m-applications over finite fields
by

A. Prészyiiski (Toruf)

Abstract. The main results proved in this paper are the following:

(1). Theorem 1.4 shows that any m-application over a finite field is a polynomial mapping.

(2) Theorem 2.4 gives a basis of m-applications over a finite fizld.

(3) Theorems 2.7 and 4.1 show when any m-application over an algebraic extension of a finite
field is obtained from a form of degree m in the polynomial ring.

(4) Theorem 4.4 shows that any 3-application over a field is obtained from a form of degree 3.

0. Preliminaries. Let K be a'field and let m>0 be a natural number. A mapping
Jf: X— Y, where X, Y are K-modules, is called an mi-application (see [1]) iff the
following conditions are satisfied:

(AD) f(rx) = r"f(x) for any re K, xe X.

(A2) 4"f: X x..xX— Y is m-linear, where

@)Fgy s Xg) = 3 (=L@ (T x)
Hel[l,m} ieH

m-applications from X to Y form a K-module denoted by Appla(X, Y), and in
a natural way we get the functor Applz. ApplR(X, —) is represented by I',(X)
(see [1]) and it is easy to prove that I',, commutes with direct limits. Therefore the
investigation of Apply can be reduced to the study of ApplE(K™, K).

We have the following K-homomorphism (see [1], [2]):

V' K[Ty, ..., T}, — Applx(X”, K), V'F) =F,

where F(xy, ..., %) = F(xy, ..., X,). Denote Im(3™) = Homg (K", K). The following
question arises: when Homy(K", K) = Applg(K", K)? It is known from [1] that the
answer is positive if m<2 or n = 1 or m! 5 0 in K. The aim of this paper is to give
some more detailed information concerned with that problem.

It will be assumed in the next three sections that:

1) K is a fixed finite field, char(K) = p, card(K) = q = p°.

2) m>0 is the degree and n>0 is the dimension.

3) a = b means ¢ = b (modg— 1. .

4 If I'=(,,..,i)eN" (N contains 0) then |I| = i;+...+i, and I<a (I>d)
means that 1, ..., i,<a (i, «.; i,>a).
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1. Polynomial mappings. The K-module P (K", K) of all polynomial mappings
from K" to K is generated by elements exp (I), I € N, defined in the following way:

eXp(D) (X1, oy Xp) = X Xl for T = (i, s by«

Lemma 1.1. The elements exp(I), Ie N", I<gq, form a basis of P(K", K).

Proof. For any J = (j;, ...,Jj,) define red(J) = (i, ..., i,)<q as follows:

i = 1591, if ;>0 and 4§ =0 for j,=0.

Since exp(i) = exp(j) for i =, i,j>0, it follows that exp(J) = exp(red(J)). The
linear independence of the above elements can easily be proved by induction on n.

LemmA 1.2, (1) The elements exp(l), Te N", I<q, 0<|I|<m, |I| = m, form
a basis of Homg(K", K).

(@ dimgHomg(K" K) = card(B,) where
B, = {HeN* H<gq, |H|<m,0<k<n—1}.

Proof. (1) If Je N* and |J| = m>0, then I = red(J) satisfies the above con-
ditions. Using the converse procedure, we infer that all the above elements belong
to Hompg(X", K).

(2) Induction on n. The case n = 1 is evident. Let n>1, Then
B,=B, ,u{HeN"'| H<gq, |H|<m}.

There is a one-to-one correspondence between B,_; and the set of the base elements
exp(l) with I = (I', 0). For I = (I', i) with i>0 the mapping I+ I’ gives us a one-
to-one cotrespondence between the rest of the base elements exp () and the second
part of B,. In fact, the last integer i is uniquely determined by the conditions
1<i<g—1 and i = m—|I'|. (Another proof of (2) is given in [2], Corollary 8.5).

