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Weak L-structures and dimension

by

Kei6 Nagami (Matsuyama)

Abstract. A generalization of free L-structures is given and dimension theory is harmoniously
developed for spaces admitting such weakened structures. For instance, such a space X has dim X<n
if and only if X admits a o-closure-preserving base $ with diméB<n—1 for each Be B.

0. Introduction. In a previous paper [5] we study the dimension of spaces with
free L-structures. The aim of this paper is to weaken the concept of free L-structures
and to show that the dimension theory can still harmoniously be developed. Since I
do not know whether the class of spaces with such weakened structures is a real
generalization of the class of free L-spaces, I first hesitated the publication of such
structures. I dare to publish hoping that the concept of weak L-structures would be
one of the key words to clarify the very interesting but still wild plain between LaSnev
spaces and M -spaces [1].

In this paper all spaces are assumed to be Hausdorff topological spaces, maps to
be continuous onto, and images to be those under maps. The letter N denotes the
positive integers. For undefined terminology and mnotation refer to [4] and [5].

1. Definition of weak L-structures.
1.1. DerNITION. Let X be a space, F a closed set of X, and # an anti-cover
of F. An open neighborhood V of F is said to be semi-canonical if

FACUX-V)=90.

1.2. DEFINITION. A pair (¥, {%r: Fe F)) of a o-locally finite closed cover #
of a space X and anticover %y of F e & is said to be a weak L-structure if it satisfies
the condition: For each point x € X and each neighborhood U of x there exist
a finite subcollection {F;, ..., F;} of # and semi-canonical neighborhoods U; of F;

k K

such that x € ) Fy< () U;= U. A paracompact space admitting a weak L-structure
=1 =1 -

is said to be a weak L-space.
The following is justified quite analogously to [5], Theorem 1.3.
1.3. THEOREM. To admit a weak L-structure is hereditary and countably productive
property. .
P
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2. Main theorem. -

2.1, LemMa Let X be a semi-stratifiable normal space and {F,: o€ A} a closure-
preserving closed cover of X with dimF,<n for each o € A. Then dimX'<n.
Proof. Well order 4. Set

#y = {Hy = F, 0 (X=U{Fp: p<a})y: e A},

where k succeeding the parentheses indicates the kth index of semi-stratification.
=

Then 3¢, is discrete and | # covers X. Thus dimX'<»n by the sum theorem. That
k=1
completes the proof.

2.2. LeMMA, Let Fy, ..., Fy, be closed sets of a space X and U, = {U,: a € 4}
be their anti-covers which are locally finite mod F; (i.e. locally finite in X —Fy). Set
Ay ={Acd;: V= FuU{U,: ael)) is open},

V= {Vy: Aed},
3

W = (W, d) = () Vit () eT1 41

k

Then W is closure-preserving modF = (\ F, and, for some closed sequence {H}
i i=1

with \) Hy = X—F, the restriction of 8% to each H, is closure-preserving,
Proof. Choose an arbitrary index set Z<=]] 4;. Set

- W= {W(E): EeE}
and pick a point xe dW. Set ‘
M={1,.,k,
M ={ieM: x¢F},
M" ={ieM: xeF}.
Let D be an open neighborhood of x with
' Da(U{Fi:ieM) =0
such that
B, ={acd;: DnU,# B}

- is finite for each {e M’. Set
#; = {U,: @B}, ieM’,
U= Ny ie M}
Then A {%;: ie M'}| D =%|D. Set
Wilis ) =N {Vy:ie M,
Whgs s ) = N{V3: i€ M},
W' = {W'©): {eE).
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Assume that xe W'() for some ¢eZ. Then xe W'(&)n{N{F:ieM"})
cW'(E) n W' = W(&). This contradiction implies that x ¢ W’'(£) for any
¢eX and hence that x¢ W'. Let

{7, yel}

be the family of all subcollection of #. For each {e&, W()nD =g ;" nD
for some y & I'. Thus there exists an index de I’ with W'n D = ¥~ D. Since
x¢ W' and x € W, then x € 8W'. Since I' is finite, there exists an index 5 € E with
x € 8W'(n). Pick an arbitrary neighborhood E of x. Then W () n E is again a neigh-
borhood of x. Thus W) N E = W) n (W"(n) ~ E) # @, which implies that
xedW(n). W is therefore closure-preserving. .

To prove the rest let M be the collection of all non-empty subsets of {1, ..., k}.
Set T, = (\{F: i¢a}— U{F: ied}, ae M. Then X—F= {T,: ae M}. The
restriction of d# to each T, is closure-preserving and each T, is F,. That com-
pletes the proof..

