68 S.E. Rodabaugh

Proof. That G is locally shrinkable follows from (Theorem 6.1, [10]) and
(Theorems 4 and 5, [6]). The theorem now follows from Theorem 4.2.

Recalling that an n-manifold is a separable metric space (not necessarily con-
nected) having the property that each point possesses a neighborhood homeomor-
phic to either E" or E}, we have the following results.

COROLLARY 4.1, Let G be a decomposition of an n-manifold M such that G satis-
fies one of the following sets of conditions:

(1) locally null and locally starlike;

(2) locally shrinkable, monotone, 0-dimensional, and usc; or

(3) locally star-0-dimensional and usc.

Then MJG is homeomorphic to M and G is a shrinkable decomposition of M.
Remark. We gave two examples to illustrate Corollary 4.1 in Section 1.
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Toroidal decompositions of S° and a family
of 3-dimensional ANR’s (AR’s)

by

S. Singh (Altoona, Penn.)

Abstract. It is shown that there exist an ANR X' satisfying (1) X'x S~ 8§ x‘S‘, (2) X does
not contain any proper ANR of dimension larger than 1, and (3) the homeomc.rp‘hlsm grou}) of‘X
is the trivial group; furthermore, there are uncountably many topologic.alljf distinct ANR§ with
these properties. It follows that the family of 3-dimensional AR’s satlsfyrfmg fhe propern:s )
and (3), as above, is also uncountable. These ANR’s are constructed' as cell-like lrr.mges of §°%, e}nd
hence, they are generalized manifolds and possess many other desirable properties. There exists
a cellular image of ¢ satisfying the assertions, (1)~(3), given above (a suitable. result for B’. also holds).
A problem of Bing concerning partitions of Peano continua is answered in the negative. A,, con-
dition (47) is given and it is shown thata finite dimensional closed.sub.set of an ANR‘ X e (4" has
a locally connected &-displacement inside X, Several other applications are also given.

1. Introduction and terminology.

(1.1) By an AR (ANR) we mean a compact metrizable absolute (neighbo;hood)
retract in the category of metrizable spaces, see [13] and [21] for more dete‘uls. A?)
ANR X will be called strongly irreducible (Abbreviate: s-irredycrble) if
YxStaS?xS! and X does not contain any proper ANR of dimension 1_afg51,‘
than one. Let E", B", and $"™*, respectively, denote the n-dimensional Euchdea.n
space, the closed unit ball in E", and the unit sphere in E". By X~ Y we mean X is
homeomorphic to Y. o

A method for constructing s-irreducible ANR’s (or AR’s) is given in [32].where
these ANR’s are constructed as decomposition spaces corresponding to certain null
cell-like but non-cellular upper semicontinuous decompositions of .?'3. Wc prefer to
consider these decompositions for S 3 rather than B3 to avoid tec%xr.ucahtxcs coancern-
ing the boundary. It is routine to construct similar dacomposxtmgsv for B gnce
these decompositions for S* arc known. By an 5- irred.u‘cible decom3posttlon G of f we
mean any cell-like upper semicontinuous decomposition G of S° such that S /G is
an s-irreducible ANR. The purpose of this note is to show (1) there eszt celh'l_lar
s-irreducible decompositions of S, and (2) there are uncouytably many s-irreducible
decompositions of S*. Other applications will also be given.

(1.2) If A is a subset of a metric space (X, d), the diamete‘r.A (A?‘ of Ais dc.ﬁned
by A(4) = sup{d(x,»): x,y€ A}, If G is an w.s.C. decomposition (“upper semicon-
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tinuous decomposition”) of a space X, we shall denote by p: X — X/G the natural
projection onto the decomposition space X/G. The union of the nondegenerate
elements of an u.s.c. decomposition G of a space X will be denoted by Hg. Through-
out this note we shall call a set X' uncountable if X has the cardinality of the set
of the real numbers. The group of integers will be denoted by Z. By a torus T we mean
a solid torus with boundary (). All maps between spaces will be continuous.

2. Preliminaries.

(2.1) All our tori embedded in $3, the 3-sphere, will be assumed to be poly-
hedral unless otherwise so stated. By linking of two simple closed curves in 3 we
mean integral homology linking, see [11, 28]. For notation and terminology concern-
ing toroidal decompositions and upper semicontinuous decompositions we follow
[3, 30].

