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Borel-approachable functions
by

Steven E. Shreve (Pittsburgh, Pa)

Abstract, The operation of approach is defined and applied to the Borel-measurable functions
to obtain the Borel-approachable (BA) functions, The BA functions constitute a class closed under
approach and strictly larger than the Borel-measurable functions, but with many of the same proper-
ties, It is at least as Jarge as the class of Borel-programmable (BP) functions defined by Blackwell.
Like the BP-sets, the class of BA-sets (those with BA indicators) is a ¢~field of absolutely measurable
sets and is closed under operations (4). Moreover, if f(x, ¥) is a real valued BA-function of two

real variables, then _f [(x,¥)dy is a BA-function of x on the set where the integral is defined

1. Orientation, It often occurs in the analysis of problems involving probability.
that the o-field # of the original probability spale is found to be deficient, i.e.,
at some point in the analysis a function on the probability space is constructed which
is not measurable with respect to this ¢-field. Such a function may be the first time
a stochastic process hits a set (Dellacherie [6], Meyer [10]) or the optimal cost function
or a nearly optimal policy for a dynamic programming model (Blackwell, Freedman
and Orkin [4], Bertsekas and Shreve [1]). At this point probability theory and
descriptive set theory meet. The determination of a suitable replacement & for- I is
not merely a matter of finding a o-field with respect to which the offending function
is measurable. The o-field J should be judiciously chosen so that no further revisions
of the probability space are necessary. For example, let X be a Polish space with
Borel ¢-field @, and Y another Polish space (*). Suppose BcX'x Y is Bxx By
measurable and proj (B) is the projection of B on X. It is useful to know that there is
a function ¢: projy(B)~> Y with graph in B, and the modexn version of the Jankov-

~ von Neumann selection theorem [7, 11, 1] guarantees that such a ¢ which is analyti-

cally measurable can be found. Analytic measurability is measurability with respect
to the o-field 7, generated by the analytic sets in X and the o-field #y. It is possible
for projx(B) to equal X and a Borel measurable ¢ still not exist [2], so By is deficient
for selection purposes, and we might be tempted to replace it by &/, However,
if X, Y and Z are Polish spaces and f; X — Yandg: Y — Z are analytically measur-

*) We use B throughout, with or without;ubac{i{)t. to denote. the Borel o-field of a Polish
space. ' ) ‘ Lo .
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able, g o fcan fail to be, so analytic measurability loses much of its appeal. The proof

of a selection result of Brown and Purves [5, Theorem 2], for instance, composes
two analytically measurable functions. :

What, then, are desirable properties of the replacement 5 for I7If Jis the
Borel o-field of some Polish space, four properties suggest themselves:

(1) & should contain the analytic sets;

(2) & should be contained.in the o-field of absolutely measurable sets;

(3) the composition of two S-measurable functions should be S-measur-
able (%);

(4) if A is an S-measurable'subset of the Polish space X and P(X) is the space
of probability measures on (X, %) with the weak topology [12, 1], then the mapping
p—p(4) from P(X) to [0, 1] should be S-measurable.

Property (4) is discussed at some length in [13]. Although not necessary, proper-
ties (3) and (4) are sufficient to guarantee that if f is a real-valued §-measurable

-]
function of two real variables,then | f(x, y)dy is an S-measurable function of x on
~00

the set (itself §-measurable) where the integral exists (see Corollary 5.1). Some
o-fields in Polish spaces, in increasing order, are the Borel o-field 4, the analytic
o-field &, the o-field of C-sets ¥, the Borel-programmable o-field BP, the Borel-
approachable g-field BA, and the o-field % of absolutely measurable sets. Proper-
ties (2)~(4) are had by %, properties (1), (2) and (4) by &, properties (1)-(4)
by € [13], properties (1)-(3) by BP [3], properties (1)-(4) by BA (Theorems 3-5),
and properties (1)-(4) by #. It is unknown if BP has property (4).

2. Definitions. Throughout this article, X, ¥ and Z will denote Polish spaces.
Given a bounded, closed, real interval I, we denote by 7® the product of countably
many copies of I. With the product topology, I® is a Polish space. A partial ordering
on I* is given by

’ (g, Uy, 2 )S(Vg, V2, ) @ u;<y; Vi
We will also have occasion to consider {0, 1}* = {0, 1} x {0, 1} x..., to which the
above remarks also apply. The ith component of a function f with range in I* will
be denoted f*. We denote by w, the first uncountable ordinal.