This argument proves essentially the following.

2.3, LeMMA. Assume the same as in the preceding lemma. Then for each
&=y, ., M) e[]4 and each point x of OW(E), there exist i and a € A, such that
xedU,.

2.4. THEOREM. For a weak L-space X the following conditions are equivalent.

(1) dimX'<n.

(2) X is the image of a weak L-space Z with dimZ <0 under a closed map f with
order f<n+1. .

(3) X is the sum of n+1 subsets Z;, i = 1, ..., n+1, with dimZ;<0 for each i.

(4) IndX<n.

(5) X has a o-closure-preserving base & with dim(0#)* <n—1 such that
@®* is F,.

(6) X has a o-closure-preserving base % with dimdBgn~1 for each Be 4.

(T) X admits a stratification U — {Uy} such that dimoU,<n—1 for each open U
and each i€ N. :

Proof. To prove that (1) implies (2) let (¥, {#%F}) be a weak L-structure of X.
Let # = ) &, 1= {F,: ae 4}, A;c4,c..., where each &, is locally finite.
i=1
For simplicity %, stands for %, in the sequel. Set
By = {¢cd I =J},
" Fiy={Fy® = N{Fa: ae &}: Ee By},

Well order B;;. As in Lemma 2.1 define discrete closed collections

Hip = {Hi(): te B}
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in the following manner.

Hyy, (the first) = Fy; (the first) ,
Hyjjl&) = Fi(6) n (X—U {F,m): ’1<f})k ,

where the index k in the right hand side denotes the kth index of semi-stratification.

Let Dyy(8), t = 1,2, 3, be open neighborhoods of Hju(£) such that

Dy (§)=Cl Dyper1(8)
and

Dipe = {Dya®): & e By}
is discrete. Set -
i = {X—U {CLDyy(£): & G-Bu}} v
U {Dyj(&)— CLD,44(6), Do (@) — Hyp(8): €€ By}

) For each i, j, k al}-d aeAd; let ¥, be an anti-cover of F, such that
0 "V i <Cipl(X=Fp), (i) Cl¥ 'y, <%,, (il) ¥, is locally finite modF, and
o-discrete in X. Set )

«©
'Vim =,U1 'Viﬂm )

Y thar = {Vijkaz(z): A€ Aipar)

where each ¥y, is discrete in X. Let {K;;,,(A): Ae A b
e {K e ) k) b€ @ closed cover of

@

Ktjkm(/l)c Vigad), Ae Aijkat .
Set
Aum; = {/1 € Ai,;kzt: Vigad D) = Dljkl(‘:): f € By,
Viskare = U {Vipad A1 A€ Ayjans)s. ¢e By,
qumc = U {Kipuld): A€ A;jkatc}: teBy;.
Set
&= {“1(5)s ey “j(f)}a {e Bu »
Virar = U {Vipauonz: €€ By},
K- = U {&ipaipyss €€ B},
Dyjpe = U {Dyjue®): (eBy), t=1,2,3.

Then Vi is open and Kjupy. is closed.

Let g: X — oX be a contraction of X to a metric ith di i
ke 1c space gX with dim X' <dim X

o(X—- Viggupe)r» e(X— Do), eKippae-» Qﬁijkt
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are closed in oX for each i, j, k, ¢, u. Consider the diagram:'

z—1 x

0Z ———> eX

where ¢Z is a metric space with dimoZ<0, g is a closed map with order g<n+1,
Z is the pullback with the natural maps o and f. Then fis a closed map with order
f<n+1, Tt is almost obvious that Z is a weak L-space. The only one thing to be
proved is the assertion: dimZ<0. Let )

s

g =
i

n
-

%, 9, ={G, yel},
be a base of ¢Z such that 4,>%,,,, mesh %;<1/i and each ¥, is a disjoint open
cover of Z. Set
Ss = f~1(Hijk(f)) n G—I(Gw)’
T, =f‘1(Dljkl({)) n o~ XG,),

where & = 8(i,j, k, &, 5,7)-
Set

¢e By, yel,,
ée-Bij, 'YEF,,

& = U {f_l(';f’ijk)/\a_l(gu): i!j: kaEN} = {SJ: 6EA} ’
T =U{f YD Ao ) i,jk,seN} = {T,: 5e4}.

Then & and 7 are o-discrete and S;=T; for each § e 4.
To prove that dimZ<0 let #” be an arbitrary binary open cover of Z. Set

4 = {6ed: Sy WycTy, Wy<# for some clopen set W,}.