(2.2) Suppose T, is a torus in 83, If {T};, T}y, ..., Tyn} is a linked chain in the
sense of [30; p. 229] (or a chain in the sense of [3; p. 17]) we understand, as usual,

my
that ( 1). px T,i=Int(T,), and for each i, 1 <i<m,, the torus T}, lies in a 3-cell inside T;

see [3, 30] where definitions of many undefined terms may also be found. Our im-
mediate goal is to describe, in the next section, the construction of a defining sequence
for a toroidal decomposition. ’

(2.3) Suppose T, is a torus in S°. Find a linked chain {T,,, T},, ..., T, } of tori
circling 7, n, times. For each i;, 1 <i, <m,, find a linked chain {T,1 Tz : Tiymn}
of tori circling 7,;, n,,, times. For each i;, 1 <i; <m,, and i, 1<i, <m,,,find a linkrgd
chain {T};,1,15 Tpigrgzs -oes T tytamesse} Of tori circling Ty, 1y, times. Let this pl'ocesé
be continued to construct the following:

(2.3.1.) Positive integers m,, n.; m,’s and n,’s, with 1<i; <m,; My, ,'s and
Mpyyp,'S, With 1<iy <m, and 1<i, <myyp5 o0 eirigene S AR My 38 With 1<iy <m,,
1<i,<myyy, ..., and 1Ly, 0000y -5 and

(2.3.2) the linked chain {7}, T, ..., T, } circling T, n: times at the first stage
of the construction and a manifold M,; = |J {T,;,: 1<iy<m,}; ...; a linked chain
{Tvars Trazs ooy Ty} circling T, n,, times at (k+1)-th stage of the construction,

My

and - a manifold M, =1U1UTM’ where a = iji,..0, with 1<i;<m,,
=1 a .

’ o0
1<, <myyy, 0,1 SHSMyy, -y PUt L= (VM. It is customary to call the éequence
i=1 .

{1‘\{,,}(, a defining sequence, for the set I,. The set L, consisting of components of J,
will be called a link substituting for T,. ‘ ’
. ('2.4)' In [3], Armentrout specializes the construction of L, by requiring that the
positive integers in (2.3.1) satisfy the following:
. (241) 2<mr<2.'nr; 2<mri1<2nrix) with 1S11 smr; TS z'smrix!1...ik<2nri1lz...lw
with I.Szl'smr, 1<12§mm, .y and 1<1'k<m,‘h,z_“i(k_n; ... Any link L, constructed
by satisfying (2.4.1) will be called an (m,, n,)-link substituting for T,. We further
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specialize the construction of L, by requiring that the positive integers in (2.4.1)
satisfy the following: ]

(2.4.2) 2€m,<n,; 2K My, <My, With 1<ii<m; o5 2€My 0 0 <My

© with ISII <m,, 1<i2<"1rin'“= and lgiksmrhlz...i(k—n;“'

Any link L, constructed in 7, by satisfying (2.4.2) will be called a special
(my, ny)-link substituting for T,.

(2.5) A 1-dimensional continuum C’ will be called an s-circle if there exists
a cell-like u.s.c. decomposition G of C’ such that the set p(Hg) is 0-dimensional
and the decomposition space C = C’/G is homeomorphic to a circle. It follows from
a theorem of Sher [31] (cf. [14; p. 352]) that C’ has the shape of the circle S*. The
following result is an immediate consequence of [32; p. 24-27]:

(2.5.1) If C’is an s-circle in S?, then there exists a PL simple closed curve C with
rational vertices such that C links C'.

The following result is an immedijate consequence of (2.5.1) and some results
given in [11] and [32]:

(2.5.2) There exists a countable family # of PL simple closed curves in s3
(with rational vertices), e. g., let & consist of all PL simple closed curves with rational
vertices, such that for every s-cricle P in S* and each open subset U of S* with
P~ U= @, there exists a simple closed curve C belonging to & such that P and C
are linked and CA U # @. - :

(2.5.3) Suppose a countable family & of simple closed curves satisfying the
conclusions of (2.5.2) is given. Let {C,};; be an enumeration of the family # such
that each member of & appears in the sequence {C;}jz; infinitely many times.
A sequence {C;}3%;, constructed in this manner, will be called a dense sequence of
simple closed curves'in S°. .

