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Null sequence cellular decompﬁsitions of S°
by

Michael Starbird * (Austin, Tex.).

Abstract, In this paper a technique is presented which allows one to produce many examples
of null sequence cellular decompositions of S* whose decomposition space is not §2. Specificaily,
it is shown that if {X{}iec is @ countable collection of non-degenerate continua each of which admits
a cellular embedding in S°, then there are embeddings Ai: Xi— S® so that {A(X)}ise is a null
sequence of disjoint cellular continua and S$%{hi(X))} is not homeomorphic to S*.

1. Introduction. A technique for constructing null sequence decompositions of S
is developed which proves the following theorem.

MAIN THEOREM. Let {X},e, be a countable collection of non-degenerate continua
each of which admits a cellular embedding in S®. Then there are embeddings hy: X; — S 3
50 that {h(X)}1eo is a null sequence of disjoint cellular continua and S*[{h(X)} is
rnot homeomorphic to S3.

In [1, § 2-5], Bing produced a null sequence of disjoint cellular continua {G}
so that $3/{G,} is not homeomorphic to S*. In that example, each G, is an indecom-
posable continuum. In [2, Theorem 3] Bing showed that if G is an upper semicon-
tinuous decomposition of $2 with only a countable number of nondegenerate el-
ements each of which is a tame arc, then S3/G is homeomorphic to S3. The
papers [3, 5] establish the existence of a null sequence {G}} of disjoint cellular arcs
so that S*{G;} is not homeomorphic to $3,

Recent results have given conditions under which a countable decomposition
of S? yields S One such result which follows from [4; 6, Theorem 4.1; 7,
Theorem 1), is the following theorem.

THEOREM. Let G be an upper semicontinuous decomposition of S3 into points
and countably many cellular continua {P} each of whxch has a mapping cylinder
neighborhood. Then S3|G is homeomorphic to S>.

The Main Theorem here shows that some hypothesis on the embedding of con-
tinua {G,} in S°® beyond cellularity is needed in order to conclude that S3{G}} is
homeomorphic to S3, k
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The construction needed to prove the Main Theorem is found in § 4 in the proof
of Lemma 4.1. Perhaps the most efficient method for the reader to obtain an under-
standing of the construction would be for him to read the eight steps in the proof

of Lemma 4.1, referring back to notation and previous lemmas as required. Sections 2 .

and 3 contain statements of Lemmas used in § 4.

2. Convergence lemmas. In this section three lemmas are stated which give
conditions under which a sequence of maps of a continuum X into §3 will converge
to a cellular embedding of X. The first lemma presents a condition under which
a sequence of continuous functions will converge to a continuous function or map.
Lemma 2.2 adds a hypothesis to Lemma 2.1 to enable one to conclude that the limit
map is an embedding. Lemma 2.3 adds another hypothesis which implies that the
limit map is a cellular embedding. Since the proofs of these lemmas are as easy to
" construct as the statements are to understand, no proofs are given.

'\ LemMa 2.1. Let X be a topological space, g;: X — S° (i€ w) be a sequence of
maps and for each i in w, let ¥, = {Vi;}]=1 be a collection of open sets so that

n N "
gX)= U Vi and diam V, ;< 1]i for each j = 1, ..., n;. Suppose that for each i in w,
i=1 :
¥ 141 i5 @ closed star refinement of ¥';, that is, for each Ve it ¥ igqs
CL(St(Fie 13,50 ¥ i) Vi
Jor some k.. Suppose that for each ie w and xe€ X, g,, 1(x) eSt(g,(x), Y e 1).
Then g = limg, exists, is continuous, and for every x in X and i in o,
_i=o0
g(x) €Stgyx), 7). _
LeMMa 2.2. Suppose the hypotheses of Lemma 2.1 are given. In addition suppose X
Is a metric continuum with metric ¢ and for each i in &, and points x, y in X, if
e(x, »)>1/i+1, ’
St(St(g,(x), ¥ ie1)s Piaa) O St (St(gi(.V)x Vir1)s Vige) = 9.
Then g = limg, is an embedding.
I=»w
LemMMA 2.3. Suppose the hypotheses of Lemmas 2.1 and 2.2 are given and in ad-
dition for each element V, ; of ¥, Viy 0 gdX) # O and for each i, there is a 3-cell B,
so that ) ¥y cBic ¥,
Then g(X) is a cellular set, so g is a cellular embedding of X, and

900 =N (U¥)=nCU7).

3. The two disk property. In order to prove the Main Theorem, it is necessary
to define a property which distinguishes a decomposition space from S3. The prop-
erty used here, as well as in [1; 3] and elsewhere, is the two disk property defined
below.