Let us consider the K-module Applg(K®, K) of all mappings f: K" — K satis-
fying the condition (A1). We want to prove that all such mappings are polynomial
mappings and to find a basis of Applg(K", K). The first step is the following:

PrOPOSITION 1.3, If m—1=(n—1)(g—1) then Homi(K", K) = ApplZ(K", K)
= Applx(X”, K). _

Proof. Since m—1z(n—1)(¢—1), it follows that B, = {BeN*| B<g,
0<k<n-—1} and hence

= qn.‘l
=70

On the other hand, the projective space P"~(K) has ¢ elements. This means that
there exist elements x;, ..., x, € K"~ {0} such that any x € K"is a multiple of some x;.
Therefore any f'e Applg(K”, K) is uniquely determined by f(x,), .., f (x,), and

dim;HomP(K", K} = 1+q+...+¢""* =t.

e ©
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hence dimApplg(K", K)<t. ,(Compare also [1], Section 7.) This completes the
proof.

THEOREM 1.4. ME(K", K) is contained in P(K", K) and has the following
basis: exp(I), Ie N, I<gq, O<|I| = m.

Proof. Let m+k—12n(g—1) for a suitable natural number k. Any
fe ApplR(K", K) gives us the mapping g: K"*! — K defined as follows:

G(x!.’ wery xn-H) =f(x1: rers xn)x,r:-O-l .
Observe that g e Applgt*(K**1, K) = HomE*¥K™*1, K)cP(K"*1, K) by Prop-
osition 1.3. Putting x,4; =1, we obtain feP(K", K). Let f= F, where
T
F,e K[Ty, ..., T,];. Condition (Al) for f means that

rfx) = ; r'Fy(x)

for any re K and any fixed x e K. Observe that F = $a,T'e K[T'] vanishes as
a polynomial mapping iff 7?—T|Fiff a; = 0 and Y, a; = 0 for any k. Hence it follows
izk

that f= Y F,.

O<iz=m

Lemma 1.2 gives us now the basis of Applf(X”, K).

2. m-applications over finite fields. To study condition (A2) we must compute
A"exp(I). LetI = (i, ..., i,). Consider m x n-mdtrices 4 = (a;) withrows 44, ..., 4,
(we write (4 = A4,, ..., 4,,)) satisfying the following conditions: |4,], ..., |4,|>0,
Ay +otd, =1L A .

The set of those matrices will be denoted by M(m, I).

Lemma 2.1, Let I = (iy, ..., I,) and |I|>0. Then

(AMCXP(I))(JC]_]_, ey Xpmy aees Xy wens xmn)

’ = Z ((all > e

’ aml)) . ((aln: ey amn))xailll e x:n’:" M
AeM(m,I)

In other words:

e = % (@11, @) o (@ans o ) exp(d) .

Proof. Induction on m. The case m = 1 is evident since A f = f. Let m>1.
Observe that :

(Amf)(x1; vy x,,.) = Am—jf)(xl, ooy X2y xm"l+x”')_
~(Am-'1f)(x1, veny me—l)——(Am—lf)(xl’ ey X2 xm) -
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Hence by the inductive assumption and the binomial formula we get:
Amexp(]) = Z ((blla “"bm-1.l)) e ((blnr iy bm~'1.,n))x

BeM@m~1,I)

X Z ((jl7 kl)) ((Jns n))exp(Bii wen
J+K=Bpm—1
{J.ix}>0

= 2 ((all 3

AeM(m,I)

m 2"’ K)

"y amx)) o ((d;,,, (] amn))exp(A) .

Now we answer the question when A"'cxp(l) = 0. We need the following
LeMMa 2.2. Let a = ay+4...+ay, @ = Z a®pt, 4y = Z Pk j=1,.,m,

where 0<a®, a"‘) <p. Then

"
Y a® = a® for any k=0,1, ..., ¢

J=

(@1, s a)) #0in 2, iff

Proof. Induction on m reduces the lemma to the case m = 2..The following
computation in Z,[T]:

at0) alt)

(T+1)* = T+ .. @ +1y = Z Z(a‘”) (a">>Tb

where b = by+...+b,p', shows that

4 A0 o ®
() @ v
t

This completes the proof. .
LetI = (iy,...,5,) and i, = Z iopk where 0<ifP<p. Then we put Z‘p(I) Z i®,

CoroLLARY 2.3. Let |I|>0 and I<q Then A"‘exp(I) 0 lﬁ'z,,l)<m

Proof. Since I'<g, it follows that 4 <gq for any A € M(m, I), and hence the
presentation in Lemma 2.1 js unique. Therefore A™exp () = 0 iff all coefficients
are zero. This means that any mxn-matrix 4 satisfying the conditions

