

Weak L-structures and dimension

by

Keiô Nagami (Matsuyama)

Abstract. A generalization of free L-structures is given and dimension theory is harmoniously developed for spaces admitting such weakened structures. For instance, such a space X has dim $X \le n$ if and only if X admits a σ -closure-preserving base \mathfrak{B} with dim $\partial B \le n-1$ for each $B \in \mathfrak{B}$.

0. Introduction. In a previous paper [5] we study the dimension of spaces with free L-structures. The aim of this paper is to weaken the concept of free L-structures and to show that the dimension theory can still harmoniously be developed. Since I do not know whether the class of spaces with such weakened structures is a real generalization of the class of free L-spaces, I first hesitated the publication of such structures. I dare to publish hoping that the concept of weak L-structures would be one of the key words to clarify the very interesting but still wild plain between Lašnev spaces and M_r -spaces [1].

In this paper all spaces are assumed to be Hausdorff topological spaces, maps to be continuous onto, and images to be those under maps. The letter N denotes the positive integers. For undefined terminology and notation refer to [4] and [5].

1. Definition of weak L-structures.

1.1. DEFINITION. Let X be a space, F a closed set of X, and $\mathscr U$ an anti-cover of F. An open neighborhood V of F is said to be *semi-canonical* if

$$F \cap \operatorname{Cl} \mathscr{U}(X-V) = \emptyset$$
.

1.2. DEFINITION. A pair $(\mathscr{F}, \{\mathscr{U}_F: F \in \mathscr{F}\})$ of a σ -locally finite closed cover \mathscr{F} of a space X and anticover \mathscr{U}_F of $F \in \mathscr{F}$ is said to be a weak L-structure if it satisfies the condition: For each point $x \in X$ and each neighborhood U of x there exist a finite subcollection $\{F_1, \ldots, F_k\}$ of \mathscr{F} and semi-canonical neighborhoods U_i of F_i such that $x \in \bigcap_{i=1}^k F_i \subset \bigcap_{i=1}^k U_i \subset U$. A paracompact space admitting a weak L-structure is said to be a weak L-space.

The following is justified quite analogously to [5], Theorem 1.3.

1.3. THEOREM. To admit a weak L-structure is hereditary and countably productive property.

2. Main theorem.

2.1. Lemma Let X be a semi-stratifiable normal space and $\{F_{\alpha}: \alpha \in A\}$ a closurepreserving closed cover of X with $\dim F_{\alpha} \leq n$ for each $\alpha \in A$. Then $\dim X \leq n$.

Proof. Well order A. Set

$$\mathscr{H}_{k} = \left\{ H_{k\alpha} = F_{\alpha} \cap (X - \bigcup \left\{ F_{\beta} : \beta < \alpha \right\} \right)_{k} : \alpha \in A \right\},\,$$

where k succeeding the parentheses indicates the kth index of semi-stratification. Then \mathcal{H}_{k} is discrete and $\{\}$ \mathcal{H}_{k} covers X. Thus dim $X \leq n$ by the sum theorem. That completes the proof.

2.2. LEMMA. Let $F_1, ..., F_k$ be closed sets of a space X and $\mathcal{U}_i = \{U_\alpha : \alpha \in A_i\}$ be their anti-covers which are locally finite $\operatorname{mod} F_i$ (i.e. locally finite in $X-F_i$). Set

$$\begin{split} \varLambda_i &= \left\{ \lambda {\subset} A_i \colon \ V_{\lambda} = F_i \cup \left(\bigcup \left\{ U_{\alpha} \colon \alpha \in \lambda \right\} \right) \ is \ open \right\}, \\ \mathscr{V}_i &= \left\{ V_{\lambda} \colon \lambda \in \varLambda_i \right\}, \\ \mathscr{W} &= \left\{ W(\lambda_1, \dots, \lambda_k) = \bigcap_{i=1}^k V_{\lambda_i} \colon (\lambda_i) \in \prod \varLambda_i \right\}. \end{split}$$