DEerFINITION. A finite collection M of disjoint closed subsets in the interior of
a solid torus T has the two disk property if and only if for every pair of disjoint
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meridional disks Dy, D, of T, there is.an element of M ‘which intersects both D,

and D,. ‘ . s

DEFINITION. A decomposition G of S2 is defined by sequence ‘{M,}ico if and

only if for each i, M, is a finite collection of disjoint closed sets in S3 so that

UM =U M, and each element of G is either a component of (U M;) or
N i€

a point of §°— N\ (U M).
ieo

THEOREM 3.1. Let T be a solid torus and G be a cellular decomposition of S*
defined by the sequence {M},q,, Where each M, has the two disk property in T. Then
S3/G is not homeomorphic to §3. : :

The properties mentioned in Theorem 3.1 are a favorite' way of showing that
a decomposition space of S° is topologically different from §° We do not repeat
the proof of Theorem 3.1. ' '

The Main Theorem here will be proved by constructing an appropriate defining
sequence {M;} for which each M, has the two disk property. The following lemmas
state that if a given collection M has the two disk property then certain modifi-
cations of M will yield a new collection with the two disk property. These lemmas
are then used to prove inductively that each M, in the defining sequence {Af;} has
the two disk property. The following lemmas were proved in [3]. The proofs are not
repeated here. .

LemMA 3.2 [3, Lemma 3.5]. Let T be a solid torus and M be a collection of subsets
of T with the two disk property one element of which is a cube with n handles H. Then

the collection M', obtained from M by replacing H by a'simple:clo sed curve J jjfahiq}; is
embedded in H as illustrated in'Figure 3.1, also has ‘the two disk: propenty;_\ 7 Lo
1*
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Figure 3.2 représents a solid torus- W in which two disjoint sets ¥ and Z are
embedded. The set Y is one pair of small eyeglasses while Z = |} Z; is the union of
several eyeglasses. The chain of eyeglasses: Y Z goes around W twice.

Fig. 3.2

LemMA 3.3 [3, Lemma 3.3]. Let M be a collection of subsets of a torus T which
has the two disk property. Suppose the solid torus W is an element of M. Then the
collection M, obtained from M by replacing W by the two sets Y and Z as described
above, still has the two. disk property.

4, Proof of the Main Theorem. Let {X,|P is an n-tuple of 0’s and 1’s starting
and ending with 0} be a countable collection of non-degenerate continua each of
which admits a cellular embedding in S3. Our objective is to produce, for each such
n-tuple P, an embedding hp: Xp — S? so that {#x(X5)} is a null sequence of disjoint
cellular continua and S3/{Ax(X3)} is not homeomorphic to S3.

We will preduce a defining sequence {M},.,, for a decomposition of S* so that
for each i, M, has the two disk property and so that the non-degenerate elements
of ﬂ (U M) form a collection {hp(Xp)} as desired.

Notatlon Let 0, = {Q|Q is an n-tuple of 0’s and 1’s which starts with 0}. -

For each Q in §,,let O’ be the i-tuple (1<n) obtained from Q by truncating Q
immediately after the last 0 in Q.

In order to describe the defining sequence {M,}, we produce several thmgs
for each n-tuple Q in §,: namely, K,, a 1-complex; g,, an embedding of Xo
and ¥y, a collection of open sets which cover go(Xo). These items will be
produccd inductively on #n, the length of the tuples @, in such a way that

= {CI(U ¥ @)}g<3. has the two disk property for each n. Also, for each n- -tuple P
in Q which ends in 0, lim {g4| Q" = P} will be a cellular embedding %, of X so that
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{rp(Xp)} is a null sequence and is equal to the set of non—degenerate elements of

N (Y M,).

neo

The exact requirements for each Ky, g and ¥7 are contained in the followmg
lemma.

Let ¢ be a metric for the Xp's. -

LeMMA 4.1, Let T be a standardly embedded torus in S® with dzameter less than 1
and {Xp|P € @, for some n and P ends in 0} be a countable callecnan of non-degenerate
continua edach of which admits a cellular embedding in S3.

Then for each Q € 3, and (Q, 0) and (Q, 1) € 8,1, there are Kp's, ¥ g's ana'ga s
which satisfy the following conditions:

(i) ¥ o .is a finite collection of open sets each of diameter less than 1/n;
(i) {CI(U *o)lQed,} is @ collection of 2" * disjoint subsets of IntT};
(iii) Ky is a connected, PL 1-complex contained in \) ¥ Q,
(v) {KylQeB,} has the two disk property;
‘) CI(U ¥ (q,0) is contained in a 3-cell in \J ¥y for e =0 or 1;
i) gg: Xp— U ¥ g is a cellular embedding;
(vii) for each element V of ¥y, there is a point xe X,y so that go(x)e V;
(viii) for each x € Ky, there is a point y e Xg and a ball B in ) ¥ g so that x
and go(y) belong to B and diamB< %3, where 84 is a Lebesgue number associated
with the cover ¥ o of go(Xg);
(%) if x,ye Xy and o(x,y)>1/n+1, then
St(St(90(9), ¥ @.1))» ¥ @,n) N St(StFeD), ¥ @.10)> ¥ (0.)) = B

) ¥ o.1) is @ closed star refinement of ¥ o, that is, for each V in ¥ (g,1), there

isa Uin ¥ so that CI(St(V, ¥ o.00)=U;

(xi) ¥ (g0 Is o single open set in \) ¥Vp;

(xii) there is an isotopy hy: S — S? fixed outside a finite number of dxs_]omt
sets in ¥ g1y S0 that hy = id and g1y =hy o gg: Xg — S°.