1 aml)) bl ((alua AR}

must have a zero row. By Lemma 2.2 this is equivalent to the foliowing implication:

Al +"'+Am = I, ((alla o

amn)) #0,

\4 Zay{"—z“‘) =3Vdp =

kl j= J ki
The above is true if Z,(I) <m since 1<j<m and there are at most m—1.non-zero a$¥.
Conversely, let Z,(I)2m. If i{>m for some k, I; then i is a sum of m positive
integers, and hence there exists such an 4 that a§’,°>0 for any j. If if® <m for any k, |,

icm
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then we can put aff’ = 0 or 1 in such a way that for any j some a%¥ is 1. This completes
the proof.

The above corollary allows us to find the basis _of Applg(K", K) and then
answer our fundamental question for finite fields.

THEOREM 2.4. Applx(K™, K) has a basis composed from elements of the following
two types:

M) exp(D), Ie N", I<g, 0<[I|<m, |I| = m (the basis of Hom}

) exp(D), Ie N", I<g, m<|l| = m, Z,(I)<m.

Proof. It follows from Lemma 1.2, Theorem 1.4 and Corollary 2.3 that the
above elements belong to Applg(K", K) and are linearly independent. Let
fe Applg(K”, K). Then

Kll K)),

arexp(l), a;ek,

by Theorem 1.4. By Lemama 1.2 we can assume that |I|>m. It remains to prove
that 4"exp(I) = 0 if a; is non-zero (cf. Corollary 2.3). By the above formula and
Lemma 2.1_we get:

A"f= Y agd"exp(]) = Y arcqexp(d) .
. g>IeNn g>IeN"® AeM(m,I)
m<|I|=m m<|I|=m

Consider this equality 'as an equality of polynomial mappings in mn variables
X115 wors Xmn. Observe that the matrices 4 are all different (since 4; +...+4,, = I)
and exp(4) are linearly independent by Lemma 1.1 (since 4 <g). Moreover, |4|>m.
On the other hand, 4™f is m-linear, and hence in the variables x,
A™f e Homg(K™, K). Compating the coefficients in the above equality, we con-
clude that a;cs = 0 for all 4 e M(m,I). Hence A™exp(l) = 0 for a; # 0 as we
want.

CoroLLARY 2.5. Homg(K", K) # Applg(K", K) iff there exists an Ie N" such
that :

I<q, Z,)<m. and |I| =m+a(g—1) where a>0.

For any such I we have (i) g>p and (ii) m>ap+1.
Proof. The first part is evident. Suppose that g = p. Then I<p and hence
m<|I| = X, (I)<m, a contradiction. Suppose that ap—m+120, Then:

m+a(P’—1) = NI Dp*  <m-Dp"", ap-m+i<(@ap—m+1)p* '<a-m.

Hence a(p—1)+1<0, a contradiction.

" COROLLARY 2.6. Hom( # Appl} iff there exist Moy wens
1° no+nyp+.. +n,-1p“'1~m+a(q 1) a>0,
2° ng+.. An, <m,

ny-y € N such that:
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Proof. For any I satisfying the conditions of Corollary 2.5 define n,
(k =0, ..,5~1) as a partial sum of Z,(I), m, = the sum of coefficients at p*. Con-
versely, for given ng, ..., n,_, define

I=(,.,1,p,0,py ey P8 P70

no ny [

Then I satisfies the conditions of Corollary 2.5 for n = 7 S T

Tueorem 2.7. If K is a finite field, then the Jollowing conditions are equivalent:

() Homf = Apply, . ’

(2 K is a prime field or m<2p.

Proof. By Corollary 2.5(i) it can be assumed that K is not prime, Then it
suffices to prove that the following conditions are equivalent: '

(1)’ There exist ng, ..., n,_y € N such that no+...+n,_y <m and

Rotmyp+.tn, p°71 = (m—1)+p°.
@ m>2p.

In fact, (1)’ implies Hom} # Apply by Corollary 2.6. Conversely, Hom
# Apply and m<2p imply a = 1 for any I in Corollary 2.5, which gives us ),
a contradiction.