(2.5.4) Suppose a dense sequence {C;}iZ; of simple closed curves is given. For
each 7, 1<i< oo, choose a normal disc bundle (solid torus) neighborhood T; of C,
in S3 such that each normal disc has a radius less than 1/i. The PL torus T} has C;
as its core or centerline. The sequence {T;}i2 of PL tori constructed in this manner
has the property that for every s-circle P in S* and an open subset U of S? with
P U=, there exists a torus T;c=(S*—P) such that the centerline C; of Tj is
linked with P and the set (T}, » U) contains a meridional disc of T;. The sequence
of tori {T}}{%,, described above, will be called a dense sequence of tori corresponding
1o the dense sequence {C}i%, of simple closed curves. By a CT dense sequence
{(C;, TH}2, we mean a dense sequence {C;}iZ, of simple closed curves in §* and
a dense sequence {I}}{%, of tori corresponding to the sequence {Ci}e1-

3. The main construction.

(3.1) Let {(Ci,T)}iz1 be a CT sequence in S3 Find a linked chain
{Tyy> Tyzs s Ty} Of tori circling T exactly once such that for each i, 1i<ly,
the diameter 4(Ty,) is less than 1. For each i, 1<i</, construct a (special)
(m,, n)-link Ly;, consisting of components of the set Iy, substituting for Ty;. The
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set W, = {L;;: 1<i</;} will be called a (special) (m,,n,)-wreath substituting
for T';. We proceed inductively. Suppose (special) (m,, 1,)-wreaths Wy, W, ..., W, _,
bave been constructed. Find a linked chain {T,, 7,5, ..., T} of tori circling T,
exactly once such that for each 7, 1<i</,, the diameter 4 (7)) is less than 1/i. For

each 7, 1<ig/,, construct a (special) (m,, n,)-link L,; consisting of components of
I L Itn=1y

I, where the set U I,,, has the property that the sets U Iy, U 121, vy U Jp=1y1,7and
1=1

In

U I,; are mutually disjoint. Let W, = {L,;: 1<i</,} denote the (special) (m,, n,)-
=1

wreath substituting for T, We continue this process to construct a sequence { W, }{%
of (special) (m,, n,)-wreaths such that for each i, 1gi<ao, W; substitutes for 7.
We need some terminology for convenience of reference to these constructions.
(3.1.1) By a CTW dense sequence {(C;, Ty, W)}i%( in S® we shall mean a CT
dense sequence {(C;, T})}%, and a sequence of (m,, n,)-wreaths as constructed
in (3.1). By a special CTW dense sequence {(Cy,T;, W)}L, we mean that

(€, Ty, W))Z, is a CTW dense sequence such that for each i, I<i<on, W, is

\

a special (m,, 71,,) -wreath substituting for T;.
(3.2) Let {(C,,T,, W)}z, be a (special) CTW dense sequence in S$3. Put

(0 ni) Vo

i=1

1 Iz
L=(ULp)v(ULy)v.

i=1 i=1
and let |L| denote the union of sets in L. Deﬁne a decomposition of $* by

G =Lu{{x}: xe(S3 LD} .

We shall say that the decomposition G is mduced by the (special) CTW dense
sequence.

(3.3) If G is a decomposition of S® induced by a (special) CTW dense sequence
{(¢y, T, W)}y, then Gisanu.s.c. deco_mposztmn We omit details of an elementary
proof of (3.3).

4. Some hasic results.

(4.1) Suppose G is u.s.c. decomposition of S? induced by a (special) CTW
dense sequence: {(C;, T;, W)}i2 . Let p: S* — S3G denote the projection ‘onto
the decomposition space. We now state sevcral general propositions concerning
this setting:

(4.1.1) The image, p(Hg), of the union of all the nondegenerate elements of G is
a O-dimensional subset of S*/G. This follows from the construction of G.

(4.1.2) The decomposition' G is a cellular u.s.c. decompositionof S, i.e., ever y
element of G is cellular in S®. This follows from (2.2).

" (4.1.3) The decomposition space S3|G has the property that S*(Gx St is homco-
morphic to S* x §*. This follows from [19].

s
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(4.1.4) Lvery s-irreducible space X is three dimensional. This follows from (4.1.3)
and [22; p. 34].

