

A Whitehead theorem in CG-shape

by

Thomas J. Sanders * (Annapolis, Md.)

Abstract. With each σ -compact, locally compact metric space is associated a sequence of bigraded homotopy groups. These bigraded homotopy groups are used in a Whitehead theorem for compactly generated shape theory.

- 1. Introduction. Analogues of the classical theorem of J. H. C. Whitehead have been proven in shape theory by both M. Moszyńska [Mos] and S. Mardešić [Mar], using the homotopy pro-groups. The purpose of this paper is to give an analogue of this theorem in CG-shape theory [R-S], using homotopy bi-groups. The notion of shape for compact Hausdorff spaces is to be that given by Mardešić and Segal [M-S. 1, 2].
- 2. Category $\operatorname{ind}(\mathcal{K})$. Let \mathcal{K} be a category and consider the category $\operatorname{dir}(\mathcal{K})$ whose objects are direct systems $X^* = [X^\alpha, p^{\alpha\alpha'}, A]$ in \mathcal{K} where for $\alpha' \leq \alpha$, $p^{\alpha\alpha'} \colon X^{\alpha'} \to X^\alpha$ is a \mathcal{K} -morphism satisfying the usual commutative diagrams (cf. [Sp]). A $\operatorname{dir}(\mathcal{K})$ -morphism $f^* = (f, f^\alpha) \colon X^* \to Y^* = [Y^\beta, q^{\beta\beta'}, B]$ consists of an increasing cofinal function $f \colon A \to B$ and a collection of \mathcal{K} -morphisms $f^\alpha \colon X^\alpha \to Y^{f(\alpha)}$ such that for $\alpha' \leq \alpha$, there is an index $\beta \geq f(\alpha')$, $f(\alpha)$ with $q^{\beta, f(\alpha)} f^\alpha p^{\alpha\alpha} = q^{\beta, f(\alpha')} f^{\alpha'}$. Compositions and identities are defined in the usual manner. A $\operatorname{dir}(\mathcal{K})$ -morphism is termed special if A = B and $f = 1 \colon A \to A$.

Two dir (\mathcal{K}) -morphism $f^*, g^* = (g, g^a)$: $X^* \to Y^*$ are said to be *equivalent*, $f^* = g^*$, if for each $\alpha \in A$ there is a $\beta \in B$, $\beta \geqslant f(\alpha)$, $g(\alpha)$, with $q^{\beta, f(\alpha)} f^\alpha = q^{\beta, g(\alpha)} g^\alpha$. This is a morphism equivalence relation and the resulting quotient category, $\operatorname{dir}(\mathcal{K})/\simeq$, is dual to the pro-category (cf. [Mos] or [Mar]). Thus $\operatorname{dir}(\mathcal{K})/\simeq$ has the same objects as $\operatorname{dir}(\mathcal{K})$ and morphisms are equivalence classes $F = [f^*]$ of morphisms in $\operatorname{dir}(\mathcal{K})$.

Consider \mathcal{X}^* , the full subcategory of $\operatorname{dir}(\mathcal{X})$ consisting of direct systems in \mathcal{X} whose indexing sets are N, the set of natural numbers. The quotient category, \mathcal{X}^*/\simeq , will be termed $\operatorname{ind}(\mathcal{X})$. The following are dual to results given by Moszyńska and may be proven by dualizing the proofs she gave (cf. § 1, (3.1), (3.2), (3.3) of [Mos]).

4*

^{*} Supported by a grant from the Naval Academy Research Council.

- (2.1) If $f^* = (f^k)$ is a special \mathcal{K}^* -morphism, then
- (a) if each f^k is a monomorphism in \mathcal{K} , then $[f^*]$ is a monomorphism in $\operatorname{ind}(\mathcal{K})$,
- (b) if each f^k is an epimorphism in \mathcal{K} , then $[f^*]$ is an epimorphism in $\operatorname{ind}(\mathcal{K})$.
- (2.2) If for each $k \in \mathbb{N}$, $\omega^k \colon X^k \to Y^k$ is a zero-morphism in \mathcal{K} , then $\Omega = [1, \omega^k] \colon X^* \to Y^*$ is a zero-morphism in $\mathrm{ind}(\mathcal{K})$.
- (2.3) If $f^*: X^* \to Y^*$ is a \mathcal{K}^* -morphism and $\operatorname{Ker}(f^k) = (N^k, j^k)$ for all $k \in N$, then there is a collection of \mathcal{K} -morphisms, $\{\eta^{kk}\}_{k' \leq k}$, such that $N^* = [N^k, \eta^{kk'}]$ is an object in \mathcal{K}^* , $j^* = (1, j^k)$ is a \mathcal{K}^* -morphism, and $\operatorname{Ker}[f^*] = (N^*, [j^*])$ in $\operatorname{ind}(\mathcal{K})$.