Let m~1 = coy+eip+octce 0" *+cp™™! where 0<ey, oy €5-0<p, 20,
Then (1)’ means that:

(a) There exist ng, ..., n,; € N such that Ho+-..+n,_y<m and
Mo+ Pty P71 = Cotorpt ot 6oy 2 4 (c+p)p

Observe that co+...+¢ —2+(c+p)<ng+.+n,_;. In fact, c+p=n,_, since
(c+p)p° ' is the greatest multiple of p*~* contained in (m—1)+g. Next we apply
induction on s: from the equality Ro+n Pt e+ (s p+P1, )P* ™2 = cotcyp+...
+(c,_2-|—p(c—+—p))p“2 we get c0+...+c,_2+p(c+p)<no+...+n,_2+pn,_1; then
we add —(p—1)(c+p)<—(p—1)n,_,. Hence (a) is equivalent to

(b) co+.ites_yt+ctp<m,
and this is equivalent to the following conditions:

(© otz etp<eotantcg PP 24 opt L,

@ elp—D+e(P* =D+t e s (PP 2= 1)+ e (™ = 1) 2.
Then it suffices to prove that the condition m<2p is equivalent to

@) ey (p=D+.t ey (P 2 =D+ e(p* 1~ 1) <p.
Observe that p*—1>p for k22 and 2(p~1)=p. Hence (d)’ means that ¢;<1 and
€2 = .. =Cpp=c¢=0,ie m—1<2p. This completes the proof.

‘COROLLARY 2.8. If m<4 then Hom® = Applx for any finite field K.

icm°®
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3. Some examples. We want to show how we can find all presentations from
Corollary 2.6. Then the proof of Corollary 2.6 allow us to find the basis of
ApplR(K", K).

Exampre 3.1. Let m = 2p+1. Observe that a = 1 by Corollary 2.5(ii). Hence

- we look for presentations:

Rotontng P70 = 2ptpt,  mgda.tn,_ <2p.

1) Let p = 2 and hence m = 5. It is easy to see that 44-2° can be presented as
the sum of <4 powers of 2 less than 2° in the following three ways:

242427142571 for 22, 22427142571 and 224-29"24.29724.25"1 for §23 .
Hence the positive' and monotonic I of type (P) are the following:

(2,2,2,2) for s =2, (2,2,4,4), 4,4,4), (2,4,6), (6,6) for 5s=3,
2,2,8,8) (4,8,8), 4,4,4,8), (2,8,10), (10,10), (8,12), 4,4,12) for s = 4,
(2,2, 274, 2071, (4,201,270, (4, 2572, 2572, r=t), (2,271, 242070,
@+27H2427Y), @7 442078, (4,272,207 24.057Y), (2572, 442572, 2,
(273,272, 442571, (2572, 4425724257 ) for s25.

2) Let p>2. Observe that ng+...+n,_y = 2p+p° = p+2 (modp—1). Moreover,
it follows from the proof of Theorem 2.7 that

Ro+.tfe g ZCo+ ot Cy_q+(c+p)
where
co=0,¢=2,¢=u=¢p=c=0fors>2and ¢, =0, c=2 for s = 2.

Hence ny+...+ng.y = p+2.

For s =2 we have no+np = 2p+p?, no+n, = p+2, and hence n, = 0,
ny = p+2. Let s>2. Then n,_;<c+p = p. Suppose that n,_;<p—1. It follows
that

2p4p° < P+2)P 40, (P AL+ T H (0 - DT -p )
= (p=Dp T +3p <y’

This contradiction shows that n,_, = p. Next we look for ny, ..., n,_, such that

No+... 47—y p* % = 2p, and obtainng = 0, ny =2,y = ... = n,_, =0, n,_, = p.
Then for any s>2 we have the system J = (p, p, p°~ %, ..., p¥~*) which “generates”

14
all I of the type (P). )
Observe that the minimal n such that Homg(K", K) % Applg(K™, K) is the fol-

lowing:
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n =2 for s>2: exp(p+p°"*, p+(p—1)p*~1),

n =2 for s =2, p>3: exp((p~1)p, 3p),
=3 for s =2, p=3: exp(3,6,6),

n=4fors=2p=2:exp(2,2,2,2).

