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Sequences of measurable functions -
by

Elibieta Wagner (£6d%)

Abstract. The paper consists of three parts. In the first part we shall define convergence with
respect to the o-ideal J and we shall prove the necessary and sufficient condition under which this
convergence yields a topology in the set of real measurable functions. The second part contains the
generalization of the theorem of Goffman and Waterman ([2]) concerning upper and lower limits
onto the case of convergence with respect to the g-ideal. The third part deals with double sequences
of measurable functions and includes, among other matters a generallzatxon of the theorem of
Sierpinski ([4])..

I

Let (X, %) be a measurable space. Let S <& be a proper g-ideal in
a o-field &. We shall say that #-almost every point of A= X has some property
(or that this property holds J-almost everywhere, in abbreviation #-a.e., on 4)
if and only if the set of points in 4 which do not have this property belongs
to the o-ideal J.

DEFINITION 1. We shall say that the sequence { f,},en of & -measurable functions
defined on X converges with respect to S to the &-measurable function f defined
on X if and only if every subsequence {f;; }nen Of {fi}uen contains a subsequence
{ Torge },en converging to f #-a.e. on X We shall use the denotation f,, -> for

= lim f, with respect to S

n=o0

We shall say that two &-measwmable functions f and g are equivalent if and

only if f—g is a null function (that is, if f—g vanishes F-a.e. on X).

1t is not difficult to observe that the limit with respect to .# is determined up.
to equivalent functions. In the above definition we can suppose also that all func-
tions f, and f are defined only f-a.e. on X

Observe also that if (X, , p) is 2 finite measure space and S <& is a g-ideal
of sets of measure zero, then convergence w1th respect to . is simply convergence
in measure.

It'is not difficult to venfy that the followmg conditions are fulﬁlled
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(L) If f, = f for every n, then f; ;)m 7
12 Iff, 3 J; then for every subsequence {f,, }ren Of { f,}nen We have £, . _;.;w f.

(L3)  If the sequence {f,},.y is not convergent to f with respect to £, then there
exists a'subsequence { f,, },en, DO subsequence of which converges to f with
respect to £.

So the set of & -measurable functions defined on X equipped with convergence
with respect to  is an Z* space ([1]). One can define in an .#* space the closure
operation assuming that f belongs to the closure of the set 4 (fe A) if and only if
there exists a sequence { f,},cx in 4 such that f; .:.»;wﬁ The operation so defined has

the following properties: @ = @, AcA, AU B = A u B for every A, B, but the
condition A = A need not be fulfilled. This last condition is fulfilled if and only if
the convergence has the following property:

@ Iff; —"; fand fj, -i j}for Jj & N, then there exist two sequences of natural

numbers {otpens {n,,}‘,EN such that f; . —> f.

If the space #* fulfils the condmon (L4), then we can equip the ‘set of all
& -measurable functions with the topology determined by the closure operation
described above. This topology is often called a Fréchet topology.

Observe that in the case of convergence with respect to . the condition (L4) is
equivalent to the following condition:

a I f, j;;m f and £, z fi for je N and, moreover, {x: £, (¥)% f(x)} ¢,
ind n— o

{x: f{(x) # f(x)} ¢ # for j,ne N, then there exist an increasing sequence

{Ja}pen of natural numbers and a sequence {n,},.y of- natural numbers

such that f; .. —> I
]

DEFmNITION 2. We shall say that a pair (&,#) fulfils the condition (E) if an'd
only if for every set D € ¥~ and for every double sequence {B;,}; ¢y of & -measur-
able sets such that

(a) Bj,nch.n+1 for j’ "EN,
o
(b) UBj,,, =D for jeN

there exist an mcreasmg sequence {J,},EN of natural numbers and a sequence

{ }pen Of natural numbers such that ﬂlB_,p,,,pé.}'.
. p=

THEOREM 1. 'Suppose that every family of disjoint sets in 5 is at most denumer-
able. Then the set of all &-measurable real Sunctions is equipped with the Fréchet

topology generated by the convergence with respect to S 1f and only if the pair (%, #)
Sulfils the condition (E).
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Proof. Sufficiency. We can suppose, choosing the subsequences if necessary,
that every sequence { Jimnen is convergent £-a.e. to J;» and the sequence {1},
converges £ -a.e. to f. Hence there exist a set 4 € # and sets 4;e S for je N such
that f,lX—4; = S1X—4; for every jeN and fj|X—A j?aole_A. Put

0

D=X-(U4;uA). Then De ¥ ~F. Let
J=1
B, = {xeD: |f;x)~fix)|<1/j for every k=n} for j,neN.
We have B;,<B;,., forj,ne N and U B,, = D for every j. From the con-
dition (E) it follows that there exist an mcreasmg sequence {Js}pen of natural numbers
and a sequence {1,},¢y Of natural numbers such that ﬂ ij ntS Letxe ﬂ B_,, o

Then
I f},,n,,(x) —[],(x)l < lljp

Simultaneously f;,(x) e S (x), because x & D. Hence f;,,,(x) Za f). Then there
exists a sequence { jj,_,,p},.,, such that

S () e f(x for’

N 1y _ (1
Put f1 1 "’f_}; nnfl 2 = /}mu+1,-- e -f}u f;f -‘fj,.nz’fz,z)

for every p.