Then \mathscr{W} is closure-preserving $\operatorname{mod} F = \bigcap_{i=1}^{n} F_i$ and, for some closed sequence $\{H_i\}$ with $\bigcup H_i = X - F$, the restriction of ∂W to each H_i is closure-preserving. Proof. Choose an arbitrary index set $\mathcal{E} \subset \prod \Lambda_i$. Set

$$W = \bigcup \{W(\xi) \colon \xi \in \Xi\}$$

and pick a point $x \in \partial W$. Set

$$M = \{1, ..., k\},$$

 $M' = \{i \in M: x \notin F_i\},$
 $M'' = \{i \in M: x \in F_i\}.$

Let D be an open neighborhood of x with

$$D \cap (\bigcup \{F_i : i \in M'\}) = \emptyset$$

such that

$$B_i = \{\alpha \in A_i \colon D \cap U_\alpha \neq \emptyset\}$$

- is finite for each $i \in M'$. Set

$$\mathscr{U}'_i = \{U_{\alpha}: \alpha \in B_i\}, i \in M',$$

 $\mathscr{U} = \bigwedge \{\mathscr{U}'_i: i \in M'\}.$

Then $\bigwedge \{ \mathcal{U}_i : i \in M' \} | D = \mathcal{U} | D$. Set

$$\begin{split} W'(\lambda_1, \dots, \lambda_k) &= \bigcap \left\{ V_{\lambda_i} \colon i \in M' \right\}, \\ W''(\lambda_1, \dots, \lambda_k) &= \bigcap \left\{ V_{\lambda_i} \colon i \in M'' \right\}, \\ W'' &= \bigcup \left\{ W'(\xi) \colon \xi \in \Xi \right\}. \end{split}$$

Assume that $x \in W'(\xi)$ for some $\xi \in \Xi$. Then $x \in W'(\xi) \cap (\bigcap \{F_i : i \in M''\})$ $\subset W'(\xi) \cap W''(\xi) = W(\xi)$. This contradiction implies that $x \notin W'(\xi)$ for any $\xi \in \Xi$ and hence that $x \notin W'$. Let

$$\{\mathcal{T}_{\gamma}: \gamma \in \Gamma\}$$

be the family of all subcollection of \mathscr{U} . For each $\xi \in \Xi$, $W'(\xi) \cap D = \mathscr{T}^{\#}_{\nu} \cap D$ for some $\gamma \in \Gamma$. Thus there exists an index $\delta \in \Gamma$ with $W' \cap D = \mathscr{F}_{\delta}^{\#} \cap D$. Since $x \notin W'$ and $x \in \partial W$, then $x \in \partial W'$. Since Γ is finite, there exists an index $n \in \Xi$ with $x \in \partial W'(\eta)$. Pick an arbitrary neighborhood E of x. Then $W''(\eta) \cap E$ is again a neighborhood of x. Thus $W(\eta) \cap E = W'(\eta) \cap (W''(\eta) \cap E) \neq \emptyset$, which implies that $x \in \partial W(\eta)$. W is therefore closure-preserving.

To prove the rest let M be the collection of all non-empty subsets of $\{1, ..., k\}$. Set $T_a = \bigcap \{F_i: i \notin a\} - \bigcup \{F_i: i \in a\}, a \in M$. Then $X - F = \bigcup \{T_a: a \in M\}$. The restriction of $\partial \mathcal{W}$ to each T_a is closure-preserving and each T_a is F_a . That completes the proof.

This argument proves essentially the following.

- 2.3. LEMMA. Assume the same as in the preceding lemma. Then for each $\xi = (\lambda_1, ..., \lambda_k) \in \prod \Lambda_i$ and each point x of $\partial W(\xi)$, there exist i and $\alpha \in \lambda_i$ such that $x \in \partial U_{\alpha}$.
 - 2.4. THEOREM. For a weak L-space X the following conditions are equivalent.
 - (1) $\dim X \leq n$.
- (2) X is the image of a weak L-space Z with $\dim Z \leq 0$ under a closed map f with order $f \le n+1$.
 - (3) X is the sum of n+1 subsets Z_i , i=1,...,n+1, with dim $Z_i \le 0$ for each i.
 - (4) Ind $X \leq n$.
- (5) X has a σ -closure-preserving base \mathscr{B} with $\dim(\partial \mathscr{B})^{\#} \leqslant n-1$ such that $(\partial \mathcal{B})^{\#}$ is F_{σ} .
 - (6) X has a σ -closure-preserving base \mathcal{B} with $\dim \partial B \leqslant n-1$ for each $B \in \mathcal{B}$.
- (7) X admits a stratification $U \to \{U_i\}$ such that $\dim \partial U_i \leq n-1$ for each open Uand each $i \in N$.

