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A Whitehead theoremt in CG-shape
by

Thomas J. Sanders* (Annapolis, Md.)

Abstract. With each o-compact, locally compact metric space is associated a sequence of
bigraded homotopy groups. These bigraded homotopy groups are used in a Whitehead theorem
for compactly generated shape theory.

1. Introduction. Analogues of the classical theorem of J. H. C. Whitehead
have been proven in shape theory by both M. Moszyriska [Mos] and S. Mardesié
[Mar], using the homotopy pro-groups. The purpose of this paper is to give an
analogue of this theorem in CG-shape theory [R-S], using homotopy bi-groups.
The notion of shape for compact Hausdorff spaces is to be that given by Mardesié
and Segal [M-S. 1, 2].

2. Category ind(#). Let o be a category and consider the category dir(#)
whose objects are direct systems X* = [X% p™, 4] in A where for «'<a,
P X*— X" is a A -morphism satisfying the usual commutative diagrams
(cf. [Sp]). A dir(:#)-morphism /* = (f,f%): X*— Y* = [Y?, ¢*, B] consists
of an increasing cofinal function f: 4— B and a collection of J -morphisms
% X*— ¥7@ such that for o’ <o, there is an index 2 f (), f (o) with "’ @ rp=
= ¢" @ ¥ Compositions and identities are defined in the usual manner. A dir(£)-
morphism is termed special if A = B and f=1: 4— A.

Two dir(#’)-morphism f*, g* = (g,¢%): X*— ¥* are said to be equivalent,
f* = g*, if for each aw € 4 there is a f € B, f=f (), g (), with gh T @ fr = gPege,
This is a morphism equivalence relation and the resulting quotient category,
dir(o4)/ =, is dual to the pro-category (cf. [Mos] or [Mar]). Thus dir ()=~ has the
same objects as dir(#") and morphisms are equivalence classes F = [f*] of
morphisms in dir(A#).

Consider o°*, the full subcategory of dir(o) consisting of direct systems in £
whose indexing sets are N, the set of natural numbers. The quotient category, #*/=2,
will be termed ind (o). The following are dual to results given by Moszyniska and
may be proven by dualizing the proofs she gave (cf. § 1, (3.1), 3.2), (3.3) of [Mos].
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@.1) If f* = (Y is a special A *-morphism, then

(a) if each f* is a monomorphism in A", then [[*]is a monomorphism in ind (),

(b) if each f* is an epimorphism in A", then [f*] is.an epimorphism in ind ().

(2.2) If for each keN, o*: X*—Y* is a zero-morphism in A, then
Q =1, o*l: X* — Y* is a zero-morphism in ind(X).

(2.3) IFf*: X*— Y* is a A *-morphism and Ker(f*) = (N¥,j*) for all ke N,
then there is a collection of A -morphisms, {{*}u<y, such that N* = [N¥ 4]
is an object in A*, j* = (1,j% is a A *-morphism, and Ker[f*] = (N*, [j*]) in
ind ().

Also, one can show that:

(.4 If Z is a zero-object in A, then Z* = [Z¥, '], where each Z* =
each «* is the unique A -morphism, is a zero object in ind(Z).

Combining (2.3) and (2.4) one has that:

(2.5) If " has kernels and zero-objects, then so does ind(A").

Mardesié has shown (cf. p. 57 of [Mar]):

(2.6) Let A" be a category with zero-objects and kernels and let

Z and

f2 FE) Ja
A1""Az"’A3"A4“’A5

be a exact sequence. If f1 is an epimorphism and f, is a monomorphism, then A, is
a zero-object.

If X* is a zero-object in ind (¢"), it must be equivalent to Z*. This yields the
following:

@.7) If X* is a zero object in ind (A" ), then for each k € N, there is a k' =k such
that p** is the zero-morphism.

With a proof analogus to one given by Mardesié (cf. (4.4) of [Mar]) one obtains:

(2.8) Let A be a category with zero-objects and kernels and let f*: X* — ¥Y*
and g*: Y*— W* be special A *-morphisms with the property that

I* g
X Y Wk
is exact at Y* in A'. Then the sequence

] [Chal
X*— Y* W*

is exact in ind(A).