0
xe( By, =BV¢s.

p=1
= fh.dlz+1 3 e ’fz(l)
= Siamet 13 or fk = fjs oo Itis easy to see that for every
sequence {Mm}yen Of natural numbers £{3)(x) o f @) for xe B®, Indeed, one can

prove convergence as before, observing only that o e = Siem+me—1 and using the
definition of B;,.

We proceed further by transfinite induction. Suppose that for every ordinal
numbers a<7, where 7 is a countable ordinal, we have defined a double sequence
{f$ i ,,} ey Of &-measurable functions and a set B € & such that the sequence
{B N <y is nondecreasing and for every sequence {m}iey of matural numbers
&%) e F ) for xe B and if oy <a, <1, ‘then every sequence { fi%2}, . y is almost

a subsequcnce of some sequence { f; ,f";,")}“" (that is {£%2)}, .y has at most a finite
number of terms not belonging to { £%}.x). ¥ # has a predecessor and D,_,
= D—BY" Ve 7, then every sequence of the form { i~ ¥}, . is convergent & -a.e.
on X (and so also with respect to ) to the function f and the condition (L4') is
fulfilled. Suppose now that D,_; ¢.#. Put

B = {xe Dy_y: |/ V)~ ("'l)(X)I <1/j for every k>n},
We have
' » BB for j,neN
and :

0 .
UBY =D, for every j.
e ATk L
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From the condition (E) it follows that there exist an increasing sequence {j,},en

L
of natural numbers and a sequence {7,}, ¢ of natural numbers such that ﬂlBg’::,,:’ ¢S,

As before, one can prove that fi7, V(x) e f&) for xe ﬂ B{-D . put

Jpmp

BW — pi=1 , n B(n—l)

Jenp *

Then f{17 (%) = f(x) for xe B™ and B‘"’ B(" 1’¢J

If  does not have a predecessor but there exists an ordinal number a<f such
that D, = D—B" e #, then every sequence of the form { /). is convergent
F-a.e. on X (and so also with respect to #) to the function f and the condition (L4")
is fulfilled. Suppose now that D, ¢ for a<n and let {a,},.y be an increasing se-
quence of ordinal numbers converging to 7. Put B® =|) B®. Obviously

a<y

B® — {J B“”. We shall define a double sequence of functions in the following way:
f(n) _f(lz), e}

. Then for every sequence {m}een of
natural numbers we have f,‘,,,k(x) = f(x) for xeB") Indeed, if xe B™, then

r=1
p (1) (.
O = f0, F = £, S = 0 SN =D, A48 = 113
('I) ("k) (n) (zkl ('1) f(«k)
= 19

there exists a number p such that xeB(“") From the definition of the sequence
{ £} ;e it follows that there exists a number X(p) such that for every k> K(p)
the function f,§’l,’,k is an element of some sequence { ﬁf‘f,{’,)‘},,,,,, converging to f on
the set BC#.

‘We shall show that there eXists an ordinal number f< £ (where Q stands for the
smallest nondenumerable ordinal) such that D—B"® e.#, and so our procedure
finishes at some step. Suppose that D—B® ¢4 for every a<Q. From the defi-
nition of B(“) it follows that if #<Q has a predecessor, then BW_p-D g g pyt
C, = BWY, = B9—B® Y for an ordinal having a predecessor. Then C,¢.#
and C,n C =@ if «,n<Q, a ¥ n and o, n have predecessors. The set of all
countable ordinals having predecessors is nondenumerable, which contradicts the
assumption.

The sufficiency of the condition (E) is proved.

Necessity. Suppose that (E) is not fulfilled. So there-exist a set De & —5
and a double sequence {B;,}; ey fulfilling the conditions (a) and (b) and such that
for every increasing sequence {j,},ey Of natural numbers and for every sequence

{n,}pen of matural numbers we have ﬂ ef. Put f.(x) =

oty Xp-p; X +1[j

Ji = Yjforeveryjandlimf; = f = 0
E FET"]

and all limits exist for every x € X (hence all sequences are convergent also with

respect to £.