Proof. To prove that (1) implies (2) let $(\mathcal{F}, \{\mathcal{U}_F\})$ be a weak L-structure of X. Let $\mathscr{F}=\bigcup_{i=1}^{\infty}\mathscr{F}_{i}, \mathscr{F}_{i}=\{F_{\alpha}:\ \alpha\in A_{i}\},\ A_{1}\subset A_{2}\subset \ldots,\ \text{where each }\mathscr{F}_{i}\ \text{is locally finite}.$ For simplicity \mathcal{U}_{α} stands for $\mathcal{U}_{F_{\alpha}}$ in the sequel. Set

$$B_{ij} = \{ \xi \subset A_i \colon |\xi| = j \},$$

$$\mathscr{F}_{ij} = \{ F_{ij}(\xi) = \bigcap \{ F_\alpha \colon \alpha \in \xi \} \colon \xi \in B_{ij} \}.$$

Well order B_{ij} . As in Lemma 2.1 define discrete closed collections

$$\mathcal{H}_{ijk} = \{H_{ijk}(\xi) \colon \xi \in B_{ij}\}$$

in the following manner.

$$\begin{split} H_{ijk} \text{ (the first)} &= F_{ij} \text{ (the first)}, \\ H_{ijk}(\xi) &= F_{ij}(\xi) \cap (X - \bigcup \{F_{ij}(\eta) \colon \eta < \xi\})_k, \end{split}$$

where the index k in the right hand side denotes the kth index of semi-stratification. Let $D_{tit}(\xi)$, t = 1, 2, 3, be open neighborhoods of $H_{tit}(\xi)$ such that

$$D_{ijkl}(\xi) \supset \operatorname{Cl} D_{ijkl+1}(\xi)$$

and

$$\mathcal{D}_{ijk} = \{D_{ijkl}(\xi) \colon \xi \in B_{ij}\}$$

is discrete. Set

$$\begin{split} \mathscr{E}_{ijk} &= \left\{ X - \bigcup \left\{ \text{Cl} \, D_{ijk2}(\xi') \colon \, \xi' \in B_{ij} \right\} \right\} \, \cup \\ &\quad \cup \left\{ D_{ijkl}(\xi) - \text{Cl} \, D_{ijk3}(\xi) \, , \, D_{ijk2}(\xi) - H_{ijk}(\xi) \colon \, \xi \in B_{ij} \right\} \, . \end{split}$$

For each i, j, k and $\alpha \in A_i$ let $\mathscr{V}_{ijk\alpha}$ be an anti-cover of F_{α} such that (i) $\mathscr{V}_{ijk\alpha} < \mathscr{E}_{ijk} | (X - F_{\alpha})$, (ii) $\mathrm{Cl}\mathscr{V}_{ijk\alpha} < \mathscr{U}_{\alpha}$, (iii) $\mathscr{V}_{ijk\alpha}$ is locally finite $\mathrm{mod} F_{\alpha}$ and σ -discrete in X. Set

$$\begin{aligned} \boldsymbol{\mathscr{V}}_{ijk\alpha} &= \bigcup_{t=1}^{\infty} \boldsymbol{\mathscr{V}}_{ijk\alpha t}, \\ \boldsymbol{\mathscr{V}}_{ijk\alpha t} &= \left\{ \boldsymbol{V}_{ijk\alpha t}(\lambda) \colon \lambda \in \boldsymbol{\Lambda}_{ijk\alpha t} \right\}, \end{aligned}$$

where each $\mathscr{V}_{ijk\alpha t}$ is discrete in X. Let $\{K_{ijk\alpha t}(\lambda): \lambda \in \Lambda_{ijk\alpha t}\}$ be a closed cover of $X-F_{\alpha}$ such that

$$K_{ijk\alpha t}(\lambda) \subset V_{ijk\alpha t}(\lambda), \quad \lambda \in \Lambda_{ijk\alpha t}$$

Set

$$\begin{split} & A_{ijk\alpha t\xi} = \{\lambda \in A_{ijk\alpha t} \colon V_{ijk\alpha t}(\lambda) \subset D_{ijkl}(\xi), & \xi \in B_{ij} \;, \\ & V_{ijk\alpha t\xi} = \bigcup \; \{V_{ijk\alpha t}(\lambda) \colon \; \lambda \in A_{ijk\alpha t\xi}\}, & \xi \in B_{ij} \;, \\ & K_{ijk\alpha t\xi} = \bigcup \; \{K_{iik\alpha t}(\lambda) \colon \; \lambda \in A_{ijk\alpha t\xi}\}, & \xi \in B_{ii} \;, \\ \end{split}$$