3. CG-shape. Let S, S, and 53 denote the shape category of compact metric
spaces, the shape category of pointed compact metric spaces, and the shape category
of pairs of pointed compact metric, spaces, respectively. If X is a Hausdorff space,
let ¢(X) denote the set of all compact subsets of X. Recall [R— ] that a- cover &
of X is called CS-cofinal if there is a function g: ¢(X) — & satisfying

(i) Fcg(F), for all Fe%, and

(i) if FcF’, then g(F)<g(F’).

icm

A Whitehead theorem in CG-shape 133

If X is a metric space, the direct system [F, ipp, c(X)] in S* (where for
F'<F,ipp: F'— F is the inclusion compact shape map) is used to determine the
CG-shape of X (cf. [R-S]). Theorem 4.1 of [R-S] may be restated as:

(B.1) If # is a compact cover of X that is CS-cofinal, then [F, igg., c(X)] and
[F, ippe, F] are equivalent objects in dir(S).

A Hausdorff space is termed o-compact (cf. [Dug)) if it is locally compact and
can be expressed as the union of at most countably many compact spaces. Thus X is

o
a o-compact space iff there is a sequence X, of compact subsets of X with X = (J X,
1
and X, <int(X,. ). Here int(-) denotes the interior taken in the space X. If X and
o0
Y = | Y, are o-compact metric spaces, then [R-8] there is a one-to-one functorial
1

correspondence between CG-shape maps F: X — ¥ and ind(S)-morphism from

X* = [X", "] to [Y",j™] where X" =X,, Y"=Y,, and i™: X" — X" and

J": ¥ — Y" denote the inclusion compact shape maps. If {,} is a subsequence

of {n}, then Y =) Y, is a valid representation of ¥ as a g-compact set. Thus
k=1

we have:

0
(3.2) To each CG shape map F: X — Y and each representation of X = U X,,,
1

]
there is a representation of Y =\) Y, and a corresponding special S*-morphism
1

™: X", 0™ — [Y",j™]. This correspondence is a functorial correspondence

" between CG-shape maps F: X — Y and ind(S)-morphisms. Similar correspondences

exist for pointed and pairs of pointed spaces.

4, Ind-pro-homotopy categery. Let # denote the category whose objects are
topological spaces having the homotopy type of a CW-complex and whose mor-
phisms are homotopy classes of maps. Let %7, and # 2 denote the corresponding
categories of pointed and pairs of pointed spaces.

Following Morita [Mor. 2], an inverse system X = {X,, [Pua], 4} iIn ¥ is
said to be associated with a topological space X if there are continuous functions
Pot X— X,, a€ 4, such that

(1) if a<a’, then [Pullpe] = [pal,
(2) for any map f: X — Q with Qe Ob(#"), there is an aue 4 and a map
fu: Xo— O with [f] = [fllpd,

(3) for ae 4 and for two maps f,g: X,— Q with Qe Ob(#") and [f1[r.]
= [g][p.], there is an o' € 4, a<d’, such that [f][pe] = [g][Parl-

Morita has shown [Mor. 2] that with every topological space is associated the
inverse system in % formed by the nerves of all locally-finite normal open coverings.
If X is a compact metric space, let {%,| n € N} be a sequence of locally finite (normal)


GUEST


134 T.J. Sanders

open covers of X such that, for each n, the mesh of %, is smaller than 1/nand %, .,
is a refinement of 4%,. Let K, denote the nerve of %, and let p,: X — K, denote canoni-
cal mappings (p, (St(U, K,))< U for all Ue%,). Since the sequence {%,} is cofinal
in the set of all open coverings, the inverse sequence {K,, [ ]}, wheze p,,: K, — K,
are canonical projections whenever n<r/, is associated with the compact metric
space X.

Morita has also shown [Mor. 2] that if X and Y have associated ANR -systems X
and ¥, respectively, then there is a functorial bijection between shape maps from X
to Y and pro(#")-morphisms from X to Y.

Let M be a Hausdorff space. For each compact subset X of M, let X be an
inverse system in % associated with X. If X'cX is compact then there is
a pro(#’)-morphism i**': X’ — X corresponding to the inclusion compact shape
map from X' into X. If & is any compact cover of M that is CS-cofinal,
then the direct system X* = [X, i**, #] in pro(%") will be said to be associated
with M.

(4.1) Any two direct systems in pro(#") associated with M are equivalent objects
in dir(pro(#))/=- )

(4.2) If X* and Y* are direct systems in pro(#") associated with M and N,
respectively, then there is a functorial bijection between CG-shape maps from X to Y
and morphisms  of dir(pro(#))/~ from X* to Y*,

Similar results hold for pointed and pairs of pointed spaces.