Let {j,}pen be an arbitrary increasing sequence of natural numbers and let

for j, n e N. Then it is easy to see that lim f}.,,
. n— o0
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{n,},an be an arbitrary sequence ‘of natural numbers. For x & X the sequence
{Sipny(*)}pan does not converge to zero if and only if

xX€ ﬂ U (D Bj,,,n,,) = D— U n ij.n, .

k=1p>k k=1 p>k

“The last set does not belong to the o-ideal #, and so the sequence { Sipmp)pen does

not converge to zero S -a.e. on X. From the arbitrariness of this sequence it follows
that the condition (L4') is not fulfilled. This ends the proof.

Let us mention that the condition concerning denumerability of every disjoint
family in & —# is sometimes called (in the language of Boolean algebras) the count-
able chain condition.

ExampLe 1. If (X, &, |*|) is a finite measure space and £ is a o-ideal of all
sets of measure zero, then-it is well known that convergence with respect to
(convergence in measure) yields the topology. Hence the pair (&, #) fulfils the con-
dition (E). It is well known that the countable chain condition is fulfilled. Also it is
possible to prove the condition (E) directly. Indeed, let D € &~ and let {B;,}; nen
be a double sequence of measurable sets fulfilling (a) and (b). Then we have |D|>0
and it suffices to put j, = p for every natural p and. to choose 7, in such a way that

|D—B,, | <|D|/3". Hence |n | Bynal>1D1/2>0.

ExaMpLE 2. If (X, &) is a measurable space and S =& is a maximal ¢-ideal,
then the countable chain’' condition is fulfilled (every disjoint family in & —.# can
have at most one element). We shall prove that the condition (E) also holds. Let
De ¥~ and let {B;,};en be a double sequence of & -measurable sets fulfil-
ling (a) and (b). Put j, = p for every natural p and choose 7, in such a way that

B,,, ¢ (it is possible for every p). Then ﬂ ¢ #, because

Ptp

X- ﬂ p,..,— U(X—— B,,)eS.

ExampLE 3. Let X = [0, 1], let & be a class of sets having the Baire property
and let & be a class of sets of the first category. It 1s well known that the countable
chain condition is fulfilled. Constructing a double sequence of functions, we shall
show that the condition (E) does not hold. Let

fl.n(x) = XAJ,"(x)'i" I/J: ) where A,/,n = [0 1] g} U (i/j au’ 1/.,+an) ER

{a,}»ax is a decreasing sequence of numbers tendlng to.zero and f,(x) = 1/ for A neN
I
Then hmj},,(x) 1/j if x # 1/j, i=1,..,j—1 for every j, so j},,, e f, Also

f, —> f =0 Slmultaneously we have {x: f,,,,(x) #fX)} ¢S and {x: ﬁ(x) #f ()} ¢S
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for j,neN. Let {j,},en bean increasing sequence of natural numbers and let {no}pen
be an arbitrary sequence of natural numbers. We shall show that :

{x: ~(11me.. n,(x) =0} ¢s.

From the arbitrariness of { ]‘,} PN  and {n,)penwe conclude that no sequence { f_',,.,, ,}p N
converges to f with respect to #. Observe that

{x: ~(imfj, . (x) = O} = {x: hmsup Siomp®) 21}

©

5N 0 {x: fj,,,.,,(x)>1}

M=1p=M+1
o0 -]
= A .
I psh,
M=1p=M+1 '

©

For every M the set . {J 4, , is open and dense in [0, 1], and so
+1

o=
{x: ~(lim £;,3,,(x) = 0)}
P-oo

is a residual set and does not belong to £.

EXAMPLE 4. Let X be an arbitrary nondenumerable set, & = 2¥ and & = {@}.
Then convergence with respect to .# is simply convergence at every point. It is well
known that in this case this kind of convergence does not yield a topology. However
the condition (E) is fulfilled. Indeed, let De & —# and let {B;,};,en be a double
sequence of sets fulfilling (a) and (b). D is nonempty; let x, € D. 1t sufﬁces to put

Jp = p and to choose 7, in such a way that x,e B,

oy FIENCE Xo.€ ﬂ B, ., SO

ﬂ pn,

Observe that the pair (¥, #) does not fulfil the countab]e chain condition. So
this condition in Theotem 1 is important.

iI

If X is an arbitrary non-empty set, &—a fixed o-field of subsets of X and
S =& —a o-ideal, then identifying the sets 4, Be & if and only if AAB e S we ob-
tain a quotient Boolean algebra &/#. The class including a set A4 will be _denoted
by [4]. For classes [4], [B] € &|# the notation [4]c[B] means that A, —BjeSf
for every (or, equivalently, for some) 4, € [4] and B, € [B]. In virtue of Theorem 21.1
from [5], p. 74 &/ is a o-complete Boolean algebra.:

Denote-by [f] the class of all &-measurable real functions equivalent to an
& -measurable function f. For classes [ f] and [g] the notation [ f]<[g] means that
Fi(0)<gy(x) F-a.e. on X for every (or, equivalently, for some) f; € [f] and g; € [g]
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Lemma 1. The Boolean algebra | is a complete lattice if and only if the family m
of all equivalence classes of real & -measurable functions is a complete lattice.