Set

$$\begin{split} & \xi = \{\alpha_1(\xi), \dots, \alpha_j(\xi)\}, \quad \xi \in B_{ij}, \\ & V_{ijktujt} = \bigcup \left\{V_{ijku_{u}(\xi)t\xi} \colon \xi \in B_{ij}\right\}, \\ & K_{ijktujt} = \bigcup \left\{K_{ijku_{u}(\xi)t\xi} \colon \xi \in B_{ij}\right\}, \\ & D_{ijkt} = \bigcup \left\{D_{ijkt}(\xi) \colon \xi \in B_{ij}\right\}, \quad t = 1, 2, 3. \end{split}$$

Then $V_{ijk[u]t}$ is open and $K_{ijk[u]t}$ is closed.

Let $\varrho\colon X\to \varrho X$ be a contraction of X to a metric space ϱX with $\dim \varrho X\!\leqslant\!\dim X$ such that

$$\varrho(X-V_{ijk[u]t}.), \quad \varrho(X-D_{ijkt}), \quad \varrho K_{ijk[u]t}., \quad \varrho \overline{D}_{ijkt}$$

are closed in QX for each i, j, k, t, u. Consider the diagram:

where σZ is a metric space with $\dim \sigma Z \leq 0$, g is a closed map with order $g \leq n+1$, Z is the pullback with the natural maps σ and f. Then f is a closed map with order $f \leq n+1$. It is almost obvious that Z is a weak L-space. The only one thing to be proved is the assertion: $\dim Z \leq 0$. Let

$$\mathscr{G} = \bigcup_{i=1}^{\infty} \mathscr{G}_i, \quad \mathscr{G}_i = \{G_{i\gamma} : \gamma \in \Gamma_i\},$$

be a base of σZ such that $\mathscr{G}_i > \mathscr{G}_{i+1}$, mesh $\mathscr{G}_i \leq 1/i$ and each \mathscr{G}_i is a disjoint open cover of Z. Set

$$\begin{split} S_{\delta} &= f^{-1}\big(H_{ijk}(\zeta)\big) \cap \sigma^{-1}(G_{s\gamma}), \quad \xi \in B_{ij}, \ \gamma \in \Gamma_s, \\ T_s &= f^{-1}\big(D_{ijkl}(\zeta)\big) \cap \sigma^{-1}(G_{s\gamma}), \quad \xi \in B_{ij}, \ \gamma \in \Gamma_s, \end{split}$$

where $\delta = \delta(i, j, k, \xi, s, \gamma)$.

Set

$$\begin{split} \mathcal{S} &= \bigcup \left\{ f^{-1}(\mathcal{X}_{ijk}) \wedge \sigma^{-1}(\mathcal{G}_s) \colon i,j,k,s \in N \right\} = \left\{ S_\delta \colon \delta \in \Delta \right\}, \\ \mathcal{T} &= \bigcup \left\{ f^{-1}(\mathcal{D}_{ijk}) \wedge \sigma^{-1}(\mathcal{G}_s) \colon i,j,k,s \in N \right\} = \left\{ T_\delta \colon \delta \in \Delta \right\}. \end{split}$$

Then $\mathcal G$ and $\mathcal G$ are σ -discrete and $S_\delta \subset T_\delta$ for each $\delta \in \Delta$.

To prove that $\dim Z \leq 0$ let \mathscr{W} be an arbitrary binary open cover of Z. Set

$$\Lambda' = \{ \delta \in \Lambda \colon S_{\delta} \subset W_{\delta} \subset T_{\delta}, W_{\delta} < \mathscr{W} \text{ for some clopen set } W_{\delta} \}.$$

To prove $\dim Z \leq 0$ it suffices to prove $\bigcup \{S_{\delta}: \delta \in \Delta'\} = Z$, since this equality implies that \mathscr{W} admits a σ -discrete refinement $\{W_{\delta}: \delta \in \Delta'\}$ each element of which are clopen.

Pick an arbitrary point $z \in \mathbb{Z}$. Then

$$f^{-1}(E) \cap \sigma^{-1}(G_{sv}) < \mathscr{W}$$

for some open neighborhood E of f(z), some s, and some $\gamma \in \Gamma_s$. Choose a finite subset ξ of A and semi-canonical neighborhoods U_{α} , $\alpha \in \xi$, of F_{α} such that

$$f(z) \in \bigcap_{\alpha \in \mathcal{E}} F_{\alpha} \subset \bigcap_{\alpha \in \mathcal{E}} U_{\alpha} \subset E$$
.