To prove dimZ<0 it suffices to prove U {Ss: 6 € 4’} = Z, since this equality implies
that ¥ admits a o-discrete refinement {W,: de 4’} each element of which are

clopen.
Pick an arbitrary point ze Z. Then

fYE) N ”—1(Gsv)<w

for some open neighborhood E of f(z), some s, and some y € I',. Choose a finite
subset ¢ of A and semi-canonical neighborhoods U,, ae, of F, such that

f@eN F,e ) U,=E.
114 xed
Let i be the minimum with {=4;. Set

n={eed; feF}
o) = Bus

Inl=7j,

u=1,..,7J.
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Then ¢cn and e By;. Since f'(2) ¢ Fy(n) and f(2) ¢ Fy(n") for any ' e B;; with
n' % n, then

F@eFym) n(X-=U {F,0): 0" <n}).
Thus there exists an index k with
F @ e Fylm) n (X=U {Fy(n'): o' <n}h = Hypln).

Since dimoZ<0 and the diagram is commutative, there exist clopen sets Rm,,.“
and M;; of Z such that

I & g ) S Ry s L1V atanes)s
f_l(ﬁijkB)CMukcf~1(Dijk2) .

t,ueN,

Set
Ripepud® = (Vi s ) O Ripguge- »
A€ Ayupys u=1,..,Jj,
My = " (Dijrat)) N My
Set

Lo =F VgD A€ Aijrgs—Aipgun> 16 N},
M ijige = Rijrg () 2 € Ayjepy’ te N},
Visga= LV Mg, -
Then #';pp, is an anti-cover of f~(F;) refining =¥ kg Set
Po=(U{PeW . Pe fTUUY) O (F)
Ou=(U{Qe i, Q= XU VfYF,.

Then P, is an open neighborhood of £~ I(F,,“ , since f~ \Uﬁ) is a semi-canonical

xslelghborhood of f™(F,) with respect to £~ 1 %s,) and hence with respect to "//’ kb
et “

Q= ﬂP,,.
u=1

Then Q is an open neighborhood of z. Since () U,cFE and écy = {Bys s B3}
then e
0= (f W= HE).
Set
G = 6(i,j,k,n,5,7),
Then =00 My, Gy, .

Sso =" Hu) 0 Gy Wao fHDipsm) A Gy = T, .
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Since M;y, and G,, are clopen,
oWy, = 00 N Myjyy N Gy, .

Assume that 8W,, contains a point p. Since each element of U 2 ks, CaNNOL meet
M, then by Lemma 2.3 some element R of U M g, contams p, which contradicts

to R = Q. "Thus dWy, = & and 6, € 4"

After the implication (1) — (2) has proved, the conditions (1), (2), (3), (4) can
be proved to be equivalent as in [5], Theorem 2.3.

Let us show that the relation dimX = IndX'<n implies (5) using the same
notation as in the above. Choose 7, /, k, & = {&;, ..., &/} € By;. Let Ej(£) be an open
set with

HOcEp@)eDys), dimdEp()<n—1
Set

Y bt = AV ipia{A): L€ Aiﬂm,‘} .

© Let {yjra(D: A€ Ay} be an anti-cover of F,, such that

C e D = Vi) »
dmdS g (A <n—1, Aedjy,-
Set
0, = {0 Aijn,: Bo =
By, = (Bor 00,30},

J
g:jk(é) = /\1 Qiﬂmu »

guk(é)’ = g;jk(é)l"ljk(é) .
Then B,;(&) is closure-preserving by Lemma 2.2. Set
B = U {gijk(é): fGBu, i’j: ke N} .

Since {#,(&): &e B,;} is closure-preserving, # is a o-closure-preserving base. Let
e OV By, 0 T8,

be a generic element of &,;(¢). Since dimdBy, <n—1, u=1,
finite sum theorem, then dimdB<n—1.

To prove that (3%)* is an F,-set with dim(88)* <n—1 it suffices to prove
that (0%, (&)* is an F,-set with dim (88, u(£))* <n—1 for each 4, j, k and £ e By;.
Let @ be the family of all subsets of £. Set

=X-U {F: aed},
C—ﬂ{F’ aen} U{F, aeé-n}, ned.

Fou 0 (U {Jine®: 40)) is open},

B =By n 0,€ O 4= 1, 00sf,

..y J» by the locally
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Since each C, is F,, we can set
cﬂ = U ths ne ¢ *

where each Cy, is a closed set. As we recognized in Lemma 2.2 each point x € C,,
has a neighberhood U, such that

Uy 0 (08:5Q)ICp)* = Uy 0 (0'|C,y)

for some finite subcollection &' of &,,(¢). This fact implies that (98,4(E)* N Cy
is closed and that

dim((OBu(&)* A C<n—1.

