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Generalized Archimedean fields and logics
with Malitz quantifiers

by

J. Cowles (Laramie, Wy.)

. Abstract. A characterization of Archimedean fields in a particular interpretation of the logic
with Malitz quantifiers suggests a generalization of such fields. The theory of the real closed version
of these generalized Archimedean fields in other interpretations of the Malitz quantifier is found
to allow elimination of quantifiers. . )

. The reader should be familiar with the model theory of first order logic. Some
lgnowledge of . ultrapowers, for example, is assumeéd. The notation is for the most
part similar to that used in [1] or [2]. Gothic letters range over structures with the
corresp011ding Latin letters denoting their universes: 4 denotes the universe of oA, B}
denotes the universe of B;, etc. Cardinals are initial von Neumann ordinals. Write
Card (4) for the cardinality of 4, P for the set of positive integers, Q for the set of
rational numbers, and R for the set of real numbers.

Logics with Malitz, quantifiers. For each positive integer #. and each infinite
cardinal , the logic 2! is obtained by adding a new quantifier Q" which binds
distinct variables and the following formation rule to those of first order logic:
If ¢ is a formula and if the variables X, , ..., , ate distinct, then 0"y, ..., x, @ is also
a formula. The logic 2% is obtained from first order logic by adding all the quan-
tifiers Q" together with the corresponding formation rules.

The interpretation of the quantifier Q" depends on the cardinal x:

A l:ac Q"xl’ () xn‘/’[‘;]

just in case there is a subset I of A such that (i) Card() = x and (ii) whenever
a@y,...,a, are distinct elements of , then A F, ¢ [ay/x1s.e, @fxy, @]. Here the notation
indicates how each of the variables xy, ..., X, is to be interpreted and 4 is an inter-
pretation of the free variables in Q", ..., X, ¢:

The logic 2. coincides with the logic with the cardinal quantifier, “There.exist x
many ...”. For n»2, the logics 2y, and 232 are referred to as logics with Ramsey
quantifiers because of the similarity between their semantics and the well-known
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statement of Ramsey’s theorem. (For a statement of Ramsey’s theorem, see [2],
p. 145) The logics 2} and 2, are due to Malitz.

Another logic used below is the logic with Chang’s equi-cardinality quantifier:
The logic 2, has the same syntax as 2! with the quantifier Q" interpreted as follows.
A £, Q* pla] iff there is a subset I of 4 such that (i) Card(I) = Card(4) and (ii) for
ael, Ak, p[x/a, al.

Generalized Archimedean fields. Let L = {+,, —,0,1, <} be the language
appropriate for ordered fields: 4 and - denote the operations of addition and multi-
plication; 0 and 1 are constant symbols for the additive and multiplicative units;
— denotes the additive inverse operation; and < denotes the ordering relation.

Recall that an ordered field is a linearly ordered structure, satisfying the field
axioms, in which multiplication by positive elements and addition by all elements
preserves the ordering. An ordered field is Archimedean just in case each member
of the field is bounded above by some positive integer. It is known that there is no
set X of sentences, from either the logic 2§, or the logic 2,, which use nonlogical
symbols only from L, such that 9 k ¥ iff % is an Archimedean field. One way to
establish this fact is to note that the Tarski-Chevalley method [8] of quantifier elim-
ination for real closed fields can be extended [3] to the logies 2y, and 2,. This
means that both the .@.ﬂn and the 2, theories of real closed fields are complete and
thus in these logics Archimedean fields cannot be distinguished from their non-
Archimedean counterparts. However, in each of the logics with Ramsey quantifiers,
Archimedean fields are characterized ([3] or [4]) by the orderéd field axioms together
with the sentences (from the language L in each of the logics equivalent to)

[a] ‘ Q*xy(0<xn0<yalx—y21)
and
81 “3AxQYyz(0<y<xA0<z<xAlz—p|=1).

Thus an ordered field % is Archimedean iff % ky, o A f. The motivation for the gener-
alization of Archimedean proposed here can be seen by replacing the “%,” by “x”,
i.e., an ordered field is said to be %~ Archimedean just in case U F, a A f: A subset I
of an ordered field is positive iff (VaeI)(0<a) and I is discrete iff
(VaeD(VbeI)(a # b— la—-b|=1). v

An ordered field is %-Archimedean iff the field (i) has a positive discrete subsét of
cardinality » but (ii) no positive discrete subset of cardinality x is bounded above.

As noted above, an ordered field is 8,-Archimedean iff it is Archimedean.
Therefore an %y-Archimedean field of cardinality 14 exists iff 8,< A2%o,

QuEsTION. For which uncountable 5 is the preceeding statement true after 8,
is replaced by %? The answer to this question is not completely known (at least to
the present writer). Here is a sketch of what is known:

LEMMA. Let % be a x-Archimedean field and suppose that I is a positive discrete
subset of A which is not bounded. Then (i) Card(I)<x; and (i) if # is regular, then
Card () = » and furthermore there is an order preserving injection from » into I.

e _ ®
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Proof. Part (i). Suppose Card(I) >x. Let J be any-subset of I with Card(J) = ».
Since A F,fB, J is not bounded. Let [; = {xeI| x<j}. Then I = |)I;. Then
jeJ

%>Card(I) = Card(U I)<x-x = %, a contradiction.
jeJ .