ExampLe 3.2. Let 2p<m<p’~*. We prove that Homp(K2, K) # Applp(K?, K) -

and hence Homy(K", K) = Appli(K", K) for any n>2. It suffices to show that
I=((m=1)+p""% (p—1)p*"Y) is of the type (P). Let m—1 = CotontConnp* 2,
0<¢;<p. Since m>2p, it follows from the proof of Theorem 2.7 (condition (b))

that X,(I) = co+...+C;p+p<m. The rest is evident, and hence exp(l)

¢ HomZ(K?, K). )
Let KcK'. We define I for K and I’ for X' as above. 1t is easy to see that
I = red(I) (over K), and hence exp(l) = exp(I')|ga.

4. Some generalizations, We prove some results on m-applications over infinite
fields. The first is following: ,
. ToeEOREM 4.1. Let K be an infinite algebraic extension of Z,. Then the following
conditions are equivalent:

(1) Homg = Applg,

(2) Hom(K?, K) = ApplR(K?, K),

(3) m<2p.

Proof. Let {K,},.r be the family of all finite subfields of K having at least pm
elements. Since K is infinite and algebraic over Z, it follows that, K = |) K,.

L taT

(2) = (3). Suppose that m>2p. For any K, define I, as in Example 3.2. Next

define f: K* — K in the following way:

) =expW)(x,9) i x,yek,.
It follows from Example 3.2 that £ is properly defined. Moreover, f is an m-appli-
cation since the both conditions are “locally finite”. On the other hand, suppose that
Se Homg(K?, K). Then exp([) eHomﬁt(K,f, K), which is false by Example 3.2.
(3) = (1). Any m-application f: K" — K gives us the family of restrictions

fii K —K, teT, being also m-applications. Since m<2p it follows that
fi € Homg (K7, K). This means that f, = F, where

F! € KI[TI, sevy Tn]m@KgK = K[Tls LLLE Y :rn]m N

' If K,= K, then f, = f,,lK,” and hence Fy(x,, ..., x,) = F(x,, ..., x,) for x¢, ..., x, e K,.
Since K has at least pm>m elements it follows that F; = F,. (cf. Lemma 1.1 or [2],
Lemma 6.3). Hence F, = F, = F for any ¢, ue T. Therefore f=F e Hom{(X", K).

Remark 4.2. It is easy to see that any m-application over infinite X which is
a polynomial mapping must be obtained from a (uniquely determined) form of de-

gree m. For example, the mapping f defined in the. first part of the above proof is
not polynomial.
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Remark 4.3. Let X be a proper algebraic extension of Z,. If v is epimorphic
for any dimension #n, then m<2p< ¢ and hence v"is monomorphic for any ». (Cf. [2],
Lemma 6.3))

Using other methods, we can prove the following

TueorREM 4.4. Hom? = Apply for any field K.

Proof. 1) Let f: K" — K be a 3-application and let {e,, ..., ¢,} be the standard
basis of K" It is easy to see that

f(}:, xlei) = i< Z (A’ff)(xhej,, s X5.65)

J1<.<JieSn

= Zf(ei)x? +iz; (%) (x5, x_;r‘%f)‘*‘i jZk (4f )y, €, €x) X1 Xy Xy
i < <Jj<

(cf. [2], formula (3.1)). It suffices to prove that
(A ) Criey, xpe) = ayxi x;+byx X} .
Then we can assume that n = 2.
2) Observe that

B30, %, D+ Cx, v, 9) = (@) x, x+9,9) = (L) (=%, x+y, ~¥)
=fO—f M —f @) —f (=x=P)+f (—x)+
+ N+ (=) = 2f (x+1)—2f ) -2f (»)
= 2(4%)(x, 7).
If 2 is invertible in K then