A collection of functions {g,| a<w,} from X to I® is called an approach if

(l) “gﬁ = ga(x)sgﬂ(x) VXE X:

@ 9.0) = Gur i (1) = g(x) = g4(0)  VB=a.
‘The function »

3) gix) = sup 94()

is said to be appfoached by {g.}. We observe that if g, = (g%, g2, ...), where each g}
maps into I, then for fixed x and i, there can be only countably many « for which

) We a{sb.me a definition for & independent of the particular Polish space involved.
Thus, we use “J” in the same way we use “Borel o-field” or “o-field of absolutely measurable sets”.
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gli(x)<gl, (). Thus we can choose « (%) <o, such that g,)(%) = gugsy+ 1 (*). From (2)
and (3) .we then have g,.,(x) = g(x). If each g, is Borel, we say the approach is Borel
and g is strictly Borel-approachable (SBA). We call Borel-approachable (BA) any
function de g, where d = I® — ¥ is Borel and g is SBA.

It is easily seen that every Borel function is BA. If f: X— Y is Borel, use
Urysohn’s theorem to choose a homeomorphism ¢ from Y into 7™ and define
ga=¢of d= 0. Let g be given by (3) and observe that f = dog.

To see that there are more BA functions that Borel functions, we compare
the BA functions to the Borel-programmable (BP) functions of [3]. We repeat the
definition of the BP functions here. Consider {0, 1}® = {0, 1} x {0, 1} x...., which,
with the product topology, is a subspace of [0, 1]°. A function p: {0, 1}* — {0, 1}
is a program if

@ p@>u  Vue{0,1}*.
Given a program, define

©) , Po(W) = p(M),

©) Pa) = p( iupp,«(u)) .-

If p is Borel, the function Do, is BP, as is any function dop, oe, where
e: X— {0, 1}* and d: {0, 1} — ¥ are Borel. It is easily verified in such a case
that g, = p, o e is Borel for a<w, and {g,| a<w,} is a Borel approach to Day © -
It follows that every BP function is BA. In particular, there are BA functions which
are not Borel. '

A function g: X — I% is a signifier if [0, 1] T and there is a set A< X such

that ‘
a1,
g(x) - {(0’ 0, _;A)

if xed,

if xe X—A4.

The set 4 is said to be signified by g. A function f: X' — I'is an indicator if there is
a set A< X such that )

1 if xed,
7= {o if xe X—A.

The set 4 is indicated by f. A set A< X is defined to be BA if 4 has an SBA signiﬁer.'
We subsequently show that A4 is BA if and only if 4 has a BA indicator. This result
relates the BA sets to the BP sets, which are defined to be those with BP indicators

3. Properties of BA sets and functions. As mentioned earlier, the BA functions
share many properties with the BP functions. Our proofs of some of these shared
properties are only slight modifications of proofs found in [3]. We begin with two
lemmas needed to explore the relation between the BA sets and the BA functions.

LEMMA 1. A4 set A is BA if and only if given any two bounded sequences {r}, {s;}
of real numbers, there is an SBA function f such that

ps_ ) fxed,
1) “{s, ifx¢d.
2 .
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Proof. Suppose 4 isa BA set signified by 4. Let {g.l «<w,}bea Borel approach
to g. We may assume without loss of generality that each g, takes values in [—1,1]®
and r,>0, 5,20 for every i. For each nonlimit ordinal «+1 and positive integer /,
define

1y i gy () = gara(®) = (1, 1, ),
flo1) =148 if 9,00 = gau1(®) = 0,0,..),
1gt,1(x)—%  otherwise.
For each limit ordinal o, define '
') = sup f(x),
A<«
where we take
Jo(x) = $go(x)— % .
1t is easily verified that {f;| a<w,} is a Borel approach to the desired func-
tion f. Q.E.D.
LeMMA 2. For k = 1,2, ..., let g,: X'~ I® be an SBA function, and define f by

i)y = sup HEOR

Then f is SBA.

Proof, For each k, let {g;,] a<o;} be a Bprel approach to g,. Let I = [a, b].
There is some interval I, = [a, b,] such that g, X — I for every «. We may
assume that b, = b. If @,<a—1, we may replace gy, by

Tral) if gu(¥)=a,
’ X) = -
) 71000, <a,

and thereby obtain a Borel approach {gj,| a<,} to gy with gi: X — [a—1, b]*
for every o. )

We may therefore assume without loss of generality that g,,: X — [a—1, b]®
for every k and a. For each nonlimit ordinal «+1 and each positive integer 7, define
’ SUP Gl r () I G1u) = Gura®) -V,

faf+1 = - 1 : R
. E ?gk,,ﬂ(x) otherwise. N
k=1

‘For each limit ordinal « and each positive integer i, define
falx) = sup f3(%) .
B<a

Then {f,] a<m,} is a Borel approach to f. Q.E.D.
THEOREM 1. The BA sets form a o-field.
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Proof. It is apparent from Lemma 1 that the class of BA sets is closed under
complementation. We show it is closed under countable unions. Let A,, A3, ...
be a sequence of sets signified by the SBA functions f;,f3, ..., respectively. The
function f defined by

i = st:pf,f(x)
is SBA by Lemma 2, and since f signifies ) 4, this set is BA. Q.E.D.
k

LemMma 3. If g is SBA and B is a Borel subset of I, then g~ *(B) is a BA set.