Part (ii). Suppose Card(J)<ux. Since U k, a, let J be a positive discrete subset
of 4 with Card(J) = 5. Let J; = {xeJ| x<i}. Then J = |JJ;, which contradicts
iel
the regularity of x. Therefore Card(l) = x. Define f: x —» I by choosing
S eI—1I,,where Iy = @; for hex, I, = {xel| x<f(A)}; and for limit ordinal
Aewx, I, =) I,. Since x is regular, for each Aex, Card(J))# x.
del

PrOPOSITION. If W is x-Archimedean field, then x<Card(4)<2*.

Proof. (This method of proof was suggested by A. Macintyre.) Let A be
a »-Archimedean field. The definition of %-Archimedean insures that »< Card (A).
For each a e A, the Archimedean class [d] containing a is the set of all be 4 such
that there are positive integers m and n such that |a| <m|b| and |b|<n|a|. The set G of
Archimedean classes forms a group & under the multiplication inherited from .
The mapping a - [a] satisfies the requirements of a valuation. Thus by a result ([5]
and [6]) of Kaplansky, % is isomorphic to a subfield of a power series field and these
power series can be injected into the set of functions from G into the reals R. Since
9 is - Archimedean, Card (G) < #. Therefore Card (4)< Card(R)™ (@ g (2™)* = 2%

An ordered field is a real closed field just in caseé each positive element has
a square root and the Wierstrass Nullstensatz holds for polynomials of a single
variable with coefficients from the field, i.e., if p(x) is such a polynomial and if @
and b are members of the field such that a<b, p(a) <0, and p(b)>0, then for some ¢
between a and b, p(c) = 0.

PROPOSITION. Real closed »-Archimedean fields of cardinality x exist.

Proof. Let L' = L u {I} where I is an unary relation symbol. Any countable
Archimedean real closed field is a model for the set of first order sentences from the
language L which characterize real closed fields together with the following sentences
of the logic 2, from the language L':

¢y Vx(I(x) —0<x),
o) VXVy(I AIG) ax # y— x—y121),
3 OxI(x),
@ . 13xQy(I(y)Ay<x),
©) Vx[0<x—3y(I0) Ay<x<y+1)]. .

Here the set of positive integers is the intended interpretation for I

By an upward Léwenheim-Skolem theorem for 2, [1, p. 275], the set of sentences
mentioned above has a model 2 of each infinite cardinality x. Sentences (1), (2),
and (3) insure that 9 has a positive discrete set of cardinality . Now let J be a posi-
tive discrete set which is bounded above by a. Let I,= {xelI| x<a}, By .(4),
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Card(I,)<x. Define f: J— I as follows: Let f(j) = i€l where i<j<i-+1. Sen-
tence (5) insures that f is well-defined and one to one, So Card(f)<x. Thus % is
»-Archimedean,

ProBLEM. For which uncountable » are there x-Archimedean fields of cardi-
nality 2%? -

In [4] it is shown that the 25°-theory of Archimedean real closed fields allows
quantifier elimination. The rest of this paper is devoted to showing that for uncount-
able regular %, the 25 -theory of x-Archimedean real closed fields allows quantifier
elimination.

Quantifier elimination for the 2 “-theory of »-Archimedean real closed fields.
The following theorem is the starting point:

THEOREM (i) (Tarski-Chevalley). Every first order formula ¢ of the language L is
equivalent, in all real closed fields, to a quantifier free formula \y whose free variables
form a subset of those of ¢.

(i) (The Tarski-Chevalley theorem for 2% [3]). For each infinite cardmal %,
every 25-formula ¢ of the language L is equivalent, in all real closed fields of cardi-
nality at least %, to a quantifier free formula \j whose free variables form a subset
of those of . :

The goal of this paper is to prove the statément obtained from the Tarski-
Chevalley theorem for 2} by replacing “each infinite cardinal %” by “each regular
cardinal %, “21” by “27°”, and “real closed felds of cardinality at least x” by

“x-Archimedean real closed fields”. First some well-known facts are recalled without
proof’: .

PROPOSITION. For each term t of the language L, there is a polynomial p with
integer coefficients, in the variables which appear in t, such that, for every real closed
field W and every interpretation @ for the variables, 9 E p = tld].

PROPOSITION. Each atomic formula of the language L is equivalent, in all real
closed fields to a polynomial equality or inequality, i.e., to a formula of the form
P = 0 or of the form p>0 where p is a polynomial in several variables with integer
coefficients.

PROPOSITION. Each quantifier free Sformula of the language L is equn'alent
in all real closed fields, to a disjunction of formulas of the form

P =0A. AP, =0Aqg;>0A...Aq,>0

where the p; and q; are polynomials with integer coefficients.