5. Homotopy bi-greups. Let 4 denote the category of groups and homomor-
phisms, let &, denote the category of pointed sets and base point preserving functions,
and let m(X, x,) denote the kth homotopy group of a pointed space (X, x,). With
each inverse system (X, xo) = {(X, X),5 [Pur], A4} in %, there is a sequence of
inverse systems m(X, Xo) = {mM(X, X)o, (P> 4} In & (if k = 0, in &4). If (X, x)
is a compact Hausdorff space and (X, x,) is an inverse system in %", associated with
(X, x,), then the inverse system (X, x,) is called the k-th homotopy pro-group
of (X, x).

A pro(# g)-morphism f = [£, f3]: (X, xp)— (¥, y,) induces a sequence of
morphisms of pro-groups fi, = [f, (fphl: mdX, xo) — m(¥, yo). This is a functorial
correspondence so that if (X, x,) and (¥, y,) are equivalent in pro(#7,), then
(X, xo) and 7 (¥, y,) are equivalent pro-groups.

Dually, with each direct system (X, xo)* = [(X, %), p", M] in pro(# )
there is a sequence of direct systems (X, xo)* = [n(X, x)*, pi¥, M] in pro (%)
(in pro(&y), if k = 0). If (X, x,) is a Hausdorff space and (X, xo)* is a direct
system in pro(#’,) associated with (X, x,), then the direct system (X, xo)* is
called the k-th homotopy bi-group of (X, x,).

A morphism F = [f,f*]: (X, xo)* = (¥, y)* in dir(pro (#)) =« induces
a sequence of morphisms of bi-groups F, = [f,ff]: m(X, xo)* — m (Y, yo)*.
This is a functorial correspondence so that if (X, x,)* and (Y, y,)* are equivalent
in dir(pro(# )/« then m(X, x)* and (¥, yo)* are equivalent bi-groups.
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Similarily, one defines relative homotopy bi-groups m(X, 4, xp)*, k=1, for
direct systems in pro(#°3). They belong to dir(pro(#9))/~ for k>2 and to
dir(pro(&o))/ = for k = 1.

With a direct system (X, 4, xo)* = [(X, 4, )", P, M] in pro(#°3), there
are direct systems (4, x)* and (X, x,)* in pro(#,) and morphisms I: (4, x5)*
— (X, xo)*, given by the inclusions i*: (4, x)" — (X, x), and J: (X, xo, Xo)*
— (X, 4, xo)*, given by the inclusions j*: (X, x, x)* — (X, 4, x)*. They induce
morphisms of bi-groups [ m(d, xo)* = X, xo)* and J: m(X, xq, Xp)*
— m (X, 4, Xo)*, respectively. Finally, there is a boundary morphism

O = [08]: m(X, 4, xo)* — M1 (4, Xo)*

where each %: m (X, A, xo)* — m_ (4, xo)* is the boundary morphism for homo-
topy pro-groups determined by the boundary morphism for homotopy groups,
(0 Tl X, A4, X0)y = e 1(A, X0l

Since the homotopy sequence of pro-groups of (X, 4, x)* is exact, we obtain
from (2.8):

G.1) If (X, 4, xp)* is a direct system in pro(#" 2, then the homotopy sequence
of bi-groups

1 J; O
o> (4, X)* —,: X, x0)* =S (X, 4, x0)* — T (4, Xg) = e

Jy 01 Io
= g (X, 4, x0)* — (A, Xp)* — (X, X0)*
is exact.

6. Nerves of coverings. For a metric space X, consider a sequence {%,| ne N}
of locally finjte (normal) open covers such that the mesh of %, is smaller than 1/n

«©

and %,,, is a refinement of %,. If X = U X,, is a o-compact metric space, let

1
#,(X,) = {UnX,] Ue®,} denote the open cover of X, induced by #, and let X'
denote its nerve. As in Section 4, the inverse sequence X™ = {KJ', [Pn-]} is associated
with the space X,,. For each n, there are inclusion maps iy *»™: K7’ — K21 defined
naturally by the correspondence U n X,,— U n X, ;. The inclusion shape maps
jmrim. ¥ _, ¥ . have representatives the special map of systems (iy*"™):
X™— X™*1 and we may assume without loss that Prai e ™ = in ™t pl .y,
The direct sequence X* = [ X™, [ir**™]] in pro(#’) is associated with the space X.