The proof of the above lemma is essentialy the same as the proof of Lemma 1
in [3], p. 106, and so we shall omit it.

LemMMA 2. If a o-complete Boolean algebra .5 Sulfils the countable chain con-
dmon, then &[S is a complete lattice.

‘Proof. It follows immediately from Theorem 20.5 from [5], p. 72.

COROLLARY. If a o-complete Boolean algebra 5|5 Julfils the countable chain
condttron, then M is a complete lattice.

" In this part of the paper we shall denote both [f] and its elements by f, hoping
that no ambiguity will result and that the reader will make suitable distinctions
according to the context. Also we shall suppose that %/.# fulfils the countable chain
condition.

We shall now define an equivalence relation for sequences of & -measurable
functions. Let {/}nen be equivalent to {g,},.vif and only if {fo—Gu}nen converges
with respect to S to zero. Let {f,},.y be a sequence of &-measurable functlons
and let # be the equivalence class including {f;},en.

* DeFNITION 3. We shall say that Ue It (L €M) is an upper (lower) limit of
a sequence {f,}yen With respect to S if and only if

= inf[limsupg,: {gu}nen € F] s
n
(L = sup[liminfg,: {g,}yen € F)) .

The existence of U and L follows from the corollary and from the fact that for
every sequence {g,},ep Of &-measurable functions the function limsupg, and

]iminfg,, is also & -measurable.

LemMma 3. If U and L are upper and lower limits with respect to .ﬁ of a sequence
{fulpens then LLU.

Proof. Suppose that . U(x)<L (x) onaset B¢ £ Then there exists a sequence
{Pu}ven € F such that hmsuph (x)<L(x) on the set C ¢.# and there exists a se-

quencc {gn}nen € F such that hmsuph,,(x)<11mmfg,,(x) on the set D¢s. We have
= U {x: limsuph,(x)+w<liminfg,(x)},
weW Sooem n
n_'>0 R . . .
where W is the set of all rational numbers, and so there exists a number w,> 0 such
that the set {x: limsup#,(x)+wo,<liminfg,(x)} does not belong to £. Obviously
. ..n : » Sl .

{x: limsuph,(x)+wo <liminfg,(x)}
g n . . i

v = Q {x SuP(hn(x): hn-l';:‘l(jx)!l“')+w03<ihf(gn(-x)s 9,;+1(’?); )

P
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hence there exists a natural number 7, such that the set
E= {x: sup(hno(x) > hmr|- l(x) > "')+ Wo <inf(gnn(x) yGno+ 1(x); '")}

does not belong to . Hence for every xe€ E and for every n>n, we have
gu(X)=h,(x)>we>0, and so a sequence {gu}nen is not equivalent to {ftnay —
a contradiction. .

Lemma 4. Let {f,}nen e a sequence of & -measurable functions. If { f,}nen does
not converge to zero with respect to S, then at least one. of the following conditions is
Sulfilled: .

"1. there exist a subsequence {fy Ynex Of {fi}nens a st Ao €S — and a natural
number ko such that for every subsequence { fm,,.}uN of { 'f,,,” waN We have
limsup f,,,p"(x)>1/ko S-a.e. on Ag;

2. there exist a subsequence { foInen of { filnen,a set g€ S —F and a natural
number ko such that for every subsequence { ) of {Smatnan we have
liminf f,,, ()< —1/ko F-a.e. on Ao.

n

Proof. Suppose on the contrary that for every subsequence {f,.}nen of {f nans
for every set Ae &~ and for every natural number k there exists a subsequence
{ S, Ynen -Of {fmptuen such that limsupf, (x)<1/k on the set 4’4 such that

n’ n n .

A' € ¥ — £ and that for every subsequence { £, ey Of {fi}nen, foreveryset A ¥ -5

aad for every natural number k there exists a subsequence { f’"p..}"‘* ~ Of {fnn}nen SUCh
that liminf f,,,h(x)> —1/k on the set A" <A such that 4" e ¥ ~7.
n

As a first step we shall prove that under this supposition for every subsequence
{foulnen there exists a subsequence {f{},en Of { fu,}nen Such that limsup Mm@ <1
N n .

F-a.e on X.
Let { ;. }nen be an arbitrary subsequence of { Shen:Put A =X and k= 1.
There exists a subsequence {f$"},en Of {fitnen such that

B, = {x: limsup fP(x)<1} ¢S .

Observe that By € &.