As a comsequence of these propositions and the Tarski-Chevalley theorem,
first order formulas can be replaced by equivalent formulas of the form 0, v...v @,
where each 6, is a conjunction of polynomial equalities or inequalities. Therefore
consideration must be given to formulas of the form Q"x; ... x,(0, v .. v It is
easy to see that Q' always distributes over disjunctions, but unfortunately, as the
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formula Q%xy{x<y vy <X) illustrates, for n>2, the quantifier Q" need not distribute
over disjunctions, However this problem is solved in the next lemma.

First some notation: Let & (1) be the symmetric group on the set {1,...,n}
and for each integer k=2, let F(n, k) be the set of functions from & (n) into the set
{1, ..., k}. For each formula ¢ and each ¢ € & (n), let ¢” be the formula obtained
from ¢ by replacing each of the variables x;, for 1<isn, by X,q.

Lemma (A distributive law for Q" over disjunction). Let U be a structure whzch
is linearly ordered by the interpretation in % of <. )

(@) If ke, Q" ... x,(04 V...VO,,)[a], then
Aky V O'xy..

X, (0, <<, = A 0)lal.
JeF(mk) ceS(n)

(if) Fo)* any cardinal %, if

Ak, \V 0

X1 e XX <o <Xy =\ O05) @],
feF(nk) seZ(n)

then
Ak, Q"% oo X, (0, V. vODE]

Proof. Part (i). Assume that 2 ky, Q" v X5(60; V... V8 [2]. Then there is
an infinite subset J, of 4 such that whenever 4y , ..., a, are distinct elements of Jo,

A FNo 01 e 3 a,,/x,,, E] .

o, be an enumeration of & () and for any set J, let

T = {ksJ| Card(k) = n}. R
nl}, define an infinite set J; such-that for each'i; J;£J;-y and
at the same time define a function g from (1) into {1, ..., k} by specifying the value
of g(c,) as follows: For i€ {1,...,n!} and je& {1, ..., k}, assuming J;_ has already

been defined, let Hj be the set of all {ay, ..., @} € [J;-4]" such that if {ag, s au}
= {c1, > Cu} and ¢, <...<gy, then .

Ak 07 fey/xy, -
[J;-4]" because {5, ...

A FNDGh[cm(l)/xl LI

Oilay/x; , ...

Let oy, ...,

-
) cn/xn: a] .

Then Hj U ... U H} = se} € T sl and fo;j some h,

’ Cc‘(n)/xm a] H
so that

O Fygy 05113 /X1 o5 Cal%s 4] -

By Ramsey’s theorem, there is an m, which is taken to be the value of glop, and an
infinite subset, which is taken to be J;, of J;; such that ViI'sHp. ! Now let ax, vees Uy
be elements of the infinite subsct J, of 4 such that @; <...<a, and Jet & = a; be
an element of & (n). Since J,,&J;, {a1, -, a} €I CH,(,,, 80 that

Wky, a(ﬂ)[allxl’

4 — Fundamenta Mathematicae CXIT

’ a,,/x,,, a] .
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Therefore

Why, V Q%1 %y <<x, = A 07a)lal.
SaF(nk) ses(n)

Part (ii). Now assume that for some fe€ F(n, k),
WUk, 0%, o %51 <o <X = N\ O5plal.
. Jesm

Then therev is a subset 7 of 4 such that Card(J) = % and whenever a,, ..., a, are
distinct elements of I, ‘

g‘ k% X1 <. <xn - /\ B}(n)[allxl R a,,/x,,, a] ‘
B ea(n)

Let ¢, ..., ¢, be distinct elements of J and let ¢ and g be elements of & (n) such that
Co1) <o <Cymy 8nd @ = 71, Then . i

Wk, O pleany/*es ooes CxnfXns at;
SO

Uk, 0 ples/Xenys s CalXotmys E] H
so that Uk, Bpp[61/%1, wwes Cl%y, @] Thus ~ '
Ak, 0%, ..x,0,v..v8)[a].

For theories of real closed fields in logics with Ramsey quantifiers, the proceeding
lemma -allows the replacement of formulas with the form Q"x; ... x,(8; V...V0y)
by formulas of the form Q"x; ... x,(xy <...<,—6). Here 6, 8, , ..., 6, are conjunctions
of polynomial equalities and inequalities.

In the rest of the paper, the following definitions and notation are used
throughout: '

DermiTioN. Let U be an ordered field and let SSA. An element a of A4 is
an A -limit point for § iff for each positive b € A, there is an s € S such that |s—a| <b.

DEFINITION. Let 4 be an ordinal. A linearly ordered set S is a A-enumeration
(A*-enumeration) iff there is an order preserving (reversing) bijection from A onto S.

NOT;ATION. Let A be an infinite cardinal. Whenever o B, Q"xy o X, [2),
I(U; ¢;a) denotes as subset* of A with cardinality A such that if a,, ..., a, are
distinct elements of I(; ¢; a), then Uk, ¢ la,/xy, ..., apfxn, 1.