If A is a closed subset of X, xo € 4 and 4,, = 4 n X, let Ly denote the nerve
of 4,(A,,). The inverse sequence (X, 4, x)" = {(&7, Ly, pn), [pne} in #7 2 is associ-
ated with the pair of pointed spaces (X, 4, Xo) and the direct system (X, 4, x,)*
= [(X, 4, x)", "™ in pro(#3) is associated with the pair of pointed spaces
(X, 4, x,).

If the dimension of X is <X, the sequence {#%,} of locally finite open covers
can be chosen to have order <K-+1. In this case, each nerve K will have dimen-~
sion <X, Furthermore, if X is connected, each X,, may be chosen connected and
each K™ will then be a connected simplicial complex.
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7. CG-shape deformation retraction. In this section we shall prove the following:

(7.1) Let (X, 4, x)* and (Y, B, y)* be direct sequences in pro(#}). Let each
(X, 4, X)" and (¥, B, y)y be simplicial with dim X< K<co, each Y, connected,
and each (Y, B, y)x asubcomplex of (Y, B, )+t Ifn (Y, B, y)* = O for ISk<K+1,
then every morphism F: (X, 4, xy* — (¥, B, y)* in ind (pro(#" ) admits a morphism
G (X, x)* — (B, y)* in ind(pro(# o)) such that

JG = F: (X, x)*— (Y, )% Gl(4,x)* = F|(4, x)*: (4, x)*— (B, »)*,

where J: (B, y)* — (Y;y)* is given by the inclusions ji': (B, y)y — (¥, 3}

If one applies (7.1) to the identity morphism I: (X, 4, x)* — (X, 4, )*,
one obtains

(7.2) Let (X, A,x)* be a direct sequence in pro(# %) with each (X, A, x)
simplicial, each X7 connected, each (X, 4, x)y a subcomplex of (X, A, X', and
dimXP<K<owo. If m(X, 4, x)* =0 for 1<k<K+], then there is a morphism
R: (X, X)* — (4, x)* in ind(pro(#',)). such that JR = I and RJ = R|(4, x)* = L
Consequently, the morphism J: (4,x)* — (X, x)* given by the inclusions
Jms (4, X)5 — (X, x)y is an isomorphism in ind(pro (%))

Note that by using (2.7) and a CS-cofinal subsequence, we may assume that
7Y, B, y* = 0-implies that each (j***™): m(¥, B, »)" — n(¥, B, )" is the
zero homomorphism in pro(%).

The following lemmas will be useful in proving (7.1).

(7.3) (cf. (6.2) of [Mar]). Let (P, Q, p) be a simplicial pair with diim(P\Q) < K+1.
Then for any m € N, there is an increasing function o,,: N — N such that, for oll n, if
n* = o,(n) and if ¢: (P, Q,p)— (Y, B,y) is a map, then there is a map
Y (P, Q,p)— (B, B, »)y+! such that

QrEb Moty where  gnn™: (Y, B,y — (Y, B,y
is the composition of the projection map g .. (Y, B, ) — (¥, B, )y and the
inclusion map
Jertm: (Y, B,y — (Y, B, )+t

n »

and

n

¥t (B, B, )ttt = (Y, B, )
is the inclusion map. o

Proof. Since (j*t1™): m(¥, B, )" — n(¥, B, y)"** is the zero-morphism,'
1<k<K+1, for each n € N there is a chain ny = n<n; <...<M; = 0,,(n) such that
(or*tmy, = 0 for 0<i<K, 1<k<K+1. Choose a triangulation of (P, Q, p) such,
that Q is a full subcomplex of P. Let L, = (Q U PY)x T u (P x0), where P*.is the

k-skeleton of P, 0<k<K+1.
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As in the proof of (6.2) of [Mar], there is a sequence of maps y;: L — Y,’,’;‘:_k
such that

m+1,m

Xk(xy Z) = Qle+1—k»"l€+1(p(x)° if (x’ t) E(QXI) Y (PXO) 3

xx, 1) e Bl if xeP*,
2, 1) = ¥l if xeP\Q.

Observe that Ly, = P x I'and consider yg,y: Px I—Yr+L, Setting }/ (3) = yx41(x, 1)
for all x e P, we obtain a map /: (P, Q,p) — (B, B, y)i+! that satisfies the required
conditions. By induction, one can achieve that o,,(n) <o,(n+1) and 6,,(1) <0,+1 (7).