Also, one can show that:

(2.4) If Z is a zero-object in \mathcal{K} , then $Z^* = [Z^k, \omega^{kk'}]$, where each $Z^k = Z$ and each $\omega^{kk'}$ is the unique \mathcal{K} -morphism, is a zero object in $\operatorname{ind}(\mathcal{K})$.

Combining (2.3) and (2.4) one has that:

(2.5) If \mathcal{K} has kernels and zero-objects, then so does ind(\mathcal{K}).

Mardešić has shown (cf. p. 57 of [Mar]):

(2.6) Let \mathcal{K} be a category with zero-objects and kernels and let

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \xrightarrow{f_3} A_4 \xrightarrow{f_4} A_5$$

be a exact sequence. If f_1 is an epimorphism and f_4 is a monomorphism, then A_3 is a zero-object.

If X^* is a zero-object in ind(\mathcal{X}), it must be equivalent to Z^* . This yields the following:

(2.7) If X^* is a zero object in $\operatorname{ind}(\mathcal{X})$, then for each $k \in \mathbb{N}$, there is a $k' \geqslant k$ such that $p^{k'k}$ is the zero-morphism.

With a proof analogus to one given by Mardešić (cf. (4.4) of [Mar]) one obtains:

(2.8) Let $\mathcal K$ be a category with zero-objects and kernels and let $f^*\colon X^*\to Y^*$ and $g^*\colon Y^*\to W^*$ be special $\mathcal K^*$ -morphisms with the property that

$$X^k \xrightarrow{f^k} Y^k \xrightarrow{g^k} W^k$$

is exact at Y^k in \mathcal{K} . Then the sequence

$$X^* \stackrel{[f^*]}{\rightarrow} Y^* \stackrel{[g^*]}{\rightarrow} W^*$$

is exact in $ind(\mathcal{K})$.

- 3. CG-shape. Let S, S_0 and S_0^2 denote the shape category of compact metric spaces, the shape category of pointed compact metric spaces, and the shape category of pairs of pointed compact metric spaces, respectively. If X is a Hausdorff space, let c(X) denote the set of all compact subsets of X. Recall [R-S] that a cover \mathscr{F} of X is called CS-cofinal if there is a function $g: c(X) \to \mathscr{F}$ satisfying
 - (i) $F \subset g(F)$, for all $F \in \mathcal{F}$, and
 - (ii) if $F \subset F'$, then $g(F) \subset g(F')$.

If X is a metric space, the direct system $[F, i_{FF'}, c(X)]$ in S^* (where for $F' \subset F$, $i_{FF'}$: $F' \to F$ is the inclusion compact shape map) is used to determine the CG-shape of X (cf. [R-S]). Theorem 4.1 of [R-S] may be restated as:

(3.1) If \mathscr{F} is a compact cover of X that is CS-cofinal, then $[F, i_{FF'}, c(X)]$ and $[F, i_{FF'}, \mathscr{F}]$ are equivalent objects in dir(S).

A Hausdorff space is termed σ -compact (cf. [Dug]) if it is locally compact and can be expressed as the union of at most countably many compact spaces. Thus X is a σ -compact space iff there is a sequence X_n of compact subsets of X with $X = \bigcup_{i=1}^{\infty} X_n$ and $X_n = \inf(X_{n+1})$. Here $\inf(\cdot)$ denotes the interior taken in the space X. If X and $Y = \bigcup_{i=1}^{\infty} Y_n$ are σ -compact metric spaces, then [R-S] there is a one-to-one functorial correspondence between CG-shape maps $F: X \to Y$ and $\inf(S)$ -morphism from $X^* = [X^n, i^{m'}]$ to $[Y^n, j^{m'}]$ where $X^n = X_n$, $Y^n = Y_n$, and $i^{m'}: X^n \to X^n$ and $j^{mn'}: Y^n \to Y^n$ denote the inclusion compact shape maps. If $\{n_k\}$ is a subsequence of $\{n\}$, then $Y = \bigcup_{k=1}^{\infty} Y_{n_k}$ is a valid representation of Y as a σ -compact set. Thus we have:

- (3.2) To each CG shape map $F: X \to Y$ and each representation of $X = \bigcup_{1}^{\infty} X_n$, there is a representation of $Y = \bigcup_{1}^{\infty} Y_n$ and a corresponding special S^* -morphism $(f^n): [X^n, i^{nn'}] \to [Y^n, j^{nn'}]$. This correspondence is a functorial correspondence between CG-shape maps $F: X \to Y$ and $\operatorname{ind}(S)$ -morphisms. Similar correspondences exist for pointed and pairs of pointed spaces.
- 4. Ind-pro-homotopy category. Let \mathscr{W} denote the category whose objects are topological spaces having the homotopy type of a CW-complex and whose morphisms are homotopy classes of maps. Let \mathscr{W}_0 and \mathscr{W}_0^2 denote the corresponding categories of pointed and pairs of pointed spaces.

Following Morita [Mor. 2], an inverse system $X = \{X_{\alpha}, [p_{\alpha\alpha}], A\}$ in \mathscr{W} is said to be associated with a topological space X if there are continuous functions $p_{\alpha}: X \to X_{\alpha}, \alpha \in A$, such that

- (1) if $\alpha \leq \alpha'$, then $[p_{\alpha\alpha'}][p_{\alpha'}] = [p_{\alpha}]$,
- (2) for any map $f \colon X \to Q$ with $Q \in \mathrm{Ob}(\mathscr{W})$, there is an $\alpha \in A$ and a map $f_{\alpha} \colon X_{\alpha} \to Q$ with $[f] = [f_{\alpha}][p_{\alpha}]$,
- (3) for $\alpha \in A$ and for two maps $f,g\colon X_\alpha \to Q$ with $Q \in \mathrm{Ob}(\mathscr{W})$ and $[f][p_\alpha] = [g][p_\alpha]$, there is an $\alpha' \in A$, $\alpha \leqslant \alpha'$, such that $[f][p_{\alpha\alpha'}] = [g][p_{\alpha\alpha'}]$.

Morita has shown [Mor. 2] that with every topological space is associated the inverse system in \mathcal{W} formed by the nerves of all locally-finite normal open coverings. If X is a compact metric space, let $\{\mathcal{U}_n | n \in N\}$ be a sequence of locally finite (normal)

open covers of X such that, for each n, the mesh of \mathcal{U}_n is smaller than 1/n and \mathcal{U}_{n+1} is a refinement of \mathcal{U}_n . Let K_n denote the nerve of \mathcal{U}_n and let $p_n \colon X \to K_n$ denote canonical mappings $(p_n^{-1}(\operatorname{St}(U, K_n)) \subset U)$ for all $U \in \mathcal{U}_n$. Since the sequence $\{\mathcal{U}_n\}$ is cofinal in the set of all open coverings, the inverse sequence $\{K_n, [p_{nn'}]\}$, where $p_{nn'} \colon K_{n'} \to K_n$ are canonical projections whenever $n \leq n'$, is associated with the compact metric space X.

Morita has also shown [Mor. 2] that if X and Y have associated ANR-systems X and Y, respectively, then there is a functorial bijection between shape maps from X to Y and $\text{pro}(\mathscr{W})$ -morphisms from X to Y.

Let M be a Hausdorff space. For each compact subset X of M, let X be an inverse system in $\mathscr W$ associated with X. If $X' \subset X$ is compact then there is a $\operatorname{pro}(\mathscr W)$ -morphism $i^{XX'}\colon X' \to X$ corresponding to the inclusion compact shape map from X' into X. If $\mathscr F$ is any compact cover of M that is CS-cofinal, then the direct system $X^* = [X, i^{XX'}, \mathscr F]$ in $\operatorname{pro}(\mathscr W)$ will be said to be associated with M.

- (4.1) Any two direct systems in $pro(\mathcal{W})$ associated with M are equivalent objects in $dir(pro(\mathcal{W}))/_{\simeq}$.
- (4.2) If X^* and Y^* are direct systems in $pro(\mathcal{W})$ associated with M and N, respectively, then there is a functorial bijection between CG-shape maps from X to Y and morphisms of $dir(pro(\mathcal{W}))|_{\cong}$ from X^* to Y^* .

Similar results hold for pointed and pairs of pointed spaces.