(4.1.5) The decomposition space S3|G is a 3-dimensional ANR and the map
p: §*— S3/G is a (simple andjor fine) homotopy equivalence. Furthermore, for each
closed subset A of S3|G the restriction pi: p~Y(A)— A is a shape equivalence.
See [7, 18, 20, 23, 31] and the survey article [25].

(AR’s).

(5.1) Our immediate goal is to outline proofs of Theorems (5.1.1) and (5.1.2)
which are stated below. We rely heavily on [3] for many technical details.

(5.1.1) Suppose G is an w.s.c. decomposition of S* induced by a special CTW
dense sequence {(C;, Ty, W)}, such that each nondegenerate element of G is
1-dimensional. Then, S*|G is an s-irreducible ANR.

(5.1.2) Suppose G is an u.s.c. decomposition of S* induced by a CTW dense
sequence {(C;, T;, W)}, such that each nondegenerate of G is 1- dtmeﬂszonal
Then, S3|G is an s-irreducible ANR.

We remark that the assumption, “each nondegenerate element of G is 1-dimen-
sional”, in (5.1.1) and (5.1.2) can be easily satisfied by carefully choosing defining
sequences. We have made this assumption so that we may use facts concerning
homological linking from [32]. The results on homological linking given in [32] can
be easily extended to prove the following more general result:

(5.1.3) Suppose G is dn u.s.c. decomposition of S* induced by a (special) CTW
dense sequence {(C;, Ty, W)}ie,. Then S3|G is an s-irreducible ANR.

(5.2) Suppose S?/G contains a proper AR A such that 4 has dimension larger
than 1, i.e., 4 has dimension 2 or 3. Since 4 has a dimension larger than 1, 4 contains
a simple closed curve C. We need the following:

(5.2.1) The set C’ = p~*(C), where p: S*®— $3/G is the projection, is an
§-circle.

Proof. It suffices to show that C’ is a 1-dimensional continuum. By @.1.1),
the image p(Hy) is zero dimensional. Consider the family of closed sets {p~ Y} eec
Our proof is finished by applying Proposition G of-[22; p. 90]. This is similar to an
argument given in [33].

(5.2.2) Suppose U, is an open subset of S%G such that A< U,. Then therc

{U}iZo of open subsets of S3/G such that (1) 4 = ﬂ U,

(2) Uy <= U; for 0gi<oo, and (3) each loop in U,y is 11ullhomotoplc in U for
0</<oo. This is well known see [4, 14].
(5.2.3) Suppose a sequence {U,}i%, of open subsets of S°/G satisfying the
conclusions of (5.2.2) is given. Then, the sequence {¥; = p~'(U)}iZ, of open sub-
o0

= () Vi, @) Vs, = V; for 0<i<oo,
i=0

5. Decompositions and S-irreducible ANR’s

exists a sequence

sets of S° has the properties (1) 4' = p~*(4)

and (3) each loop in ¥, is nullhomotopic in ¥; for 0<i<oo [2; Lemma 9]
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" Choose a sequence {U;}{%, of open subsets of S%/G satisfying the conclusion

" of (5.2.2) and Uy n W = @ where W< (S3/G— 4) and W is an open subset of S3/G.
Now, the sequence {V; = p~}(U)}%, of open subsets of §° satisfies the con-
clusions of (5.2.3) and Von W' = & where W' =p~ (W)= (S*—4') is an open subset
of S2. By (5.2.1), we choose an s-circle C' = p~Y(C) inside A’ where C is a simple
curve contained inside A. Since the decomposition G is induced by a CTW dense
sequence {(C;, Ty, W))}izo, there exists, see (2.5.4), an index i such that (1) the
torus T is contained in (S®—C"), (2) the core C; is linked with C’, and (3) the set
(T, n W’) contains a meridional disc of T;. Consider the chain {T}, Tz -..r T}
of tort circling T; exactly once, see (3.1). Put n = [;. By the “lifting” argument [7],
choose a PL simple closed curve E, such that E, =(§*~T)), E;cV,;,, and E; is
linked with C;. Since each loop in ¥, , is nullhomotopic in ¥V, , it follows that
E; bounds a PL singular disc Dy in V4. By the usual arguments concerning the
curves of intersection, we may assume that there exists a torus Ty;, 1<j<n, and
a PL meridional disc D in (Tj; N ¥,,4,), see [32; p. 31-32] for details. For simplicity
of notation we let « = §. We shall assume, from now on, that our decomposition
is induced by special CTW dense sequence. Wg need the following:

(5.2.4) Suppose T'is a torus in S> and {T, T}, ..., T,,} is a chain of tori circling T
n times with 2<m<n. Suppose D, is a PL meridional disc in T such that D, and 8T,
1< i<m, are in relative general position. Let T* be the universal covering space of T.
Then, there exists an integer i, 1<i<m, and two consecutive copies D; and D,
of D, in T* such that some copy T¥ in T* intersects Dy and D, meridionally.