) (%11, %285) = 3(4% ey, €4, €)% %2+ 5 (43 ) (eq, €2, €3)%, X5 .
3) It remains to assume that char(X) = 2. In this case
@) x, x,9) = f@x+D)=f @) =2f (x+ M) +2f (X)+f(») = 0.
Since 7 = 2 and 4°f is symmetric 3-linear, it follows that 43f = 0, Hence 43 is
Z-bilinear.
Consider the system of linear equations with unknows a, b:
x2x,a+x,x3b = (4% ) (x e, %58)), Xy, %€K.
We must prove that it is solvable. We can assume that x,, x, # 0. Since (4%f) (sx, sy)
= $3(4*f)(x, y), it suffices to consider the system
ra+r*b = (4% )(ey, re;), re K—{0}.
We can assume that K # Z, (the case of Z, is evident). Then the rank of the coefficient
matrix is 2, and we must prove that the rank of the augmented matrix is also 2. In
other words, it remains to prove that
r r* (4%f)(ey, res)
det{s s* (4%f)(es,5e)| =0
t 1 (@) ey, tey)

4 — Fundamenta Mathematicae CXII
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for an)t r,s, t € K. Denote (u, v) = (4%)(ue,, ve,). Since (u, v) is Z-bilinear and
2 =0 in K, it follows that the above determinant is equal to -

s+ +5+3) (1, N+((r+ 1P +r2+83) (1, D+((r+5°+r2+5%, 1)
= (s+1, F(s+ 1) +(s, r)+ (2, ) +(r +1, s(r4+0)+ (r, 1)+ (2, st)+
+(r 5, tr+)+(r, F)+ (5, 5t) = (s, 1)+ (t, rs)+(r, SO+ (2, r5)+
+(rs s+ (s, rt) = 0.
This completes the proof.

‘ 1t should be interesting to explain the situation for arbitrary fields. In particular,
is the above theorem also true for m = 47 :
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A[X, ...
et Lipshitz [5] ont établi la définissabilité de N dans k[[X, ...
et donné des exemples de corps ky = ki, ky[[X7, e, Xinl] # Kol X1 s Xl
En 1951 R. M. Robinson [12] définissait NV dans k[X], grice & la propriété
qua cet annean d’étre factoriel. A4 priori, la méme idée ne permet dans
k[[X,, .-, X,]] que de définir I'ensemble des séries dont le terme constant est un
entier. Un raffinement de la méthode, déja remarqué par Becker et Lipshitz, conduit
au résultat. Les techniques utilisées ici sont plus précises en ce sens qu’elles permettent
de définir autre chose que des séries constantes; on montre par exemple, que Z[X]
ou ko[X,] (k, est constituté par les éléments de k algébriques sur Q) sont définissables
, XJ]; plus généralement, est définissable tout anneau A[X;] ou
A[[X,]], od 4 est lui-méme définissable dans k[[X], ..
forcer considérablement les résultats antérieurs:
(i) On définit dans k[
second ordre.

dans k[[X;, ...

4 - . . -

Indécidabilité de la théorie des anneaux
de séries formelles a plusieurs indéterminées

par

Frangoise Delon (Paris)

Abstract. We precise the degree of indecidability of rings of power series with several variables
over a field: We define the second order arithmetic in power series ring k[[?]], in convergent
series ring k{X}, and algebraic series ring Nk(X); we prove that each arithmetical serie is
INSTITUTE OF MATHEMATICS definable and that none of the inclusions Nk(X) C k{X} C k[[X]] is elementary; we give criteria
POLISH ACADEMY OF SCIENCES of non elementary equivalence between power series rings over equivalent fields.

Les anneaux de séries formelles 3 une indéterminée sur un corps k de caractéri-
stique nulle sont bien connus depuis les travaux d’Ax et Kochen [3] [4] et
&’Ershov [9] [10]. On sait ainsi que K[[X]] est décidable ssi k Iest, que
K [[X]] = k,[[X]] ssi &, = k, et que Pinclusion C{X}=C[[X]], ot C{X} est
I’ensemble des séries convergentes, est élémentaire. Le cas de plusieurs indéterminées
est entitrement différent: Ershov [11] a montré I'indécidabilité des anneaux
, X,u]], oit 4 est un anneau commutatif et m>2. Plus récemment Becker
, X,,]], si carac (k) = 0,

., X,,]]: Cela permet de ren-

[X;, ... X,]] le modéle standard de T'arithmétique du
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