Let i be the minimum with $\xi \subset A_i$. Set

$$\eta = \{\alpha \in A_i : f(z) \in F_\alpha\}, \quad |\eta| = j,$$

$$\alpha_{\mu}(\eta) = \beta_{\mu}, \quad u = 1, ..., j.$$

Then $\xi \subset \eta$ and $\eta \in B_{ij}$. Since $f(z) \in F_{ij}(\eta)$ and $f(z) \notin F_{ij}(\eta')$ for any $\eta' \in B_{ij}$ with $\eta' \neq \eta$, then

$$f(z) \in F_{ij}(\eta) \cap (X - \bigcup \{F_{ij}(\eta'): \eta' < \eta\})$$
.

Thus there exists an index k with

$$f(z) \in F_{ij}(\eta) \cap (X - \bigcup \{F_{ij}(\eta'): \eta' < \eta\})_k = H_{ijk}(\eta)$$

Since $\dim \sigma Z \leq 0$ and the diagram is commutative, there exist clopen sets $R_{ijk + i + u}$ and M_{ijk} of Z such that

$$\begin{split} f^{-1}(K_{ijk[u]t}) &\subset R_{ijk+t-u} \subset f^{-1}(V_{ijk[u]t}), \quad t, u \in N, \\ f^{-1}(\overline{D}_{ijk3}) &\subset M_{ijk} \subset f^{-1}(D_{ijk2}). \end{split}$$

Set

$$\begin{split} R_{ijk\beta_u t\eta}(\lambda) &= f^{-1} \big(V_{ijk\beta_u t}(\lambda) \big) \cap R_{ijk \mathbf{f} u \mathbf{j} t} \, , \\ \lambda &\in \Lambda_{ijk\beta_u t\eta}, \quad u = 1, \dots, j \, , \\ M_{ijk\eta} &= f^{-1} \big(D_{iik2}(\eta) \big) \cap M_{iik} \, . \end{split}$$

Set

$$\begin{split} & \mathcal{L}_{ijk\beta_{u}} = f^{-1} \{ V_{ijk\beta_{u}t}(\lambda) \colon \lambda \in \Lambda_{ijk\beta_{u}t} - \Lambda_{ijk\beta_{u}t\eta}, \ t \in N \} \,, \\ & \mathcal{M}_{ijk\beta_{u}} = \{ R_{ijk\beta_{u}t\eta}(\lambda) \colon \lambda \in \Lambda_{ijk\beta_{u}t\eta} \colon \ t \in N \} \,, \\ & \mathcal{W}_{ijk\beta_{u}} = \mathcal{L}_{ijk\beta_{u}} \cup \mathcal{M}_{ijk\beta_{u}} \,. \end{split}$$

Then $\mathcal{W}_{ijk\beta_u}$ is an anti-cover of $f^{-1}(F_{\beta_u})$ refining $f^{-1}(\mathcal{V}_{ijk\beta_u})$. Set

$$\begin{split} P_{\mathbf{u}} &= \left(\bigcup \left\{P \in \mathcal{W}_{ijk\beta_{\mathbf{u}}} \colon P \subset f^{-1}(U_{\beta_{\mathbf{u}}})\right\}\right) \cup f^{-1}(F_{\beta_{\mathbf{u}}}) \,, \\ Q_{\mathbf{u}} &= \left(\bigcup \left\{Q \in \mathcal{M}_{ijk\beta_{\mathbf{u}}} \colon Q \subset f^{-1}(U_{\beta_{\mathbf{u}}})\right\}\right) \cup f^{-1}(F_{\beta_{\mathbf{u}}}) \,. \end{split}$$

Then $P_{\mathbf{u}}$ is an open neighborhood of $f^{-1}(F_{\boldsymbol{\beta}_{\mathbf{u}}})$, since $f^{-1}(U_{\boldsymbol{\beta}_{\mathbf{u}}})$ is a semi-canonical neighborhood of $f^{-1}(F_{\boldsymbol{\beta}_{\mathbf{u}}})$ with respect to $f^{-1}(\mathcal{U}_{\boldsymbol{\beta}_{\mathbf{u}}})$ and hence with respect to $\mathcal{W}_{ijk\beta_{\mathbf{u}}}$. Set

$$Q=\bigcap_{u=1}^J P_u.$$

Then Q is an open neighborhood of z. Since $\bigcap_{\alpha \in \zeta} U_{\alpha} \subset E$ and $\zeta \subset \eta = \{\beta_1, ..., \beta_J\}$ then

$$Q \subset \bigcap_{\alpha \in S} f^{-1}(U_{\alpha}) \subset f^{-1}(E)$$
.