Suppose that for every ordinal number &<, where <2, we have chosen a sub-
sequence {f{?}yen O { fn}nen and a set-B, € & such thatif a; <&, <7, then )
is almost a subsequence of { f{*"}, ey the sequence of sets {B,},<, is nondecreasing
and limsup /¥(x)<1 for x € B,. If  has a predecessor and X—B,_, € 5, then we

n
put f® = 0" for n = 1,2, ... If X—B,_, ¢ #, then in virtve of the supposition
we can choose a subsequence {fi™},ex of {7V}, .y such that limsup f{P(x)<1
n

for xe B, and B,—B,_1 ¢4 Indeed, it suffices to take 4 = X—B,_, and k= 1.
If # does not have a predecessor and there exists an ordinal number a <z such
that X—B, €.#, then we put f{? = £ forn = 1,2, ... If X— B, ¢ # for <, then
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we choose an increasing sequence {o};cy of ordinal numbers tending to n. Put
0

B, = U B,. Then of course B, = \J B,,.Let {f{"},.xbea diagonal-subsequience
k=1

a<y .
chosen from the family {/;*},en, k=1,2,... Then limsup fi"(x)<1 for x€ B,.
n

We shall show that there exists an ordinal number < such that X—B; e S,
Suppose that X' — B, ¢ # for every o <Q. From the definition of sets {B, }< g it follows
that if 7<Q bhas a predecessor, then B,~B,_, ¢ #. Put C, = B,, C, = B,—B,_4,
when l<a< is an ordinal number having a predecessor. Then C, ¢ and
C,nCy=@if o # 7, o, <L, o and y are ordinal numbers having predecessors.
We have thus obtained a contradiction with the countable chain condition. Hence
there exists an ordinal number < Q such that X— B, € #. If we put /" = £P for
neN, we obtain a subsequence for which limsup f{’(x)<1 F-a.e. on X.

n
Repeating this argument for k =2 and for { £}, ., we obtain a subsequence
{70, ox Of { 78}, ey such that limsup f{?(x) <} #-a.e. on X. Proceeding similarly
"

for k = 3,4, ... and then choosing a diagonal subsequence {J,},cy, One can prove
without difficulty that limsup f,(x)<0 -a.e. on X. ’
; ;

Using the second part of the supposition; we can choosé a subsequence { fmp..}" eN
of {/,}nen such that liminf f,,,p"(x) >0 F-a.e. on X.
n

' Hence from an arbitrary subsequence { f;, Jpen Of {/}nen We can choose a sub-
sequence { Son, }sey CONverging to zero J-a.e. on X — a contradiction.
n

THEOREM 2. Let f and f,, ne N be &-measurable functions. A sequence {filnen
converges with respect to 5 to a function f if and only if U = L, and then f = U =.L.
Proof. Suppose that { f}nen converges to f with respect to # Then a sequence
{f.}ne is equivalent to a sequence {g,},cy, Where g, = f for n = 1,2, ... Hence
U<, because limsupg, = f. Similarly one can prove that L=f So fSLLULS
; A o ’

and U = L. L .

Suppose now that U = L: Without Toss of generality we can suppose that
U = 0. Assume that { f;}, ¢y does not converge to zero with respect to and that the
first condition of Lemma 4 is fulfilled (in the remaining case the proof is similar).

Let {g,},ey be @ sequence equivalent to:{f},on: Thett' g, = fi+h,, ne N,
where {#,},.y is a sequence of &-measurable functions converging to zero with
respect to . Let { £}, b6 a subsequence, 4, — @'set and k, — 4 natural number
described in Lemma 4. There'exists a subsequerice {h;,;ﬂn},,,n of {h,, }ex convergent
to zero at gvery xe€ X—C, where Cef. Let x€ 4o—C. Then

lim supg,,(x);limsupg,,,p"(x) = lim sup( f,’,,*P"‘(x)"-Fhv,,,Ph(x)) = ko
n F n. ] B noo Crme L1 . VUl [t

From the arbitrariness of {g,},ev and from the definition of U we have U(x)=1/ko
F-a.e. on 4, This contradiction ends thg, proof. "~~~
2~—F th th CcXIr
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Let X be an arbitrary non-empty set, & — a fixed o-field of subsets of X and
S —a o-ideal.

DEFINITION 4. We shall say that a pair (%, 5) fulfils the condition (F) if and
only if for every set D € & — and for every double sequence of & -measurable sets
{Bjn}jnen such that

(a) B;,<Bj,+, forj,neN,

() U By, = D for jeN,
n=1

©) B,,,,>B,,;, if iy <i, and i +j; = i,+];
there exists a sequence {n;};en of natural numbers such that hmsupB, n &S