This result is an adaption of Lemma 2 of [3]. Moreover, a proof for (5.2.4)
follows immediately by suitably applying the arguments of [3; Lemma 2]. We omit
details.

We shall now return to our original setting in our proof. Recall that a = ij.
Consider the special (m,,n,)-link L, substituting for T, and the chain
{Tu1s Tz oo s T, } circling T, n, times. We may assume that the meridional disc D is
in relative gcnera] position with 67,,; where 1<i<m,. Let Ty be the universal covering
space of T,. It is clear that the hypotheses of (5.2.4) are satisfied, and therefore, we
may assume the conclusions of (5.2.4). This means that the hypotheses of Lemma 5
of [3] are satisfied with U = ¥, {. Therefore, there is a loop vy, in (T, » ¥, ,,) such
that y, is not nullhomotopic to zero in T,. Now T, = T};, I<j<nand n = I, is
linked with a torus T ;, 1) where indices are computed cyclically.The loop ¥y, is nullho-
motopic inside ¥, and the core of Ty y, is linked with ,. It follows by an argument
similar to the one used to construct y, = y;; that there exists a loop 74 1) in (T, 0 V)
such that ;4 1y is not nullhomotopic inside T4 1y. We continue in this manner to
construct a linked chain {y;;, yiz, ..., Y1} Of loops in (T; N Vp). Since (T, n W')
contains a meridional disc, it follows that the ¥, n W' s @. This contradicts the
fact that ¥, n W' = & and this proves that $3/G does not contain any proper AR
of dimension larger than 1. It follows from the arguments in [32] that S3/G does
not contain any proper ANR of dimension larger than 1.
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6. Uncountably many S-irreducible ANR’s.

(6.1) Let % denote the family of all the s-irreducible ANR’s under the equiv-
alence relation of “the same topological type.” We shall show that the class ¥ is
uncountable, i.e., % has the cardinality of the reals see (1.2). More precisely, we shall
prove the following:

(6.1.1) There exists an uncountable set A such that for each i€ A, there exists
a cell-like w.s.c: decomposition G, of S* such that the decomposition space S°|G, is
an s-irreducible ANR. Furthermore, the mapping A — € defined by A— S3|G; is
1-1 and hence € is uncountable.

The following result is useful in this sequel:

(6.1.2) There exists a null collection {&;; 1<i<oo} of mutually disjoint arcs
in 8 such that IT,(S® —«,) is not isomorphic to IT,(S3 —o;) whenever i % j. A specific
collection of arcs of this type is given in [29]. . ‘

Suppose a collection {w;: 1<i< oo} of arcs satisfying the assertions of (6.1.2)
is given. Let 4 denote the set of all the infinite subsets of {,: 1<i<c0}. Suppose
A€ Ais given, Welet A = {f;: 1<i<oo}. Choose a CT dense sequence {(C;, T))}i% ¢
as described in (2.5.4). For each i, 1 <i< o, we construct (special) (m,, n,)-wreath W;
substituting for T; as described in (3.1) and such that the set {J {I,;: 1<j</;} does
not meet the set |J {8;: 1<i<oo}. This can be easily accomplished by requiring that
the kth stage tori, used in the construction of the set I, inside the torus T,, miss the
set U {B;: 1<igk}. This process yields a (special) CTW dense sequence
{(Ci, Ty, W)}%, such that for each i, 1 <i< oo, the links of W, do not meet the set
U {Bi: 1<i<oo}. Since {o;: 1<i<oo) is a mull collection, it is clear that
{B:: 1<i< oo} is also a null collection. Define a decomposttion G, of S by requiring
that the set of all the nondegenerate elements of G, is the union of the set of all the
nondegenerate elements of G, where G is the induced decomposition of S by the
(special) CTW dense sequence {(C;, T;, W)}iZ, with the set {f;: 1<i<oo}. It
follows that G, is an u.s.c. decomposition of S3. The fact that S%/G, is an s-irre-
ducible ANR is clear from discussions in (4) and (5). Suppose A, ve 4 such that
A # v, i.e., there exists an arc a; satisfying «; € A and o; ¢ v. Now