Set

$$\delta_0 = \delta(i, j, k, \eta, s, \gamma),$$

$$W_{\delta_0} = Q \cap M_{ijkn} \cap G_{sy}.$$

Then

$$S_{\delta_0} = f^{-1}\big(H_{ijk}(\eta)\big) \cap G_{s\gamma} \subset W_{\delta_0} \subset f^{-1}\big(D_{ijkl}(\eta)\big) \cap G_{s\gamma} = T_{\delta_0}.$$

$$\partial W_{\delta_0} = \partial Q \cap M_{ijk\eta} \cap G_{s\gamma}$$
.

Assume that ∂W_{δ_0} contains a point p. Since each element of $\bigcup_{u=1}^{J} \mathscr{L}_{ijk\beta_u}$ cannot meet $M_{ijk\eta}$, then by Lemma 2.3 some element R of $\bigcup_{u=1}^{J} \mathscr{M}_{ijk\beta_u}$ contains p, which contradicts to $\partial R = \emptyset$. Thus $\partial W_{\delta_0} = \emptyset$ and $\delta_0 \in \Delta'$.

After the implication $(1) \rightarrow (2)$ has proved, the conditions (1), (2), (3), (4) can be proved to be equivalent as in [5], Theorem 2.3.

Let us show that the relation $\dim X = \operatorname{Ind} X \leq n$ implies (5) using the same notation as in the above. Choose $i, j, k, \xi = \{\alpha_1, \dots, \alpha_j\} \in B_{ij}$. Let $E_{ijk}(\xi)$ be an open set with

$$H_{ijk}(\xi) \subset E_{ijk}(\xi) \subset D_{ijk3}(\xi), \quad \dim \partial E_{ijk}(\xi) \leq n-1.$$

Set

$$\mathscr{V}_{ijk\alpha_u} = \left\{ V_{ijk\alpha_u}(\lambda) \colon \lambda \in \Lambda_{ijk\alpha_u} \right\}.$$

Let $\{J_{ijk\alpha_{\mu}}(\lambda): \lambda \in \Lambda_{ijk\alpha_{\mu}}\}$ be an anti-cover of $F_{\alpha_{\mu}}$ such that

$$\begin{aligned} \operatorname{Cl} J_{ijk\alpha_u}(\lambda) &\subset V_{ijk\alpha_u}(\lambda) \ , \\ \dim \partial J_{ijk\alpha_u}(\lambda) &\leqslant n-1 \ , \quad \lambda \in \Lambda_{ijk\alpha_u} \ . \end{aligned}$$

Set

$$\begin{split} \Theta_{ijk\alpha_u} &= \left\{\theta \subset A_{ijk\alpha_u} \colon B_\theta = F_{\alpha_u} \cup \left(\bigcup \left\{ J_{ijk\alpha_u}(\lambda) \colon \lambda \in \theta \right\} \right) \text{ is open} \right\}, \\ \mathscr{B}_{ijk\alpha_u} &= \left\{ B_\theta \colon \theta \in \Theta_{ijk\alpha_u} \right\}, \\ \mathscr{B}'_{ijk}(\xi) &= \bigwedge_{u=1}^{J} \mathscr{B}_{ijk\alpha_u}, \\ \mathscr{B}_{iik}(\xi) &= \mathscr{B}'_{ijk}(\xi) |J_{Ii}(\xi)|. \end{split}$$

Then $\mathcal{B}_{lik}(\xi)$ is closure-preserving by Lemma 2.2. Set

$$\mathcal{B} = \bigcup \left\{ \mathcal{B}_{ijk}(\xi) \colon \xi \in B_{ij}, \ i, j, k \in N \right\}.$$

Since $\{\mathscr{B}_{ijk}(\xi): \xi \in B_{ij}\}$ is closure-preserving, \mathscr{B} is a σ -closure-preserving base. Let

$$B = B_{\theta_1} \cap ... \cap B_{\theta_j} \cap J_{ijk}(\xi), \quad \theta_u \in \Theta_{ijk\alpha_u}, \ u = 1, ..., j,$$

be a generic element of $\mathscr{B}_{ijk}(\xi)$. Since $\dim \partial B_{\theta_u} \leq n-1$, $u=1,\ldots,j$, by the locally finite sum theorem, then $\dim \partial B \leq n-1$.