LemMA 5. If a double sequence {S,,}pren of &~ measurable sets fulﬁls the con-
ditions (a), (b) and (c) from Definition 4, then there exists a double sequence {H,, .}y nen

p+r—1 ptr—1
of &-measurable sets such that S,,= ) U H,y for every p, reN.
m=p n=p
Proof. Put H,, = Sy for n€N, Hypn = Syn-mt1=Smn-m Y Sms1mem) if
m<n, m,ne N and H,,, =@ if m>nm, n € N. We shall proceed by induction with
p+r-1 pHr—1

respect to r.For r =1 the equality is obvious. Suppose that S,, = U U
. ) m=p A=y
H, .. Then

p+r ptr

U U H,,

m=p n=p
p+r=1 p+r-—1 .
= U U Hm,n v Hp p+r Y Hp+l.p+r V..V Hp+r—l,p+r v Hp+r.p+r
m=p a=p

Spir VU [Spre1=(Spir U Spa1,)] Y [Spa 10— (Spi1,e-1 Usp+lr—1)]U

ptr, 1)] v Sp+r 1

[

U[S;+r—-1z (S, +r-11U

pr+ls

because from (c) it follows that Spip,~1 S5y s Spar—1,1 Sy, for r>1, re N

and for every pe N.

THEOREM 3. Let { fryn}mnan be a double sequence of & -measurable real functions
defined on X. The convergence # -a.e. 1o f of all sequences {f,, . }xen Where my k—>- 00,

e > implies the convergence F-a.e. to f of a double sequence { fo y}m.ian if and
only if the pair (&, %) fulfils the condition (F).
Proof. Sufficiency. Assume that f(x) = 0. Suppose that

E = {x: ~(.13.inn'ﬁ""'(x) =0)} ¢
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For every x € E there exist a number a,>0 and two sequences {m}xens {Mi}ran Of
natyral numbers tending to infinity such that |f, .(X)|>a, for every keN.
Denote by E, the set of xe E for which there exist two sequences {1}, ey a0d {m}een
of natural numbers tending to infinity such that | £, ..(¥)}=a for every ke N. We

o0
have E = | Ey;;. There exists a natural number i, such that E; ;, ¢ .#. Denote E, ;,
i=1
0 o
U U H,,
m=p nep

for pe N. Then it is easy to verify that H = S, for every pe N. If we put
ptr—1 ptr—1

Spe= U U H,, then it is not difficult to prove that the double sequence

m=p wmp

{S, r}pren fulfils the conditions (2), (b) and (¢) of Definition 4 with D = H. From

the condition (F) it' follows that there exists a sequence {r,},.y such that

Q = limsupS,,, ¢.#. Let (my, n) be the kth element of the following sequence:
P

by H. Put H,,, = {x: | fuu()|Z1/;,} 0 H for m,neN and S, =

0D, e, @, 14 =1), @, 1), oy 2, 247 =1), e
‘ s (P47 =1, 1), oy (L+ry =1, 147, —1),
(2! 2)’ ey (2: 2’+r2_1)9 (3’2)1 sees (3’ 2+r2—1) 'y

G @Fr=1,2), ey QHr—1, 247,-1),

Py D)y oo (B, 0 47,=1), (P41, 0), ooy (PH1, pH1=1), e
s (PHI=1, D), iy (P+1p=—1,p+r,—1),

...................................................................................

Then m,, oL ® and n, o If xe Q, then x belongs to infinitely many sets S,,,,,

and so in the sequence {f, ..(*)}xey there are infinitely many elements greater than
1/iy; so the sequence {f,, nJxen does nottend to zero S -a.e. on X. This is a con-
tradiction,

Necessity. Suppose that the condition (F) is not fulﬁl]ed and so there exist
aset De ¥— and a double sequence {S,,},,en Of & -measurable sets fulfilling
the conditions (a), (b) and (c) of Definition 4 and such that for every sequence {r,} pan
we have limsup S,,,, € #. Let {H,,,,,,},,,,,,. ~ be a double sequence of sets described in

P

Lemma 5. Put f,, ,(x) = xg,,.(*) for m neN.We shall prove that for all sequences
{m,},,. wand {m}, .y of natural numbers tendmg to infinity we have lnn f,,,,, m®) = 0.

S -a.e. on X Indeed, the last asserfxon does not hold if and only if x € hm sup Hyper
Let M* = {m,: keN} and N* = {m: keN}. préM*uN* then we put
rp=1.1If pe M* U N* thenwepnt §

_rp = max(max{m: my=p}, max{m: n =pH=p+l ..

(we take zero as the max of the empty set). Observe that the sets {m: m, = p} and
{m: n;'= p} aré both finite, because .-> co-and ny -> 60, and so the definition

*
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of r, is coirect, Froi this definition it follows without difﬁc‘Julty that for every natu-

1al k there exists a natural number p such that H,, , <=S,,,. Hence lim sup Hypos

i:,liin,supS,, ,, €, and the convergence #-a.e. to zero ‘of the sequence { Soemdnen

is proved

Simultaneously it is easy to see that the sequence { f,,,,,,},,,,,,EN does. not tend to
zero for any x € D.