I1,(S° - g)=11,[S%/G,~p(g)]

for g € G, and hence IT,[S%/G,~{x}]&11,(5%~a) for any x e S3/G,, where base
points are suppressed, We have used some facts concerning the fundamental group
and cell-like decompositions (cf. [25]). Our proof for (6.1.1) is finished.

The following are some immediate corollaries of our method:

(6.1.3) There exists an s-irreducible X such that II (X —{x}) = O for each x € X.

(6.1.4) There exist nonisomorphic groups Gy, Gy, ..., G, and an s-irreducible
ANR X with points xy, Xy, ..., X, such that (1) II,(X—{x,}) = G for 1<i<n, and (2)
(X~ {x}) = 0 for each x e (X—{x;: 1<i<n}).

(6.1.5) There exist nonisomorphic groups Gy, G, ... and an s-irreducible ANR
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X with points xy, Xy, .., such that (1) II,(X—{x;}) = G, for 1€i<o0, and (2)
I (X—{x}) =0 for xe(X—{x;: 1<i<o0}).

(6.1.6) There exist uncountable many s-irreducible ANR X such that the group
of homeomorphism of X is the trivial group. (This may be compared with [29].)

A finite dimensional ANR X is a generalized n-manifold if for each xe X,
Ho X, X—{x}; Z)~H(E", E"—{0}; Z). It is well known that a finite dimensional
cell-like image of a closed manifold is a generalized manifold [35], and therefore,
the decomposition spaces of S* constructed in this note are generalized 3-manifolds.

Our results can be suitably stated for decomposition of E3 and B3. There is
a standard method of constructing a decomposition of B® by choosing a sequence of
arcs (chords) [11, 32]. We shall state the following as a sample:

(6.1.7) There exist uncountably many topologically distinct 3-dimensional AR’s
which are cell-like images of B® and each of which does not contain any ANR of
dimension larger than one.

7. A problem of Bing.

(7.1) A set M is-said to be partitionable if for each £>0 there is a finite collec-
tion P of mutually exclusive connected open subsets of M such that each element
of P has diameter less than ¢ and the union of elements of P is dense in M, The
collection P is called an e-partitioning of M.

The following question appears in [10; p. 555]:

(7.1.1) If M is locally simply connected, can it be partitioned into simply con-
nected pieces?

(7.1.2) A space X is locally simply connected at a point x in X if each neigh-
borhood U of x in X contains a neighborhood ¥ of x in X such that each loop
in ¥ is nullhomotopic in U. We say X is.locally simply connected if X is locally
simply connected at every point in X. Any ANR is locally simply connected (locally
contractible) (cf. [13]). ‘

The following provides a negative answer to (7.1.1):

(7.1.3) There exists a Peano continuum X such that X is locally simply connected
and X is not partitionable with simply connected pieces. Moreover, the required Peano
continuum X can be chosen to be a simply connected ANR which does not have any
partition P with simply connected pieces of diameter less than the diameter of X.

Proof of (7.1.3) Let G be an u.s.c. decomposition of §°* which is induced
by a CTW dense sequence {(C;,T;, W)}Z,. Put X = S%G. Suppose
P = {U,, U, ..., Uy} is an arbitrarily given partitioning of X such that for each 7,
I<ign, U, is simply connected. This means that the sets p~(U,), p~(U,), ...,
and p~*(U,) afe mutually exclusive simply connected open subsets of 2 [7). This is
impossible because of the following: Any simply connected open subset of S3 which
is saturated with respect to the decomposition G is dense in S3, see our arguments
in (5). This finishes our proof for (7.1.3).
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8, e-displacements in some ANR’s,

(8.1) Aleksandrov [1; p. 7] has used &-displacements in his study of dimension
theory and homology theory of compacta. The concept has proved useful in many
other situations, see for example, the proof of Theorem 2.1 in [13; P 164]. Since
an ANR may not contain enough proper ANR’s, it is natural to seek &- displacements
in ANR’s which have some nice local properties. More precisely, we shall show that
e-displacements of compacta into locally connected (Abbreviate: Ic) compacta in-
side ANR’s satisfying a condition (4%) can, indeed, be constructed, see (8.3)-(8.6).
We begin with some definitions.