To prove that $(\partial \mathscr{B})^*$ is an F_{σ} -set with $\dim(\partial \mathscr{B})^* \leq n-1$ it suffices to prove that $(\partial \mathscr{B}_{ijk}(\xi))^*$ is an F_{σ} -set with $\dim(\partial \mathscr{B}_{ijk}(\xi))^* \leq n-1$ for each i, j, k and $\xi \in B_{ij}$. Let Φ be the family of all subsets of ξ . Set

$$\begin{split} C_{\varnothing} &= X - \bigcup \left\{ F_{\alpha} \colon \alpha \in \xi \right\}, \\ C_{\eta} &= \bigcap \left\{ F_{\alpha} \colon \alpha \in \eta \right\} - \bigcup \left\{ F_{\alpha} \colon \alpha \in \xi - \eta \right\}, \quad \eta \in \varPhi \;. \end{split}$$

Since each C_n is F_{σ} , we can set

$$C_{\eta} = \bigcup_{t=1}^{\infty} C_{\eta t}, \quad \eta \in \Phi$$

where each $C_{\eta t}$ is a closed set. As we recognized in Lemma 2.2 each point $x \in C_{\eta t}$ has a neighborhood U_x such that

$$U_x \cap (\partial \mathcal{B}_{tjk}(\xi)|C_{nt})^{\#} = U_x \cap (\partial \mathcal{B}'|C_{nt})$$

for some finite subcollection \mathscr{B}' of $\mathscr{B}_{ijk}(\xi)$. This fact implies that $(\partial \mathscr{B}_{ijk}(\xi))^* \cap C_{\eta i}$ is closed and that

$$\dim ((\partial \mathcal{B}_{ijk}(\xi))^{\#} \cap C_{\eta t}) \leq n-1.$$

Since $\{C_{ni}: \eta \in \Phi, t \in N\}$ is a countable closed cover of X, then $(\partial \mathscr{B}_{ijk}(\xi))^*$ is an F_{σ} -set with $\dim(\partial \mathscr{B}_{ijk}(\xi))^* \leq n-1$.

The implication $(5) \rightarrow (6)$ is evident.

To prove that (6) implies (7) let $\mathscr{B} = \bigcup \mathscr{B}_i$, with each \mathscr{B}_i closure-preserving, be a base such that $\dim \partial B \leq n-1$ for each $B \in \mathscr{B}$. For each open set U set

$$U_i = \bigcup \{B \in \mathcal{B}_i \colon \overline{B} \subset U\} .$$

Then $\{U_i\}$ gives a stratification. Set

$$U_i = \{ \} \{ B_{\alpha} \in \mathcal{B}_i \colon \alpha \in A \}$$
.

Then $\{\partial U_i \cap \overline{B}_{\alpha} : \alpha \in A\}$ is a closure-preserving closed cover of ∂U_i . Since $\partial U_i \cap \overline{B}_{\alpha} = \partial U_i \cap \partial B_{\alpha}$, then $\dim(\partial U_i \cap \overline{B}_{\alpha}) \leq \dim(\partial U_i \cap \partial B_{\alpha}) \leq \dim\partial B_{\alpha} \leq n-1$. Thus $\dim \partial U_i \leq n-1$ by Lemma 2.1.

That (7) implies (1) is a well known fact (cf. [3], Theorem 11.12). The proof is thus completed.

3. Corollaries.

3.1. COROLLARY. Let X and Y be weak L-spaces at least one of which is non-empty. Then $\dim(X \times Y) \leq \dim X + \dim Y$.

Proof. Let $\mathscr B$ and $\mathscr B'$ be respectively σ -closure-preserving bases of X and of Y with $\dim \partial B \leqslant \dim X - 1$ for each $B \in \mathscr B$ and with $\dim \partial B' \leqslant \dim Y - 1$ for each $B' \in \mathscr B'$. Then $\mathscr B \times \mathscr B'$ is a σ -closure-preserving base of $X \times Y$. If $B \in \mathscr B$ and $B' \in \mathscr B'$, then

$$\partial(B \times B') \subset (\partial B \times \overline{B}') \cup (\overline{B} \times \partial B')$$
.

Thus

$$\dim \partial (B \times B') \leq \dim X + \dim Y - 1$$

if we pose an induction hypothesis on $\dim X + \dim Y$. That completes the proof, since the case when $\dim X + \dim Y = -1$ assures that the product theorem is trivially true.