Proof. Suppose {g,| a<w,} is a Borel approach to g. Assume without loss of
generality that I = [0, 1]. For each nonlimit ordinal «+1, define

1,1,..)  if g,(x) = gur1(x) € B,
Jur1 () =14(0,0,..) . if g(x) = gors(X) ¢ B,
3g.+1(¥)—3%  otherwise,
and for each limit ordinal «, define f, by

fix) = :gpf,f(x)-

Then {f,] a<w,} is a Borel approach to the signifier of g~!(8). Q.E.D.
THEOREM 2. A function g: X' — I is SBA if and only if it is measurable with
respect to the a-field of BA sets, i.e., g~*(B) is BA for every Borel B.
Proof. In light of Lemma 3, we need only show that every BA measurable
function is SBA. Assume without loss of generality that I = [0, 1]. Given a positive
integer k and rational numbers ry, ..., r, in [0, 1], the set

{xl g()=(rysras s 1,0, 0,0}

is BA when g is BA measurable. By Lemma 1 there is an SBA function I, . ,, such
that ’

I ) = {(rl, s 7, 0,0, ..,). i gy eons Py 0,0, .0,
Mretie 0,0,..) otherwise.
Since
g'() = sup A COR
. Flrol
g is SBA by Lemma 2. Q.E.D. . ;
COROLLARY 2.1. Every BA function from X to I® is SBA.
COROLLARY 2.2. A function f: X — Y is BA if and only if it is measurable with
respect to the o-field of BA sets.
Proof. If f is BA, then by Theorem 2 it is measurable with respect to the BA
o-field. If f is measurable with respect to the BA o-field, then by Corollary 2.1

@-of is SBA, where ¢: ¥ — [0, 1]® is the homeomorphism of Urysohn’s theorem.
It follows that f = ¢~ s @ of is BA. Q.E.D.
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COROLLARY 2.3. 4 function f: X =+ [a, b] is BA if and only if there exists a col-
lection {f,| a<w,} of Borel functions from X to [a—1, b] such that

0] ‘ a<p = f(N<flx) VxeX,
® Jil®) = fari(®) = (%) = f3x) VB>2a,
® f@x) = Supﬂ(x)

Proof. Suppose fis BA. Lét g: X——> [a, B]® be given by g = (f,f,...).
Corollary 2.2 implies that g is BA, and Corollary 2.1 then implies that g is SBA.
Let {g,] o<w;} be a Borel approach to-g. As in the proof of Lemma 2, we may
assume g,: X — [a—1, b]® for every a. If we define

©
1
=) ke,
=1
then conditions (7)~(9) follow from (1)-(3).
Now suppose conditions (7)-(9) are given. Define g, = (f,,f,, ...) so that

{9, 2<w,} is a Borel approach to g = (f, f, ...). Compose the SBA function g with
projection on the first coordinate to obtain the BA function f. Q.E.D.

As a further consequence of Corollary 2.2, we have that the limit of a sequence
of BA functions is BA, as is the sum and product of real-valued BA functions.

THEOREM 3. The BA sets and functions are absolutely medasurable.

Proof. Let P(X) be the space of probability measures on the Borel subsets
of X. Under the weak topology, P(X) is also a Polish space. Let {g,| a<ew,} be
a Borel approach on X to an SBA function g. Define h,: P(X) —I® by

10 k{p)= [ g.dp,

where the integration is componentwise. The functions #, are Borel and are non-

decreasing with increasing «. For each p, there must therefore exist a(p)<w, such
that

By (P) = By +1(P) -
This implies g(;)(X) = Farp+1(x) for p-almost every x; so by 2, ),
Fun(®) = g(x) p-almost every x .
It follows that g is absolutely measurable. Q.E.D.
Not'e that {A,| a<c,} defined by (10) is actually a Borel approach to
h(p) = [gdp .

This observation is crucial for the next result, which motivated our inquiry into BA
functions. The analogous result for BP functions is unknown.

THEOREM 4. Let f: X — I be BA. Then h: P(X)— I defined by h(p) = jfdp
is also BA.
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Proof. Let {f,| «<w,} be a collection of Borel functions satisfying (7)-(9)
and define a(p) = { f,dp. Then {h,| x<w,} satisfies (7), (8) and A(p) = sup h(p).
a<cog

Q.E.D.

THEORE_M 5. The composition of BA functions is BA.