(7.4) (cf. (6.3) of [Mar]). Let (P,p) be a simplicial complex, dimP<K. Let
®os @1: (Pyp)— (B, Y)ne be maps such that

Jm@o=jmpy: Py p)— (Y, ).
Then

m+1,m
Qn,n'

oy 01 (o) — (B,

Proof. As in (6.3) of [Mar], the homotopy between jyeq, and jre, gives
a map .

o1 (PxT,Px0UPx1,pxDi(px])— (¥, B,y

By (7.3) there is a map y: (PxI,Px0u Px1,pxD)(pxI)—(B,B, Pt such
that

YIPxOUPx1,pxDi(px Dot ™el(Px0u Px1,pxD(pxI)
in (B, »)a*t so that
QLM o | (Px Q) |(Px Dexgh i ™y in (B, 9.

. (1.5) (cf. (6.1) of [Mar]). Let (X, d,x) = {(X, 4, x),, [P,1} be an inverse
system in W with each (X, A,x), simplicial and dimX,<K<co. Then every
pro(#5)-morphism  f: (X, 4, %) — (Y, B, p)" admits a pro(#,)-morphism
g: (X, x)— (B, "2 such that

Jrrg = L (X D) = (X
and
gl(4, %) = j"* 2 fi(4, %): (4, D) — (B, ).

Proof. Let n* = 0,.,;(n) and n¥* = ¢, (n*). Let f,: (X, 4, ) — (¥, B, y)y
be a sequence of maps such that (f,f,) is a map of inverse systems represen-
tative of £, Let g: N— N be given by the composition g(n) = f (n**). Consider
St (X, A, Xy — (¥, B, ¥y, According to (7.3) there is a sequence of maps
Yot (X, A, X)gony — (B, B, 3)m"* such that QI e it . Define a sequenice

of maps g,: (X, ¥gn — (B, Y)i*? by the composition g, = epe™ V.
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To show that (g, g,) is a well defined map of inverse sequences, it suffices to
show for all #E N, g,Daw, gt 1)=qn so1gn+1- First, note that

m+2 m+2,m+l _ m+2,m+l m+1
Gn,n+1Qn+1, (4 1)* = Qn n¥ s, (n41)% +
Since
. amt2,m+1
9nDg(n),gtn+1) = Qn,n* lﬁnpg(n),g(rﬁl)
and
mt2 . mt2  m+2,m+1 mt+2,mtl +
Drnt19nt1 = Qunt10ns1, b1y Wt = Qs ‘].’:‘o,(lnﬂ)-!/fnm

by (7.4), it suffices to show that

am+1 o gmtl mtL
Jow WnPotay,atmt )2 T G, (et 1y W1 -
But,

o WD gtay,atn 1) 2 Crres s Sas Py ptn+1)
~"-’Q;-"vjrnl*'*m‘7:‘."n.(n+1)“f(n+1)“
gq:"jr(]:.wl)'gzxt]l,)’:.(n+1)”f(n+1)"
Sq,'-"tf(hn:j{ﬁii)-ll/,.u
zjr’.';+lq:'-f‘(}e+1)t‘//n+1

and (g, g,) is well defined.

The pro(# o)-morphism g: (X, x)— (B, y)"*? determined by (g,4,) is
such that

Jrg = and gl(4, x) = "R A4, %) .

Proof of (7.1). Let (£,,) be a special map of direct systems that is representative
of F. By (7.5) there is a sequence of pro(# ) morphism g,: (X, x)" — (B, y)"*?2
such that jm*2g, = 2™ £ and g,/(4, X)™ =27 F (4, X)™ ,
Consider the map of inverse systems g™*™: (B, y)"— (B, y)™** defined by
0" = (0, 0fwe ™). One can show that gm*lmajmtlm: (B yym_, (B yyn+i
so that (B, y)* = [(B, »)™, [¢"**™]] and the sequence (g,): (X, x)" — (B7 pmr2
will define a map of direct systems, if |

sm+1,m

Gl m+3.,m+2

= Q ‘q"l"

LEt n* = m+2(n)’ n** = U'm+ 1(71*), l’l*** = Jm(n**)’ gm(n) = n” gm-l*l(”) = ﬂ”,
and #$ = f,,, (n***). Then it suffices to show that for all ne N, there is a ke N,
k=g,(n*) = n*, g,+1(n) = n" such that

@) R AT AT X

Note that n***2n**, so n$ = f,,.,(0***) > f, . (n**) = n"”, Choose k € N, so that
kZfon***) = 1%, frr (7**¥) = n$

and

m+ 1 m+1,m_m .m+1,m pm
Srives Lig ' Dng, kS Jyees | ﬂ,..._p,’:‘af’k .
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Then
— .
(B) QL ft Dl 2 o Dt nsis " D e

Consider the left side of (A),

mtl om+1,m m
Tyee

Gn
By (7.4) it suffices to show that

m+3,m+2

— m+2,m+1.m+i,m_m
Pn",k - Qn,n‘ n ' Ly !