5. Homotopy bi-groups. Let \mathscr{G} denote the category of groups and homomorphisms, let \mathscr{E}_0 denote the category of pointed sets and base point preserving functions, and let $\pi_k(X, x_0)$ denote the kth homotopy group of a pointed space (X, x_0) . With each inverse system $(X, x_0) = \{(X, x)_\alpha, [p_{\alpha\alpha'}], A\}$ in \mathscr{W}_0 , there is a sequence of inverse systems $\pi_k(X, x_0) = \{\pi_k(X, x)_\alpha, (p_{\alpha\alpha'})_k, A\}$ in \mathscr{G} (if k = 0, in \mathscr{E}_0). If (X, x_0) is a compact Hausdorff space and (X, x_0) is an inverse system in \mathscr{W}_0 associated with (X, x_0) , then the inverse system $\pi_k(X, x_0)$ is called the k-th homotopy pro-group of (X, x_0) .

A pro(\mathscr{W}_0)-morphism $f = [f, f_\beta]$: $(X, x_0) \to (Y, y_0)$ induces a sequence of morphisms of pro-groups $f_k = [f, (f_\beta)_k]$: $\pi_k(X, x_0) \to \pi_k(Y, y_0)$. This is a functorial correspondence so that if (X, x_0) and (Y, y_0) are equivalent in $\operatorname{pro}(\mathscr{W}_0)$, then $\pi_k(X, x_0)$ and $\pi_k(Y, y_0)$ are equivalent pro-groups.

Dually, with each direct system $(X, x_0)^* = [(X, x)^{\mu}, p^{\mu\mu'}, M]$ in $\operatorname{pro}(\mathscr{W}_0)$ there is a sequence of direct systems $\pi_k(X, x_0)^* = [\pi_k(X, x)^{\mu}, p_k^{\mu\mu'}, M]$ in $\operatorname{pro}(\mathscr{G})$ (in $\operatorname{pro}(\mathscr{E}_0)$, if k = 0). If (X, x_0) is a Hausdorff space and $(X, x_0)^*$ is a direct system in $\operatorname{pro}(\mathscr{W}_0)$ associated with (X, x_0) , then the direct system $\pi_k(X, x_0)^*$ is called the k-th homotopy bi-group of (X, x_0) .

A morphism $F = [f, f^{\mu}]: (X, x_0)^* \to (Y, y_0)^*$ in $\operatorname{dir}(\operatorname{pro}(\mathcal{W}_0))/_{\alpha}$ induces a sequence of morphisms of bi-groups $F_k = [f, f_k^{\mu}]: \pi_k(X, x_0)^* \to \pi_k(Y, y_0)^*$. This is a functorial correspondence so that if $(X, x_0)^*$ and $(Y, y_0)^*$ are equivalent in $\operatorname{dir}(\operatorname{pro}(\mathcal{W}_0))/_{\alpha}$ then $\pi_k(X, x_0)^*$ and $\pi_k(Y, y_0)^*$ are equivalent bi-groups.

Similarily, one defines relative homotopy bi-groups $\pi_k(X, A, x_0)^*$, $k \ge 1$, for direct systems in $\operatorname{pro}(\mathcal{W}_0^2)$. They belong to $\operatorname{dir}(\operatorname{pro}(\mathcal{G}))/_{\simeq}$ for $k \ge 2$ and to $\operatorname{dir}(\operatorname{pro}(\mathcal{G}_0))/_{\simeq}$ for k = 1.

With a direct system $(X, A, x_0)^* = [(X, A, x)^{\mu}, p^{\mu\mu'}, M]$ in $\operatorname{pro}(\mathcal{W}_0^2)$, there are direct systems $(A, x_0)^*$ and $(X, x_0)^*$ in $\operatorname{pro}(\mathcal{W}_0)$ and morphisms $I: (A, x_0)^* \to (X, x_0)^*$, given by the inclusions $i^{\mu}: (A, x)^{\mu} \to (X, x)^{\mu}$, and $J: (X, x_0, x_0)^* \to (X, A, x_0)^*$, given by the inclusions $j^{\mu}: (X, x, x)^{\mu} \to (X, A, x)^{\mu}$. They induce morphisms of bi-groups $I_k: \pi_k(A, x_0)^* \to \pi_k(X, x_0)^*$ and $J_k: \pi_k(X, x_0, x_0)^* \to \pi_k(X, A, x_0)^*$, respectively. Finally, there is a boundary morphism

$$\hat{\sigma}_k = [\hat{\sigma}_k^{\mu}]: \pi_k(X, A, x_0)^* \to \pi_{k-1}(A, X_0)^*$$

where each ∂_k^μ : $\pi_k(X,A,x_0)^\mu \to \pi_{k-1}(A,x_0)^\mu$ is the boundary morphism for homotopy pro-groups determined by the boundary morphism for homotopy groups, $(\partial_a^\mu)_k$: $\pi_k(X,A,x_0)_a^\mu \to \pi_{k-1}(A,x_0)_a^\mu$.