NOTATION. Let 8 be a conjunction of polynomial equalities or inequalitieé. Let
u, v, w, and z be variables which do not appearin §, Forne o, let ©,, I',, 4
and ¥, be the following formulas:

B, is b, }

Iy is VzAx(z<xAf),

© 4o is VzAy(y<zna0),

Ey is Vz3Ax[z<w=— (z<x<wAab)], and

¥, is YVzAy[w<z— (w<y<zab)l

-
o
n> =ns

of A Which is a A-enumeration and Wk Eqle/w, al.

e ©
lm Generalized Archimedean fields and logics with Malitz quantifiers 51

L@, is x<y—0,

Iy is wVylx<valp<y—0)],

A, is V¥x[u<yA(x<u-—0)],~
L is JuVyx<u<wA@<y<w=— 8], and
P, is JuVx[w<u<ya(w<x<u— )}

1

For nz2, O, is x<x,<..<x,<y—0,
I, is 3oVy[x<x, <...<xp = X, <v A<y — 0],
4, is FuVx[x,<..<x, <y —u<x, Alx<u— 0],
B, is JuVy[x<wAX,<WA L AX,<WA
A(x<x,<...<x,,—-vx,,<u<WA(u<:y<w—»0))],
and :
¥, is JuVx[w<x, A AWK AWSY A

Alxy <o <X, <y > WLUSX, A(W<X<U— o).

Let & be any of the formulas listed above and let ¢ be an arbitrary formula.

" Then &(¢) is the formula obtained from ¢ by replacing o by o.

For n=1, Q"x;..x, denotes Q'%, Q" 'xx,..x,y denotes Q’xy, and
Q"x, ... x,y denotes Q'y. .

LemMMA 1. Let A be a regular cardinal and let N be a real closed feeld. ‘
(i) Ak,0'x0 [2] and I(; 6; a) can be taken to be an unbounded - enumeration

iff there is an unbounded subset of A which is a A-enumeration and WE Ty

(i) AF,0'y0 [@]and I(U; 6; a) can be taken to be an unbounded \*- enumeration
iff there is an unbounded subset of A which is a A-enumeration and % Aolal
(i) A k,Q'x0 [E 1 and I(%; 6; a) =1 can be taken to be a A-emimeration which
has an -limit point ¢ larger than any element in I iff there is an unbounded subset
(iv) ¥ k;0'y0[a] and I(U; 6; &) =TI can be taken to be a A*-enumeration which
has an A-limit point ¢ smaller than any element in I iff there is an unbounded subset
of A which is a A-enumeration and ¥lc/w, 1. o
Proof. Since the various parts of the lemma are similar, only selected portions
of the proof are presented below. -
Part (). Suppose % k I'g and D = {d;| 1€ A}is an unbounded A-enumeration.
Define a A-enumeration {b;]"i € i} by recursion: Choose b, so that b>do and
Uk O[by/x, 3]). Choose byyy 80 that byys>max{b;, diy,} and WE O[byy/x, al.
For a limit ordinal i e 4, choose b; as follows: For each j € i, let D= {xeD| x<b}
and let d, = | D;. Then card(D)<4, so there is de D~ Dy. Choose b, so that
i .

Je o : ) . Lo . "
b,>max{d, d;} and Uk 0[b/x, a]. Finally, use {by) 1e i} for I(N;6; a).
Part (ii). Assume % k,0'y0[a] and I(%; 6;a) = I'can be taken to be an un-
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bounded A*-enumeration, Then {—x] er} is an unbounded A-enumeration,
and since I is not bounded bclow, Ak dola].

Part (ii). Suppose A F,Q'x0[a]and I(¥;0; a) = I can be taken to be a
J-enumeration which has an -limit point ¢ larger than any element in /. Then
{1/(c—x)| x eI} is an unbounded subset of A4 which is' a A-enumeration. Since ¢ is
an A-limit point for I and ¢ is larger than any element in J, U k Eolc/w, & ).

Part (iv). Assume D = {d| ie A} is an unbounded A-enumeration and
Ak Wolchw,al. Define a A*-enumeration by recursion: Choose by $0 that
e<by<c+|dy) ™! and Wk O[byfy, a]. Choose biyq 50 that

c<b,y<min{d,, c+|dp..| "1}
and A F-0[b;, /v, 5] For'a limit ordinal i e 4, choose b, as follows: For each je j,
let D;={xeD| x<(b;—c)"'} and let D, = U D,. Then card(d;)<4, so there

is de D~ D,. Choose b; so thatc<b;, <mm{c-k~la!l~1 c+|dy™'} and Ak G[b,/y,
Finally use {b,| ie 4} for I(; 0; a)

LeMMA 2. Let A be an infinite cardinal, let n>1 and let % be a real closed field
such that WE, Q" txx, ... x,y0,[d].

O I 1Y, 6,,;5) can ‘be taken to be an unbounded A-enumeration, then

Ak, Q"xx, ... x,I[a] and I(A; T,; d) can be taken to be the same as I(; ©,; 7).

(i) If I(U; 0,; 3) can be taken to be an unbounded M*-enumeration, then
Wk, 0™, ... x,y4,[a] and I(W; 4,; @) can be taken to be the same as I; 0,; 4).

(iii) If I(A; O,; Z{) can be taken to be a A-enumeration which has an U -limit
point ¢ larger than any element in I(; 0,; d), then A k i Qxxz %, E,[efw, @] and
I®; E,; ¢jw,.a) can be taken to be the same as I(A; 6,; 4).