Proof of Lemma 4.1, The proof proceeds by induction on 7. It will be proved
that if Kp, ¥, and g, have been defined for-each Qe d, 50 that they satisfy con-
clusions (i) —» (viii) of Lemma:4.1, then Kg.eys ¥ (.y>: 9(g.0y (€ = 05 1) can be con-
structed in such a manner that they satisfy conclusions (ix)~(xi) for the nth
Lemma 4.1 and conclusions (i)-(viii). of the (n-+1)st, Lemma, 4.]..

For n = 0, (, has one element, (0). Let Koy bea centcrhne of T. Let ¥ (o) con-
tain one open set ¥, the interior of 2 regular ncfghborhood of K(o) Let gw) X(q)——->V
be a cellular embedding.

Suppose Ky, ¥"g, and g have been defined for-each @¢€'Jy so ' that, they satlsfy
conclusions (i)-(viii) -of Lemma 4.1. We show:how: to construct K(o 9> ¥ w@n and
g(a » (e = 0,1) in several steps.

..Step 1. Use the fact that go(X) is. cellular topush KQ oEgQ(XQ:) msxde U ¥Ya-
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Let KQ be the moved K,. Maintain the property (viii) that for each point x € K
there is a point y € X, and. a ball Bin ()% g so that x and gg() belong to B and
diam B<$d,.

‘Step 2. Take a small régular neighborhood of X and use Lemma 3.2 to re-
place K} by a solid torus W, so that {Wy|Q e {,} has the two disk property, and
each point of W), lies in a }4, ball in |) ¥y which contains a point of g,(Xp).

Step 3. Use Lemma 3.3 to replace each W, by two objects, an eyeglass ¥ and
a union of eyeglasses {Z;}iL., so that ¥ and each Z; is contained in a ball Bin U %7,
of diameter less than 16,.

Step 4. Join each Z; to one point of gQ(XQ.) by a smalI (i.e. dxameter less

than 4dy) ‘arc A; in such a way that go(Xg) U (U A,) V) ( U Z,) is contained in

a cell in |J 5. This step can be accomplished by havmg the arc A4; meet the eye-
glass Z; as shown in Figure 4.1. Notice how Z, ‘then Z,, etc., can be isotoped down
to the arcs A,, 4,, etc., and thence into as close a meighborhood of go(Xy) as
desired.

i

Fig. 4.1

Step 5. Cover go(Xp) U (U 4) v (U Z,) by a finite open cover ¥'g,y, so that
@ if x,yeXg and o(x,y)>1/n+1, then St(St(gg(x), ¥ g,1) ¥(g,u) O
A St (St(gq(y) V) Ven) =9,
(b) for each i, 4, L Z; is contained in a single element of ¥ (@1)»
(© ifi+j, (4, 0Z)cVeY gy, and (4, UZ)cWe¥ g, then VN W = B,
(@) U ¥ (g.1y is contained in a cell in () #°g, and
@ AU @)nY=0.
Note that these conclusions are easily obtamed with (b) possible since for each #;
4,V Z) 0 go(Xy) is a single point and 4, U Z, is small.
. .Step 6. The embedding g(g,1): X —tJ # (g1, can now be defined. For each
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AyvZ; (i=1,..,m) there is an open set ¥; in ¥, which contains it. Let
b sﬂ_*si‘ (ze[O 1) be an isotopy so that hy = id, for each ¢ in [0, 1],

hlS®~ U Vi=

and a ball Bin Y7 .1 80 that dxamB< q}ém,l) and x and A, og4(y) belong to B.
Then Jdw,"= hy °do-

Step 7. The connected 1-complex Kig 1y is obtained by joining the free ends
of the 4; LU Z/’s together by arcs each point of which can be joined- to R 0.00)
by an arc in U #g,1y of size less than $6g 4.

Step 8. The set Kg,0) is ¥, the eyeglass. A small neighborhood of Kq,, is the
single open set in¥"(g,9y. The embedding g(g,0) X(g,00—U ¥ (0,0, is a cellular embed-
ding guaranteed by the hypothesis on X4 ).

These steps complete the proof of Lemma 4.1.

The Main Theorem is now proved as follows. Let M, = {CI(U ¥,)| Qe §,}.
Then {M,}ne, is a defining sequence for a decomposition of S, The non-degenerate

components of () (U M,) form a null sequence. Each element in the null sequence
hew

is & cellular embedding of an Xj. In fact, for each n-tuple P in @, which ends in 0,
lim{gg|Q' = P} is a cellular embedding of X, and is equal to () CI(U ¥"p) by
o=p

id, and for each point xe U (4; U Z), there is a point ye Xy

Lemma 2.3. Since each M, has the two disk property, the decomposition space $3/G
determined by the M,’s is not homeomorphic to S* and the Main Theorem is proved.
Note that the statement of the Main Theorem could be strengthened slightly to
reflect the fact that the final embedding of each X; is obtained from a given cellular
embedding by means of a pseudo isotopy of space.
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