Du,x -

mE2 om o m smA2 pmt2,m+l omt1,mom
]n‘ gn*pn"’,kz.]n' Ipn ! Iy : n k.

This may be shown to follow from (B) using straight forward manipulations.
Both JG = F and G|(4, x)* = F|(4, x)* are consequences of (7.5).

8. Whitehead theorem for maps. Let f: (X, x) — (¥, ¥,) be a map between two
o-compact metric spaces. Let (Z, zo) denote the (pointed) mapping cylinder of f and
let it (X, x0) — (Z, zo) and j: (¥, po) — (Z, Zo) denote the usual embeddings. Then,
8.1) (i) (Z,z,) is a o-compact Hausdorff space,

(i) dimZ<max{l+dimX, dim¥},

(iti) f is a CG-shape equivalence iff i is a CG-shape equivalence, and

(iv) f induces a monomorphism (epimorphism) of homotopy bi-groups iff i induces
one.

We can now state and prove our main result:

(8.2) Let (X, xo) and (Y, o) be (pointed) o-compact melric spaces, connected
and finite-dimensional and let f: (X, xo) — (¥, yo) be a map which induces bimor-
phisms Fp: m(X, xo)* — 7Y, yo)y* of homotopy bi-groups for

0<k<K = max{1+dimX, dim ¥}

and an epimorphism for k = K+1. Then £ is @ CG-shape equivalence, i.e. there is
a CG-shape map G: (¥, yo) = (X, %o) such that FG = I and GF = L. Here F denotes
the CG-shape map induced by f and I denotes the identity shape maps.

Proof. Let (Z, z,) be the mapping cylindar of f. Z is ¢-compact, connected
and dimZ< K< co. The inclusion i: (X, xo) —(Z, o) induces a bimorphism Z of
homotopy bi-groups for 0<k<K and an epimorphism for k = K+1. By .1
there is an exact sequence of homotopy bi-groups belonging to the pair (Z, X, z)-
By (2.6), m(Z, X, xo)* = 0 for 1<k<K+1. 1t follows by (7.2) that the inclusion
it (X, xp) = (Z, 7o) is a CG-shape equivalence, which implies that fis a CG-shape
equivalence.

@
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Topological games and products I
by

Yukinobu Yajima (Yokohama)

Abstract. Our main purpose in this paper is to show the following result: If a paracompact
space X has a g-closure-preserving cover by compact sets and Y is a paracompact space, then
the inequality dim X'x Y< dim X+ dim ¥ holds. As a matter of fact, we shall prove it in the more
generalized forrm. The main tool of its proof is the topological game (in the sense of R .Telgirsky).

§ 1. Introduction. R. Telgarsky [12] introduced and studied the concept of
topological game G(K, X). Moreover, making use of it, he showed that the topologi-
cal product of paracompact spaces one of which has a o-closure-preserving cover
by compact sets is paracompact (cf. [12, Theorem 14.7]). In fact, he obtained this
result by proving the form which is generalized in terms of topological game
(cf. [12, Theorem 14.61). In § 2, we prove our main theorem. It is another general-
ization of the above result. Besides, the product inequality of covering dimension
simultaneously holds in it, which is given by proving that a locally finite open cover
of product space has a locally finite refinement by cozero rectangles. Here, the product
space with this topological property is named to be stronaly rectangular. In § 3, we
apply the technique used in the proof of the above theorem to the product of Hurewicz
spaces. In § 4, furthermore, we investigate what kind of a topological product is
strongly rectangular. In § 5, we state several questions unanswered.

Throughout this paper, each space is assumed to be a Hausdorff space. However,
for a topological product X x Y, we shall mainly discuss in the case Xx Y’ is normal
and we assume either X or Y is non-empty. Non-negative integers are denoted by
the letters i, j, k, m, n etc, and u denotes an infinite cardinal number.

The descriptions and the details of the topological game G(K, X) are foung
iA [12]. Let us note that a sequence (E,: n=0) of closed subsets of X is a play for
G(K, X) if and only if each finite subsequence (Ey, ..., E,) of it is admissible for
G(K, X). In particular, we consider as K, in this paper, the following two classes

of spaces:’
DC — the class of all spaces which can be decomposed into a discrete collection

by compact sets.
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