@v) If I(; ©,; a) can be taken to be a A*-enumeration which has an U-limit
point ¢ smaller than any element in I(U; 6,; a) then U k,Q" X2 e Xy Y, le/w, al and
I(U; ¥,; ¢/w, @) can be taken to be the same das I; 6,; a). B

Proof. For example, consider parts (i) and (vi); proofs for parts (if) and (iif)
are similar. Let © be :
P =0A.Ap,=0Ag,>0A.. Aq,‘>0
where the p; and g; are polynomials.

Part (i). Suppose I(QI,@,,,a) =T is an unbounded A-enumeration.  Let

¢1<..<¢, &l Then the set J = {x€I| x>¢,} is infinite and not bounded from
above. For each ceJ and each i and j,

"AEp, = OAG>0[efx, cofxy; s Culxs, ¢/, d].

Since the only polyuomla] with coefficients from 4, in one variable, and with infi-
nitely many . zeros, is the zero—polynom1a1

(U Vy(p; = Oley/x, e3/x3, iy %y, a]l,

icm°
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Since non-zero polynomials, in one variable and with coefficients from A4, have
only finitely many zeros, by the Weierstrass Nullstellensatz for polynomials, there
is an element d; of A such that d;>c, and

Wk Vy(o<y — ;> 0)[dyfv, eofx, cifxz, ons Col%s, ]

Let d = max{d)| 1<j<k}. Then

DU Vy(o<y = O/, e1/x, ¢2f%y, ..., Cal%y, @l

Therefore 2 F, Q"xX, .. X, I,[a] and I(U; T,; @) can be taken to be I

Part (iv). Assume I(; @,; a) = I is a A*-enumeration which has an 2-limit
point ¢ which-is smaller than any element in I Let b, <..<b,el Then the set
J = {bel| b<b,} is infinite. For each beJ and each i and j,

Ak (pi = OAQJ>0)[b/x! bl/xZ) wery bn/y: ‘-l.]-

Then A F Vx(p; = 0)[1{1/x2, s

b,ly, a] and there is an elemént d; of A such that
c<d <b; and . ‘ S .

‘IIFVx(w<x<u——»qj>0)[c/w dfu, byfxy, s bily, al.

Let d = min{d)| 1<j<k}. Then
b/y,al.

Therefore Ak, O, ... X,y W,lc/w, a] and IQN; ¥,; c/w, E) can be taken to be. I
“LeMMA 3. Let A be a regular cardinal and let U be a real closed field.

(i) If WE,Q"xx5 oo X[ [a] and I(2; I'y; a) can be taken to be an unbounded
A-enumerdtion, then U F Q"+1  %,20,4a] and I(Y; ©,; a) can also be taken to
be an unbounded A- enume/atzon

© (i) If WELQXy e Xy yA,ld] and T(W; 43 a) can be taken to be an unbounded
¥ enumeration, then WE, Q" 1xx o X,y0,[a] and I(¥;8,; a) can also be taken
to be an unbounded A*- enumeranon R
* (iii) - If there is c € A such that U F 20", . X, Eylcjw, al and I(U; Ey; clw, a)
can be taken to be a J-enumeration which has ¢ for an U-limit point, then
Ak, 0" *xxy . X, 30, [@]) and I(U; O,; a) = I can be taken to be a A-enumeration
with ¢ as an ‘2[ limit point larger than any element in I

(iv) If there is c & A such that % F,0"; ... x, W, [cw, al and I, ¥,; clw, a)
can be taken to be a A*-enumeration which has c for an A-limit point, then
Ak, 0" Lxxy ... %,0,1a] and I(U; O,; 2) =1 can be taken to be a A*-enumeration
with ¢ as an Q[ limit point smaller than any element in I. o

Proof. For example, consider parts (if) and (iii); proofs for parts (i) and (iv) are
similar.

! Wk Vx(wex<u—0)[c/w, du,byfxs, ...,
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Part (). Suppose - U k,Q"%; ... x,y4,[d] and I(U; 4,;a) = = {d} ie i}
is an unbounded A*-enumeration. For i€ A, define b, e I and u, € A by recursion:
First arbitrarily pick by>...>b,_y €I and uy, ..., U,.; € 4. Let' S, be the set of all
subsets s of {b;| jei} such that card(s) = n. Then card(S)<2. For se€ S, let
s = {¢] 1<j<n} where ¢, <...<c,. Now choose u so that

Ak Vxfu<xg A<t — O][ey Xy vy Cul ¥, it @],

The formula 4, asserts. that such a u, exists. Since 4 is regular and card(S;)<A,
it is possible to find u,e 4 and de I such that for each s€ S;, v;<u, and for each
Jje€i, d<b;. Now choose b, eI so that by<min{u, d, d}. Then {b} ie 1} is an
unbounded A*-enumeration. Finally it is shown that {b| i€ A} can be used for

I(U;0,;a): Let ¢,<..<C,:,; be elements from {b,| i€} with c, =b; and

§ = {cz,. vs Cyi1}. Then ¢, <u;<u, and s<7; thus

QI k4 [es/xzy ey c,.H/y, al, WEVxlu<xy AGx<u—s0)][csfXa, ooy Cou gl Y, gt @],

and QIFG[CJX,-» ,c,,+1/y,a] .