(8.1.1) A closed subset A of a compact metric space X is lc-displacable in X
if and only if for each 2>0, there exists a surjective map ¢: 4 — P, such that (1)
¢(4) = P, is an lc closed subset of X, (2) dim(P,)<dim(4), and (3) d[z, p(d)]<e
for each a € A. The set P, will be called an e-lc-displacement of A in X. This definition
is adapted from [1; p. 7], see also [22; p. 72-73], and [13; p. 164].

(8.2) A compact metric space Y satisfies the condition (4°). (Notation: ¥ e (4%)
if and only if for any compact metric space X the subset {fe ¥Y*: dim[f(X)]
<dim(X)} of the function space ¥* is dense in the space Y*. This definition is
motivated by Borsuk’s condition (4) and his Theorem 2.1 in [13; p. 164]. Clearly,
X e (4) implies X e (4). This condition (4°) may be thought of as an “approxi-
mate (4)".

(8.3) Every finite dimensional closed subset of an ANR X such that X e (4%
is lcdisplacable in X.

Proof. Suppose X is contained in the Hilbert cube Q. Suppose A is a closed
subset of X with dim(A4)<oo. Let U be an arbitrary neighborhood of 4 in X and
let £>0 be given. Choose a (compact) neighborhood ¥ of X in Q and a retraction
r: V— X such that d[v, r(v)]<}e for all ve V. Let W< ¥ be a neighborhood of 4
in ¥ such that r(W)=U. By [1; p. 7}, let y: 4 — P’ be a surjective map satisfying (1)
W (A) = P’ is a polyhedron contained in W, (2) dim(4) = dim(P’), and -(3)
d [a Y(@]< e for cach ae 4. Let us denote by r: P’ — r(P'), the restriction of

: V— X. Since X € (4%), there exists a subset P of U and a surjective map é: P'— P
such that d[r(x), £(x)] < % ¢ for each x € P/, and dim (P)<dim(P’). Define p: A — P
as the composite of the maps if: 4 — P’.and &: P’ — P. It is now clear that P, = P
is an g-lc-displacement of A in X and our proof is finished.

* We need the following result for the further study of our decomposition spaces.
This result was pointed out to us by R. J. Daverman.

(8.4) Suppose G is a cell-like v.s.c. decomposition of S" such that the image,
p(Hg), of the union of all the nondegenerate elements of G is a 0-dimensional subset
of the decomposition space S"|G. Then, S"|G is an ANR satisfying the condition (4°).

Proof. Let f K— S$"/G be a map, where K is a k-dimensional polyhedron.
By the usual “lifting arguments” choose a lift f: X — S" such that pf and f are
sufficiently close in the function space and dim[ f(K)]<k [7] and [25]. There is no
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loss of generality if we assume that the lift F: K— 8" is PL and [J(K) n Hg) is
dense in the complex f(K). It follows easily from Corollary 1 of [22; p. 46] that
dim[ ] (K)— Hgl<(k—1). Now, pf(K) = p[f(K)~He) v plf(K) n He] "where
dim{p[J (X)— Hsl}<(k—1) and dim {p[ J (K) n Hg]} equals to zero. By [22; p. 28],
it follows that dim{p[f (K)]}<k By Borsuk [13; p. 164], see the proof of
Theorem 2.1 in [13], our proof is finished.

We now state the following corollary of (8.4):

(8.5) Each s-irreducible ANR S*|G constructed in this note has the property
that each closed subset A of S®|G is lc-displacable in S*|G: furthermore, if A is con-
nected, then any &-lc-displacement P, is a Peano. continuum.

Proof. By (8.4), $°/G e (4°) and our proof is finished by (8.3).

‘We have also proved the following more general result:

(8.6) Suppose G is a cell-like u.s.c. decomposition of S", n20, such that p(Hg)
is O-dimensional. Then, each closed subset A of S"/G is lc-displacable in S"/G; further-
more, if A is connected, then any e-lc-displacement P, is a Peano continuum.
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