Proof. Letf: X — Yandf: Y—Z be BA. Thenf = decg, where d: I* — ¥
is Borel and there is a Borel approach {g,| a<w,} to g. Likewise, f = d o §, where
d: 1° — 2 is Borel and § has a Borel approach {§,| «<w,}. We assume without
loss of generality that J = I = [0,1]. For xe X, let

a(x) = min{a] g,(x) = gos,(x)} .
Then a(x)<w,, and for any a<w,, the set {xe X| a(x)<a} is Borel. For xe X’
and a<a(x), define

Gx) = (9202, 0, g2(x), 0, ...) .
For o = a(x)+f, where B=0, define

Ga(x) = {gnlz(x)(x): g;[d(ga(x)(x))] 3 g:(x)(-x)’ g%[d(ga(x)(x))]S '"} .

Then G is a Borel approach to

G = (g' (), 417 @], g*(x), LA A, ...) -

Let D: [0,1]° —2Z be given by D(yy, P1»V2y P20 ) = APy, P2s ) - Then fof
= DoG is BA, Q.E.D.

As a consequence of Theorem 5, we see that if f: X — ¥ is a BA function and
Ac Yis a BA set, then since the indicator of f~*(4) is the composition of BA func-
tions, £ ~(4) is also a BA set. From Theorems 4 and 5 we also have a Fubini result.

COROLLARY 5.1. Let f: Xx Y — (—~o0, ) and ¢: X— P(Y) be BA, where
P(Y) is the space of probability measures on Y. Then the function

xe [f (x, Yy o (x)(dy)
is BA on the BA set where it is defined.

Proof. For » € X, let p, be the probability measure assigning unit point mass
to x. Let 1/ (x) be the product of p, and ¢(x). Since ¥ is the composition of the BA
function x + (p,, ¢ (x)) and the continuous (in the weak topology) function taking
two probability measures into their product, ¥ is BA. If p is a probabxhty measure
on Xx Y and f is bounded, let h(p) = [fdp. By Theorem 4, h is BA, and by
Theorem 5,

(ho ) (x) = [f (%, 7)0(x)(dy)
is BA. The general case follows from the remark following Corollary 2.3. Q.E.D.

THEOREM 6. The collection of BA sets is closed under operation (A).

Proof. Let 4 be the set of infinite sequences and ¥ the set of finite sequences
of positive integers. For each s& Z, let 4(s) be a BA subset of the space X. Since
every analytic set is BA, the set 4, ={0, 1}’ given by
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= {y] 3¢, Lo, ) &N such that y({y,.., {) = 1 Vn}

is BA. By Corollary 2.2, the function f: X — {0, 1}” whose sth component is the
indicator of 4(s) is BA. The result of operation () on the system {A(s)| s& Z} is

U A l) =F 4D,

. o Elape)ed n=1
and this is BA by the remark following Theorem 5. Q.E.D.

If p is a BP function from {0, 1}* to {0, 1}* satisfying (4), then p,, defined
by (5), (6) can fail to be BP [9]. If {g,] «<w,}is a BA approach to g, it is not known
if g can fail to be BA. It is not known whether the BA ¢-field properly contains the BP
o-field, nor whether the BA ¢-field is properly contained in the o-field of absolutely
measurable sets. The relation between the BP sets, the BA sets and the R sets [8]
has not been determined. Indeed, the cardinality of the class of BA sets is not known.
A particularly intriguing question is whether the product of the BA:¢-fields in X
and Y is the BA o-field in X'x Y.
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A stabilization property and its applications in
the theory of sections

by

J. Bourgain (Brussel)

Abstract, We introduce a stabilization property in descriptive set theory which generalizes
the topological and measure theoretical situations, An associated theory of sections for measurable
sets in products is developed.

1. Preliminaries. The aim of this section is to make the text more selfcontained.
We will introduce the various classical notions and properties, which are the starting
point of this work. They can also be found in [12].

DermuiTION 1.1, Let E be a set. A paving on E will be a class.& of subsets
of E containing the empty set. We will call (E, &) a paved set.

DerNITION 1.2, If (E, &) is a paved set, we denote by cé : the class of subsets 4
of E such that £Ex\A belongs to &, b& = & N cd.

&* (resp. £V, &~, 6%): the stabilization of & for finite intersection (resp. ﬁmte
union, finite intersection and finite union, countable intersection and countable
union). )

&(&): the o-algebra generated by &.

DerNITION 1.3, Let (E;, #)),o; be a family of paved sets. The set & of subsets
of E = [[-E, of the form [] 4, where 4;€ &, for each 7e, is called the product

i v

paving &; T].
§

PRrOPOSITION 1.4, Let (E;, 6)),4; be paved sets such that Eye &; for each il
Then &(I &) contains the product o-algebra ®,&(&)). If moreover I is countable,
i
then S([16) = ®, S(&).

In fact, only finite and countable products will be involved here.
Let (E, &) be a paved set and let (K;);r be a family of elements of & We will
say that (K,);e; has the finite intersection property provided (| K; # & whenever J is
ieJ

a finite subset of I
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