Part (m) Assume there is ce A such that U k,Q"x, ... x,E,lc/w, a] and
I (QI, By ¢fw, a) = {d, l i€} is a A-enumeration which has ¢ for an -limit
point. For iel, deﬁne bie D and v;€ 4 by recursion: First arbltranly pick
by<...<b,_;€ Dand v, ..., v,.; € A. Let S, be the set of all subsets s of {b)| jei}
such that card(s) = n. Then card(S)<A. For se S, let s = {¢]| 1<j<n} where
¢;< .. <¢. 'Now choose v, so that Uk Vylx,<v<wA(w<y<w— f))
[c/w,( 1%, e, CafXn, 0,0, @ 1. The formula Z, E, asserts that such a v, exists. Since A is
regular and card(Si)<A it is- possible to find v,e 4 and de I such that for each
seSy, ¢>v>v, and for each jei, ¢>d>b;. Now choose b,el so that

c>b;>max{v;, d, c—d;}. Then {b] ie l} isa ).~cnumeratxon, with ¢ for an %-limit
point, which can be used for I(%; 0,; a).

LemMA 4. Let ¢ be a quantifier free formula and let w be a variable which does
not-oceur in . For each-n € P there are quantifier free formulas 1,(¢) and p,(¢) whose
Sree variables other than w form a sub et of those of Q"x, ... x,¢ such that for any
real closed field

. H A Efﬁ, Qx, x,‘(p[z_z'] and I(U; ¢} E) =1 can be taker; to be an w-enumera;ion
with an W-limit point ¢ larger than any element in 1 iff there is an unbounded subset
of A whieh is an w-enumeration and Ak n(@)c/w, a].

. (ii)‘ A Ey, OX ... x,pla) and I(; 0; a) = I can be taken to be an w*-enumer-
“ation with an ¥-limit point ¢ smaller than any element in I iff there Is an unbounded
subset of A which is an w-enumeration and Wk p(0)[c/w, a].

Proof. Since the two parts of the lemma are snmxlar, only the proof for part (i) is
presented below. - .

Patt (i). The formula @is equwalent in all real closed fields to a formula of
the form 6, v...v 6, where each 8, is a conjunctlon of polynomial equalities or
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inequalities. Now proceed by induction on n: Let #,(¢) be a quantifier free formula
equivalent in all real closed fields to E¢(8,) v ... vEo(6y). Then by Lemma 1, m(q;)
has the desired properties.

Now assume that part (i) holds for all positive integers less than n+1. By the
distributive law for 0"+! over disjunction, there are conjunctions 8y, ..., J, of poly-
nomial equalities or inequalities such that

A by, @ 5%y 0 x,ypla] ff

A kg @ 1% e ,70,8) V.o v Q" ixx, o %,0,B) [a].

By Lemmas 2 & 3, U ky Q" x5 ... %,90,(B)[a ] iff U ke, Q"xx; ... %5, [e/w, a]
and I(¥; B,(8); ¢/w, @) has ¢ for an A-limit point. Let ¢(8;) be a. quantifier free
formula equivalent in all real closed fields to Z,(8;) and let z be a variable which does
not occur in £(8;). The induction hypothesls gives a quantifier free formula
(¢ (0;)) such that A Fy,OxX, ... x,£ @) [c/w, a] if WE @ le/w, oz, a] and
there is an unbounded subset of 4 which is an ©-enumeration. Since w and z have
the same interpretation, there is no harm in replacing z in #,(¢(8)) by w. Finally,

let 1,+,(¢) be ”n(é (61)) V..V 'In(f (gh))'

TueoreM 1. Let ¢ be quantifier free. For each ne€ P there are quantifier free
ormulas y,(0), 8,(®), &), and Y,(@) whose free variables form a subset of those
of @"x, ... x,p such that for any real closed field A,

(i) U ke, 0"y ... x,,qz[[z’] and I(; ¢; @) is an unbounded w-enumeration iff
Ak y,(p) (21 and Ihere is an unbounded subset of A which is an w-enumeration.

(i) A FROQ X . x,,q;[ﬁ] and I(U; @; a) is an unbounded w*-enumeration iff
Ak 5,(p)[a] and there is an unbounded subset of A which is an ©-enumeration.

(i) A by, Q"% .o X q;[a] and I(; (o,a) =TI is an w-enumeration with an
- limit point larger than any clement in I iff AEEL(p) [a] and there is an unbounded
subset of A which is an «-enumeration.

(iv) Why, Q"% .0 X, (p[a] and I(U; @; @) = I is an w*-enumeration wuh an
A-limit point smaller than any element in I iff AE Y (@) [@)and there is an unbounded
subset of A which is an w-enumeration. -

Proof. The proofs for parts (i) and (ii) are similar to the proof of Lemma 4.
The proof for part (iii) is similar to the proof of part (iv) given below.