W. Sierpiniski in {4] has proved that if X' [0,1], Lisa o'-ﬁeld of sets measur-
able in the sense of Lebesgue and . is a o-ideal of sets of Lebesgue measure zero,
then the convergence a.e. of every sequence { fimteen O {Mitren 204 {Mdren
tending to infinity implies the convergence a.e. of a double sequence { fyu}maan-
So in this case the pair (&, #) fulfils the condition (F). The proof.in [4]-i§ valid also
in the case of an arbitrary o-finite measure space (X, &, 1) and the o'~ideal of sets
of measure pu zero.

Observe that if the pair (&, #) fulfils the condition (E), then 1t fulfils also the
condition (F). Now wé shall show an example of a pair (&, #) fulfilling (F) different
from.the pair (o-field of all measurable sets in ¢-finite measure space, o-ideal
of null sets).

Let X be a complete and separable metric space, ¥ —a ¢~ ﬁeld of sets having
the Baire property and J —a o-ideal of sets of the first category.

THEOREM 4. A pair (&, F) fulfils the condition (F).

Proof. Let D€ ¥ —. and let {B,,};,cx be'a double sequence of sets belonging
to & and fulfilling the conditions (a), (b) and (c) of Definition 4. We have D = GAP,
where G is an open and non-empty. set and P is a set of the first category. Let K (x, r)
be a ball with the centre x and the radius >0 included in"G. It suffices to show that
there exists a sequence {nj},e x of natural numbers such that hmsup(Bj,,, , 0 K(x,r)
is residual in K(x .

Put C;, = B,,n'K(x,r) for j,ne N. Then Cj,,e.? for every j,neN, and
so we have C,, = G,,,AP, »s Where Gy, is open and P, is of the first category for
every j,ne N We have

limsup C;,,, ;=
b

158

-]
C,
x ; g‘ Jimy

and : . .
U Cj,ﬁ;D U SR T U Pj,n,:

and so 1t sufﬁces to choose a sequence {n,} ey in such a way that for every ke N

the set U Gy, is dense in K(x, 7).
o ,
From the condition (b) it follows that () C;, = D n K(x, r), ahd so it is not
\ =1
. « .
difficult to see that | G;, is dense in K(x,r) for every jeN. Let {G;: je N} be
SO asy Y 2 » jeN} be.

g
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a basis for a subspace topology in K(x,r) such that {G;: j =k, k+1, ..} is also
a basis for every k € N (the existence of such a basis easily follows from the separ-
-]

. oL L]
ability). For every je N we have G; A L_) Gj;,, # @, because the set U G, is dense
in K(x, r). So for every j € N there ex1sts a natural number 7; such that GJ N Gy, #9.

Hence the set U Gy, is dense in K(x, r) and from the fact that {Gi j= &, k+l -}

is also a basw it follows that U G, is dense (and residval) in K(x, r) for every
keN. So llmsupC_,,,,j is a res1dual set in K(x, r) and hmsupc_, ny & F. This ends

the proof. .

The assumption of & -measurability of functions { f,,,}maex i obviously essen-
tial in Theorem 3. It is possible to construct a double sequence of functions
{ fmpmnen defined on [0, 1] such that for every my o O T > wklilg S ) =0

except on a denumerable set (depending on {Mrens (Midrent but lim f, .(x) is
n,m=* o0

not equal to zero at any point of the interval [0, 1] (see [4]).

The countable chain condition is also essential in Theorem 3. In [4] there is an
example showing that for X = [0, 1], & ~a o-field of Lebesgue measurable scts
and £ —a o-ideal of denumerable sets the convergence of every {/fpmdren fOT
{M}een> {Mrey tending to infinity does not imply the convergence of {Frumtmmen
except on a denumerable set. It is worth observing that the example is good also
if & is a o-field of sets having the Baire property:

In the above considerations (in this part) the behaviour of the pairs (a—ﬁeld of
measurable sets in a o-finite measure space, o-ideal of null sets) and (s-field of
Baire sets, o-ideal of sets of the first category) was similar. However, if we assume
that the sequence {m}jey and {n}scy are increasing, the situation is different.
Sierpifiski in [4] has proved that in this case the convergence a.e. of sequences
{ fmmeen does not imply the convergence a.e. of the sequence { frntmnen €VER
if all functions f,, , are continuous.

Suppose again that X is a complete and separable metric space, & —a o-feld
of sets having the Baire property and J —a o-ideal of sets of the first category. Then
the following theorem holds.

TEEOREM 5. If {fmtmmen 15 @ double sequence of & -measurable functions
Sulfilling the following condition: for all increasing sequences {mk}k.N and (W ken
of natural numbers llm T = 0 Fea.e. on X, then lim f, ) =0 F-a.e.

m,p- o0
on X. ‘ :
Proof. Suppose that the set E {x ~( lim f,.(x) = 0)} does'not belong
mpbon i L

to J. We have

s

RGP

in

0.0
M=1-m=Mt

p=1
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and so ‘there exists a natural number p, such that the set

. o0 [ @
D=nNn U U {x: [fpa0)|>1po}

M=1 m=M+1 n=M+1
is of the second category. D is obviously a set having the Baire property, and so
D = GAP, where G is open and non-empty and P is of the first category. Let K(x, r)
be an open ball with the centre x and the radius r>0 included in G.

