this case
that I'y(2¥) is a Z-set in I'(2%).

Now consider the case that Y contains no free arcs in X, It is then shown in the
proof of [6, Lemma 5.4] that, given &>0, there is a map g: 2* —252%, where
2% = {4€2%: Y< 4}, such that

(1) if A=B, then g(d)cg(B),

(2 if Ae C(X), then g(4)e C(X), and
. (3) g.is within e of the identity on 2%,

icm
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Then a map h: I'(2¥) — I'QXI\I'y(2¥) is defined by
h(p) = {g(B): Be
It follows from (3) that h is within ¢ of the identity on I’ (2%). Furthermore, it follows
from (2) that (I'(C(X)))=I(C(X)), so the restriction h|rcyx, provides a: map
r(C(X)) — I(C(X)NI'(C(X)) which is within ¢ of the identity on I'(C(X)). B

Ideas used in the proof of the following theorem are similar to those used in [16)
to give a proof of the Curtis-Schori hyperspace theorem. '

5.2. THEOREM. Let X be a Peano continuum. Then I'(2X)~ Q and, if in addition X
contains no free arc, then I'(C(X))~ Q. : -

Proof. In view of Theorems 2.9  and 4.3, it suffices to prove the following:
Given &>0, there exists a Z-mapf: I'(2X) — I'(2¥) such that, for any a e T'(2%),
H(a, f (@) <s.

Assume that the metric d for X is convex. For given ¢>0, define f to be
F(0) = {K;,a(4): Aea}. By Lemma 4.1, fis continuous. It is also clear that, for
any ¢ e I'(2%), H*(«,f(®)<2e/3<e. Since d is convex, f[I'(C(X))]=I(C(X)).
Finally we will show that f and f|I’ (C(X)) are Z-maps, that is, their images are
Z-sets in I'(2Y) and I'(C(X)) respectively.
~ There exists a finite set {x;,...,x,}cX so that the set of closed. balls
B, ={xeX: dx,x)<g3}, i=1,..,n covers X. By Lemma 5.1, I'p(2¥) is
a Z-set in I'(2¥) for each i, and, if X contains no free arcs, I'y(C(X)) is a Z-set
in I(C(X)). Let « € I'(2¥) and let @ € (. Siznce {B,} covers X;, there exists some i such
that d(a, x)<¢/3. If x€ B, then d(x,a)<2¢3, hence B;cKpps(Ne) = NS (.
Therefore, since « was arbitrary, f [I'(2%)]<I'5,(2%) U ... U I'y (2¥). In like manner
FIr(CX)]erlp(CX)) U ... U I'y(2%). Since a closed subset of a finite union
of Z-sets is again a Z-set (see [3, Theorem 3.1]), f [I'(2%)] is a Z-set in I (2%) and,
if X contains no free arcs, f[I'(C(X))] is a Z-set in I'(C(X)). @ -

By Theorem 4.3, if X is any Peano contipuum, then I'(C(X)) is an AR. The-
orem 5.2 gives a sufficient condition for I'(C(X)) to be a Hilbert cube. The following
example indicates that I'(C(X)) is not a Hilbert cube for every Peano continuum X.

53. ExaMpLE. Let S*.be the unit circle S = {(x,y)eR?*: x*+y* = 1}.
Then I'(C(SY)= Q. , ' .

Proof. 1t is well known that, for any g€ Q, {g} is a Z-set in Q. Thus it suf-
fices to ‘show that {{S*}} is not a Z-set in I'(C($*). The function g: I'(C(S?))
— F,(C(S)) defined by g(y) = {Ny} is continuous [13, (1.203.3)]. Hence, for any
given >0, there exists some §>0 such that if y e I'(C(S*)) and H*(y, {4})<é.for
some 4 € C(SY), then H*(g(y), y)<e. Now suppose {{S'}} is a Z-set in I'(C(S*)).
Then, for & as above, there exists a mapping f: I'(C(S"))— I'(C(SOYN{S'}}
such that £ is within & of the identity map on I'(C(S?)). Let k be the restriction of
g of to Fy(C(SY). Note that :

(1) k maps F,(C(SY) into F(CSHIN{SY}}

Let {4} € F,(C(S")). Since f is within § of the identity, H*(f({4}), {4} <8.
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Hencé, taking y = f ({4}), we have from the definition of & that H*(g(y), y)<e.
Thus, by the triangle inequality, H*(k({4}),{4})<e+d. Hence
. (2) k is within e+ of the identity of F;(C(SY),
" Finally, recall that

(3) F,(C(S") is naturally isometric to C(s").

Since & and § may be chosen as small as we please, we see from (1), (2) and (3)
that {S'} is a Z-set in C(S*). But it is well known that C(S?) is a 2-cell with S*,
-as a point of C(SY), in its interior (see [13, (0.55)]). Thus {S'} cannot be a Z-set
in C(S%) [8, VI 2, p. 75]. The contradiction proves that r(c@Ehy)=0.
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A éeneralization of a theorem of Skala
by

Helmut Linger (Vienna)

Abstract. Let n>1, let (4, f) be some algebra of type n+1 satisfying
@) S (f(Xos es X0y 1z oees V) = f(xo,f(x,,yl. <3 Fn)s wees J (s Y1 ove, ) FOT ADY g, 1oos X,
Y1s s €A
and put

C:={xedl f(x,x,..,xn) = x for any xy,..., Xn € 4},
Si(M) := {x € 4] f(x, X1, ..., ¥n) = x; for any x1,...,xn€ M} (1<i<n, MCA)
and
SM) = Si(M)u....u Sp(M) (MCA).
The following -result of H. Skala (cf. [1]) is generalized:

THEOREM 1. Let |C{>3 and assume f(xy, ..., Xn) € {Xo, cces x,.}_for any Xos ..., Xn € d. T.fa.e.:
(i) ae A\C.
(i) ae S(Cu {a).

In"the following if x € 4 or if x< A then x(i) denotes the sequence x, ..., x of
length i (1<i<n). ,

LemMA 1. Let B& A satisfying

®) fx, ¥, ¥) = x for any x,ye B
and let ae A such that () and (P):

(a) f(a, %, ...,x) = x for any xe B.

®) f(a, B(i—1),a, B, ..,B)cBu {a} for any i =1,

Further let a;, ..., a,, b, by, ..., b,€ B and assume f(a, ay, ..., a,) = b. Finally,

ippose b, = b ver a; = b (1<i<n). Then fla,by,..,b)=>~b.

Proof. We prove c¢; :=f(a,by, ., by, G141, e a,) = b for any i=0,...,n
by induction on i. ¢, = b is our hypothesis. Now, let 0<j<#» and suppose ¢;., = b
to be already proved. If a; = b then b; = b = @, whence ¢; = b. If, otherwise,
a, # b then f(f(@, by, . byy,8, 141, e @), 85y s @) = b by (a), (b) and (o)
whernce f(a, by, ..., a) =b by (B), () and (b) and therefore

b) =f(®,byyrb) = b

b]’-l:‘ea, Aiqs oo
=f(f(a’ bl» LLLE] bj-i,: a, a:j-l-x’ ALLE] an): bj’ Ly
by (a), (b) and. ().

|
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|
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