Part (iv). By Lemma 4, Jwu,(¢) has all the desired properties except for being
quantifier free. The Tarski-Chevalley theorem removes this defect.

There are two corollaries to Theorem 1. The first is included for completeness
and duplicates a result in [4]. The second requires more information given in the
form of two lemmas. '

COROLLARY 1. For each quantifier frée formula ¢ there is another quantifier
ree formula ®, whose free variables form a-subset of those of (18 TR ?; such that
or any Archimedean real cl d field A, Wk, 0%, - x,.dﬁ[a] if Ak dd]
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o A w@lal and
I(%; ¢; a)=1is not bounded, then by Theorem 1, Wk @[a). If Ak, O"x, ... x, (/)[E]
and I is bounded, then since % is a substructure of R, Rk, Q" ... x,p [2] and I has

a limit point. Thus by Theorem 1, Rk & [3]. Since A is a substructure of R and & is
quantifier free, % k #la]. Since P is unbounded in 4, if Ak P, then

“Proof. Let & bé 7,(0) vi,(@)vE(@) V(@) If Wk, 0", ... x

A by O"x, o X, 0181

LeMMA 5. For an uncountable regular cardinal », let U be a x-Archimedean real
closed field, and let ¢, 1,(¢), 6,40), &(0), and V(@) be as described in Theorem |,

G ¥ WE (@) [a], then W, Q"% .oix,0[2] and I(; ¢; a) can be taken to be
dn unbounded »-enumeration.

(ll) If 2[ E 6,,((,0) [a]: then pi s ':nQ Xg o
be an unbounded »*- enumeratton .

(111) Ifu F E(@)[a), then N E. Q"% .. %, 01a] and I(; ®; a) = I can be taken
to be a x-enumeration with an U-limit point larger than any element in I.

i) I Wk P (p)[al, then Wk, Q"% ... x,0[a] did I(%; o; ay=I can be taken
t0 ‘be a u*~enume1atr‘on with an A-limit point smaller than any element -in I.

" Proof.” Pait (111) ‘(Proofs. for parts (i), (ii), and (iv) are similar) Assume
QI#&,,((p)[a] Then using the notation developed in Lemma 4 and its proof,
9 F 3wy, (@)ME]; so there is ¢ e 4 such that A k¥ n,,((p) [¢/w, a]. Now use induction
on m: If- = 1, then WEE,(0,) v .. vEo(@) [efw, 2] and by Lemma 1, Wk, Olxplal
‘and I has the desired properties. If n = ]+1 then’ Q[l=11j(£(01))v v11j(£(9,,))
Then by the induction hypothesm, :

xy@[d] and I(; ¢; &) can be taken to

S F,,Q xx2 x,uj(gl) Vv Qxx, .. ijJ(B,,)i[c/w ,:E] .

By Lemma 3

: QI% Q’“xxz ijf@j(Hl)'v..:v Q" txxy . %)90,(8,) ;

thus Ak, QOxx, ... x,yq)[c-{] and I has the desired properties.

LEMMA-6. For an uncountable regular cardinal %, let W be a w-drchimedean real
,clased Sield and let ¢ be a quantifier free formula such that % FQ"x, ..
a= {ay, s ). .

) If I(W; p; ) is not bounded, then there is a real closed ﬁeld B such that

{ay,..;a}cB<A4, BE, Q" ..x,0[al, and {|x|| xel(B; (p,a)} can be taken
to be an o-enumeration.

X [5 ] where

= (i) JIf I(U; p; @) is-bounded, then there are real. closed fields B and. € such that
fhere Is an-unbounded subset of C which is an &-enumeration, {ag,. @} SBESANC,
CEe, Q5. x,,(p[a] and I(C; o; a) has a C-limit point,
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Proof. Part (i). Suppose I(2; ¢; a) is not bounded. Let .D be a positive discrete
subset of 4 which is not bounded. Then card(D) = x. Let by e I(2; @; @), let
Ao = Qu{dy,...a;, by}, and let B, be a countable real closed field with
Ay =By A. Now assume that a countable real closed field B, with B;< 4 has been
obtained. Since B; is countable and % is both regular and uncountable, there must
be de D such that (Vb e B)(|b]<d). Choose b;., € I(U; ¢; a) so that d<|b;,,].
Let A; = B, U {b;+,} and let B,,.; be a countable real closed field such that
A1 EB 1S4, Finally let 8B =1U B,;. Then B is a countable real closed field

an
with {a, o ,a}SB< A and {b] i€ w) is an unbounded set which can be used for
I(B; o; a).

Part (ii). Now assume that I(%; ¢o; a) = Iis bounded. Let D™ be a maxima]
positive discrete subset of A with P=D*, let D™ = {xe 4| —xe D*}, and let
D=D*u{0}uD. Then card(D) = x. Since I is bounded, there is a de D¥
so that (Vx e I)(Jx|<d). Let Dy = {xe D| |x|<d}. Then card(Dy)<x. Since D is
maximal, for each x € 4, the set {y e D| Jx—yl<1} has either one or two elements.
Let fy: I— D, be given by fo(x) = min{ye DO] |x— y|<1} Since x is regular,
there is 4 by € Dy such that card({x e I} fo() = bo}) = . Let

Iy = {xell| fo(x) =bo}.