Put H,, = {x: | fusX)|>1/po} for m, ne N. These sets have the Baire prop-

erty, and so there exist open sets {Gp,}mney and the sets of the first category
{Puntmnen such that H, , = G, AP, . for every m,ne N.

o«
It is not difficult to prove that for every natural M the set U U Guais
m=M+1n=M+1
dense in K(x, r).
Let {Gy: ke N} be a basis for'a subspace topology in K{(x,r) such that
{Gy: k =j,j+l, ...} is also a basis for every je N.
o0
The set U U G, is dense in K(x, r), and so there exist natural numbers m1

m=1 p=1
0 -]
and n, such that G, N G, ., # 3. The set U
. ) m=max(m,n)+1 n=max(my,ny)+1
dense in K(x, r), and so there exist natural numbers m,>m, and n,>n; such that
Gy N Gy, # . Proceeding in this way, we obtain two increasing sequences

{m}ren and {m}ycy of natural numbers such that Gy N G,, ,, #.@ for every ke N.

Gp,n is also

Hence the set |J G, is dense in K(x, r) and, moreover, for every j€ N, the set
k=1
o« . 0
U Gy, is also dense in K(x, r). So, for every je N, the set U Gy, is Tesidual
k=j )

in K(x,r) and from the fact that U Hypme™> U G — U memc it follows that

hmsup H py.m, is residual in K(x, r). chce lnnsup e & 5+ But if x € lim supH,,,

Wk >

then hm S (%) is ot equal to zero — a contradlctlon This ends the proof,

References “

[1]1 R. Engelking, Topologia Ogdina, Warszawa 1976.

2] C.Goffmanand D. Waterman, On upper and lower limits in measure, Fund. Math, 58 (1960),
pp. 127-133.

[3] C. Goffman and R. E. Zink, Concerning the measurable boundaries of a real function, ibidem,
pp. 105-111.

[41 W. Sierpinski, Sur les suites doubles de fonctions, Fund. Math, 37 (1950), pp. 55-62.

[51 R. Sikorski, Boolean Algebras, New York 1969."

[6) — Funkcje Rzeczywiste, Warszawa 1958.

Accepté par la Rédaction 18. 12. 1978

icm

Circularity of graphs and continua: topology
by

Harold Bell, Ezra Brown, R. F. Dickman, Jr.,
and E. L. Green *, (Blacksburg, Va.)

Abstract. A chain in a space X is a finite collection {Kj, ..., Ku} of distinct closed and connected
sets such that Kin K+ @ if and only if [i—jl<1. A circular chain in X is a. collection JG such
that for any K€ 3, }—{K?} is a chain. For any locally connected, connected space X, m(X),
the circularity of X is defined by

m(X) = sup{n: X can be represented as a union of a .
circular chain with exactly n elements} .

The circularity, o(G), of a finite connected graph G is defined by

o(G) = sup{n: G can be represented as the union of a circular chain X in G
such that every member of JG contains at least one vertex of G}.

The principal results in this paper are: (1) if G is a (planar) graph, then G can be-embedded
in a (planar) Peano continuum X with o(G) = m(X). (2) If X is a planar Peano continuum,
then m(X) is infinite or even. (3) If G contains a cycle, then 6(G)>6 and if G is planar, then ¢(G)
is even. (4) The G is one of the Kuratowski non-planar graphs, then o(G) = 6.

In another paper, Circularity of Graphs and continua: Combinatorics, the authors develope
combinatorial techniques for the evaluation of the circularity of graphs and show that for any
integer k3> 6, there exists a non-planar graph Gy with a(Gx) = k.

1. Tntroduction. Throughout this paper X will denote a locally connected, con-
nected normal space. For A< X, by(4) denotes the number of components of A
less one (or oo if this number is infinite). The degree of multicoherence, r(X), of X is
deﬁned by

® r@X@= sup{bo(HnK) X=HuKk and H and K are closed and
connected subsets of X7} .

If r(X) = 0, X is said to be unicoherent and wé say that X is multicoherent
otherwise. X is said to be finitely multicoherent if 0<r(X)< oo, If this value is never
attained, i.6. by(H N K)< o for representations X=HuKasin (», X1 is said
to be weakly-finitely multicoherent. A. H. Stone has studied multicoherent spaces
extensively [6, 7, 8, 9] and many authors have studied unicoherent spaces. Stone
has raised several interesting. questions ¢oncerning multicoherent spaces.
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