Since {C,;: neP,te N} is a countable closed cover of X, then (m,,,,(g) is an
F,-set with dim (04, (&))* <n—1.

The implication (5) — (6) is evident.

To prove that (6) implies (7) let # = {J &, with each &, closure-preserving,
be a base such that dimdB<n—1 for each Be #. For each open set U set

= U {Bea,: BcU}.
Then {U;} gives a stratification. Set
= {B,eB;: aecd}.

Then {0U; ~ B,: ac A} is a closure-preserving closed cover of oU;. Since
oU; n B, = 8U,; n 8B,, then dim (8U, n B,)<dim(@U, n 0B,)<diméB,<n—1. Thus
dimoU;<n~1 by Lemma 2.1.
That (7) implies (1) is a well known fact (cf. [3], Theorem 11. 12) The proof is
 thus completed

3. Corollanes.

3.1. CoROLLARY. Let X and Y be weak L-spaces at least one of which is non-
empty. Then*dim(X'x ¥)<dimX+dim Y.

Proof. Let # and %’ be respectively o-closure-preserving bases of X and
of Y with dimdB<dimX—1 for each Be# and with dimdB'<dim¥Y—1 for
each B'e#’'. Then #xA' is a o-closure-preserving base of Xx Y. If Be # and
B' €%, then

d(BxB)=(@BxB')yu (Bx0B').
Thus
dimd(Bx B)<dimX+dim Y—1

if we pose an induction hypothesis on dimX+dim Y. That completes the proof,
since the case when dimX+dim¥ = —1 assures that the product theorem is
trivially true.
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3.2. CoROLLARY. Let X be a weak L-space with dimX = n>1. Let k be an
arbitrary integer with 0<k<n. Then there exists a weak L-space ¥ with dimY = k
such that X is the image of Y under a closed map f with order f = n—k+1.

Proof. Consider the diagram:

z—L ¥y X

Lok

aZ—-—;,———-rtY p, - oX

where ¢ and oX are the same as was constructed in Theorem 2.4. Then dim X
= dim X. 7Y and g are the same as was constructed by the author [2], § 6, such that
dimtY = k and g is a closed map with order g = n—k+1. Y is the pull-back of the
right hand half. Then Y is a weak L-space and f is a closed map with order
f=n—k+1. Let tY be the image of a metric space 6Z with dimoZ = 0 under
a closed map g’ with orderg’ = k+ 1. Z is the pull-back of the left hand half. Then Z is
a weak L-space and f” is a closed map with order /" = k+1.

By an analogous argument as in Theorem 2.4, we can prove dimZ = 0 which
implies that dim ¥<k. On the other hand

n = dimX<dim Y+order f~1 = dim Y+n—k

and hence dim ¥>k. Thus dim ¥ = k. That completes the proof.

3.3, COROLLARY. Let X be a weak L-space and Y be a subset of X with dim Y<n.
Then we get the following.

(1) There exists a o-closure-preserving base & of X such that (0B)* is F, and
dimd(B N Y)<n~—1 for each Be 4.

(2) There exists a Gyset Y' with Y=Y’ and with dim Y’ <n.

Proof. (1) Let Y;, i =1,..,n+1, be subsets of ¥ with dim ¥;<0. If we
replace the conditions dimdJ;y, (A)<n—1 and dimdE;;(£)<n—1 in the proof of
Theorem 2.4 with &Jyy, (4) N Yy = @ and 0F;;(&) n Yy = G respectively, we can

~ obtain the desired base %, such that OBD)*N Y, =0.

(2) For each i = 1, ..., n+1 let &; be a o-closure-preserving base such that
©OB)¥ N Y, =6, Set
. nt+1
=X—-(0R8)*, Y = Y.
=1
Then Y; is a G,-set with dim ¥{<0 and with ¥Y;< ¥]. Y is therefore the desired.
That completes the proof.
3.4, CoROLLARY. Fach weak L-space is the image of a weak L-space Z with
dimZ <0 under a perfect map.
This can be verified analogously to Theorem 2.4. The following two are also
essentially proved in Theorem 2.4.
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3.5. COROLLARY. Each weak L-space X admits a countable family of disjoint
pairs of closed sets determining the dimension of all subsets of X. :
3.6. COROLLARY. Each weak L-space admits a o-closure-preserving base & such

that (0B)* is F, and such that for each subset S of X B8 is also a a-closure-preserving
base of S.

Errata to the paper
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