Then card(l,) = % and each element of 7, is between bo—1 and bg+1. Choose
eoely Let dy-=1 and let 4= Q U {ay, .., @; by, co}. Let By be a countable
teal closed field such that Aq<B,=A. Assume that Iy, by, d;, g, .5 ¢, and B
have been obtained such that 7,SI, card(f}) = %, each element of I; is between -
bi drt and b,+dit, bye B;, dje D¥, B, is a countable real closed field with

<4, and ¢y, ..., ¢; are distinct members of I Since B, is countable, there is
di+1 e D* so that (Vx e B)(|x|<diy,). Let D,y be a maximal subset of 4 such
that

(Vx € Dy )by~di  <x<b+di )
and ,
(Vxe Dy )(¥ye Dy )x # y— lx=y|=di").
Then card(D,. ) <x. Let fi. 2 I;— D4y be given by
Sie1(®) = min{ye Di+1| lx-yl<dz'+i1} ‘

Then there is b4y € Dyyy such that Card({x e L] fi+1(%) = bis1}) = #. Let
Ii+1 = {x el fis:(x) = biyy}. Then Card(lj4q) = % and each element of J;,,
is between bt+1“dz+1 and b1+1+dm+1 Choose ¢;41 € L1y —{co, s ¢} Let

. Ay =B U {biig, Ciaq, diyq)y and let Byyq bea countable real closed field such

that 4,4, S B4, S4. Finally let 8 = B,;. Then.B is a countable real closed

iew

field with {a,,..,q}SBSA4, Bk, 0%, %, 0al, {cil i€ w} can be used for
I(B; ¢;d), and {d] i€ w} is an unbounded subset of B.
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Let & be an ultrafilter on o containing no finite subsets of w. Let Dt be the ultra-
power of B with respect to . Let 9 be the ordered ring obtained from 9t by taking
N ={xeM| @beB)(x]<b)}. Then # = {xe N| (Vb e B)(|x|<b)} is a maximal
ideal of 9. Finally let € be the real closure of the field 3 (mod #). Since € can be
viewed as a real closed field with B=C, € Fy, Q'x, ....x,,(/;[E ].and {¢|| ie w} can
be used for I(€; ¢; a). All that remains to be shown is that {e;] i€ o} has a €-limit
point: Let § be the element of M represented by the function g: @ — B given by
g(i) = ¢;. Since all the c, are between by—1 and bo+1, 7 is in fact an element of N.
Let ¢ be a positive element of C. Then there is d; such that 2¢™*<d;. Since for
i>j, c, is between b;—dj* and by+d; !, the set {iew| |g(i)~c|<2d; '} is in the
ultrafilter #. Thus in M, |g—c,|<2d;". Let & = §+.4 € C. Then {h—c)|<2d5t <e
in’ €. Therefore & is a €-limit point for {¢;| ie w}.

COROLLARY 2. Let % be an uncountable regular cardinal. For cach quantifier frec
Jformula ¢ there is another quantifier free formula ®, whose free variables form a subsct
of those of Q"X ...x,p, such that for any x-Archimedean real closed field ¥,
Ak, Q"% .. x, 0[d] iff Uk-B[3]. ‘

Proof. Let @ be 1,(@) v (@) vE @) vi(e). If Ak, Q% ... x,,q:[[i] and
I(U; @; @) = I is not bounded, then by Lemma 6, there is a real closed field B such
that B< A4, B Ey, Q"% ... X,0 [21,and I(B; ¢; ) is either an unbounded w-enumer-
ation or an unbounded w*-enumeration. Thus by Theorem 1, 8 k ¢. Since B A,
AESD If Ak, O™, .. x,¢[a] and I is bounded, then by Lemma 6, there are real
closed fields B and € such that BS A C, Gk, Q" ... x,0[d], and I(€; ¢; @) is
cither an w-enumeration which has a €-limit point larger than any element in
I(C; ;d) or an w*-enumeration which has a €-limit point smaller than any
element in I(€; ¢; @). By Theorem 1, € k &. Since BeA N C, BE® and Ak &.
Finally by Lemma 5, if A F &, then Ak, Q"x; ... x,0.

THEOREM 2. For each regular x, every wa—formu!a @ of the language L is equiv-
alent, in all x-Archimedean real closed fields, to a quantifier free formula i whose
variables form a subset of those of ¢.

Proof. Use Corollary 2 and proceed by induction on the formation in 2;° of
the formula o.
QUESTION, Does Theorem 2 remain a theorem if x» is a singular cardinal?

The logic 2;°° has the same syntax as the logic 2, but is given the equi-cardinal
interpretation: A F.Q"x, ... x,,(p[E 1iff there is a subset I of 4 such that (i) Card(I)
= Card(4) and (i) for distinct a,, ., ay € I, A kp[ay/Xy, ey @yf%y, ). A c-Archi-
medean field is a x-Archimedean field where Card(4) = x.

QuEsTION, Does Theorem 2 remain a theorem when % is replaced by ¢?

-
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