3.2. COROLLARY. Let X be a weak L-space with $\dim X = n > 1$. Let k be an arbitrary integer with 0 < k < n. Then there exists a weak L-space Y with $\dim Y = k$ such that X is the image of Y under a closed map f with order f = n - k + 1.

Proof. Consider the diagram:

where ϱ and ϱX are the same as was constructed in Theorem 2.4. Then $\dim \varrho X = \dim X$. τY and g are the same as was constructed by the author [2], § 6, such that $\dim \tau Y = k$ and g is a closed map with order g = n - k + 1. Y is the pull-back of the right hand half. Then Y is a weak L-space and f is a closed map with order f = n - k + 1. Let τY be the image of a metric space σZ with $\dim \sigma Z = 0$ under a closed map g' with order g' = k + 1. Z is the pull-back of the left hand half. Then Z is a weak L-space and f' is a closed map with order f' = k + 1.

By an analogous argument as in Theorem 2.4, we can prove $\dim Z = 0$ which implies that $\dim Y \leq k$. On the other hand

$$n = \dim X \leq \dim Y + \operatorname{order} f - 1 = \dim Y + n - k$$

and hence dim $Y \ge k$. Thus dim Y = k. That completes the proof.

- 3.3. COROLLARY. Let X be a weak L-space and Y be a subset of X with dim $Y \le n$. Then we get the following.
- (1) There exists a σ -closure-preserving base \mathscr{B} of X such that $(\partial \mathscr{B})^*$ is F_{σ} and $\dim \partial (B \cap Y) \leq n-1$ for each $B \in \mathscr{B}$.
 - (2) There exists a G_{δ} -set Y' with $Y \subset Y'$ and with dim $Y' \leq n$.
- Proof. (1) Let Y_i , $i=1,\ldots,n+1$, be subsets of Y with $\dim Y_i \leq 0$. If we replace the conditions $\dim \partial_{I_{ijka_u}}(\lambda) \leq n-1$ and $\dim \partial_{E_{ijk}}(\xi) \leq n-1$ in the proof of Theorem 2.4 with $\partial_{I_{ijka_u}}(\lambda) \cap Y_1 = \emptyset$ and $\partial_{E_{ijk}}(\xi) \cap Y_1 = \emptyset$ respectively, we can obtain the desired base \mathscr{B}_1 such that $(\partial \mathscr{B}_1)^{\sharp} \cap Y_1 = \emptyset$.
- (2) For each $i=1,\ldots,n+1$ let \mathscr{B}_t be a σ -closure-preserving base such that $(\partial\mathscr{B}_t)^*\cap Y_t=\varnothing$. Set

$$Y'_i = X - (\partial \mathcal{B}_i)^*, \quad Y' = \bigcup_{i=1}^{n+1} Y'_i.$$

Then Y_i' is a G_{δ} -set with dim $Y_i' \leq 0$ and with $Y_i \subset Y_i'$. Y' is therefore the desired. That completes the proof.

3.4. Corollary. Each weak L-space is the image of a weak L-space Z with $\dim Z \leq 0$ under a perfect map.

This can be verified analogously to Theorem 2.4. The following two are also essentially proved in Theorem 2.4.

240

K. Nagami

- 3.5. COROLLARY. Each weak L-space X admits a countable family of disjoint pairs of closed sets determining the dimension of all subsets of X.
- 3.6. COROLLARY. Each weak L-space admits a σ -closure-preserving base $\mathscr B$ such that $(\partial \mathscr B)^*$ is F_σ and such that for each subset S of $X \mathscr B|S$ is also a σ -closure-preserving base of S.

References

- [1] J. G. Ceder, Some generalizations of a metric space, Pacific J. Math. 11 (1961), pp. 105-126.
- [2] K. Nagami, Mappings of finite order and dimension theory, Japan. J. Math. 30 (1960), pp. 25-54.
- [3] Dimension Theory, Academic Press, New York 1970.
- [4] The equality of dimensions, Fund. Math. 106 (1980), pp. 239-246.
- [5] Dimension of free L-spaces, Fund. Math. 108 (1980), pp. 211-224.

Accepté par la Rédaction 23, 4, 1979

Errata to the paper
"Remarks of the elementary theories of formal
and convergent power series"
Fundamenta Mathematicae 105 (1980), pp. 229-239

by

Joseph Becker and Leonard Lipshitz (West Lafayette, Ind.)

Page	For	Insert
229 ² abstract	\prec	*
234 ¹²	\prec	- ⊀