Since the homotopy sequence of pro-groups of $(X, A, x)^{\mu}$ is exact, we obtain from (2.8):

(5.1) If $(X, A, x_0)^*$ is a direct system in $pro(\mathcal{W}_0^2)$, then the homotopy sequence of bi-groups

$$\dots \to \pi_k(A, x_0)^* \xrightarrow{I_k} \pi_k(X, x_0)^* \xrightarrow{J_k} \pi_k(X, A, x_0)^* \xrightarrow{\partial_k} \pi_{k-1}(A, x_0) \to \dots$$

$$\dots \to \pi_k(X, A, x_0)^* \xrightarrow{\partial_1} \pi_0(A, x_0)^* \xrightarrow{J_0} \pi_0(X, x_0)^*$$

is exact.

6. Nerves of coverings. For a metric space X, consider a sequence $\{\mathscr{U}_n|\ n\in N\}$ of locally finite (normal) open covers such that the mesh of \mathscr{U}_n is smaller than 1/n and \mathscr{U}_{n+1} is a refinement of \mathscr{U}_n . If $X=\bigcup\limits_{1}^{\infty}X_m$ is a σ -compact metric space, let $\mathscr{U}_n(X_m)=\{U\cap X_m|\ U\in\mathscr{U}_n\}$ denote the open cover of X_m induced by \mathscr{U}_n and let K_n^m denote its nerve. As in Section 4, the inverse sequence $X^m=\{K_n^m,[P_{nn'}^m]\}$ is associated with the space X_m . For each n, there are inclusion maps $i_n^{m+1,m}\colon K_n^m\to K_n^{m+1}$ defined naturally by the correspondence $U\cap X_m\to U\cap X_{m+1}$. The inclusion shape maps $i_n^{m+1,m}\colon X_m\to X_{m+1}$ have representatives the special map of systems $(i_n^{m+1,m})\colon X^m\to X^{m+1}$ and we may assume without loss that $P_{n,n+1}^{m+1}:_{n+1}^{m+1}:_{n+1}^{m}:_{n+1}^{m+1,m}=i_n^{m+1,m}p_{n,n+1}^m$. The direct sequence $X^*=[X^m,[i_n^{m+1,m}]]$ in $\operatorname{pro}(\mathscr{W})$ is associated with the space X.

If A is a closed subset of X, $x_0 \in A$ and $A_m = A \cap X_m$, let L_n^m denote the nerve of $\mathcal{U}_n(A_m)$. The inverse sequence $(X, A, x)^m = \{(K_n^m, L_n^m, p_n), [p_{nn}^m]\}$ in \mathcal{W}_0^2 is associated with the pair of pointed spaces (X_m, A_m, x_0) and the direct system $(X, A, x_0)^* = [(X, A, x)^m, [i_n^{m+1, m}]]$ in $\operatorname{pro}(\mathcal{W}_0^2)$ is associated with the pair of pointed spaces (X, A, x_0) .

If the dimension of X is $\leq K$, the sequence $\{\mathcal{U}_n\}$ of locally finite open covers can be chosen to have order $\leq K+1$. In this case, each nerve K_n^m will have dimension $\leq K$. Furthermore, if X is connected, each X_m may be chosen connected and each K_n^m will then be a connected simplicial complex.

7. CG-shape deformation retraction. In this section we shall prove the following:

(7.1) Let $(X, A, x)^*$ and $(Y, B, y)^*$ be direct sequences in $pro(\mathcal{W}_0^2)$. Let each $(X, A, x)_n^m$ and $(Y, B, y)_n^m$ be simplicial with $\dim X_n^m \leq K < \infty$, each Y_n^m connected, and each $(Y, B, y)_n^m$ a subcomplex of $(Y, B, y)_n^{m+1}$. If $\pi_k(Y, B, y)^* = 0$ for $1 \le k \le K+1$, then every morphism $F: (X, A, x)^* \to (Y, B, y)^*$ in ind(pro(\mathcal{W}_0^2)) admits a morphism $G: (X, x)^* \to (B, y)^*$ in $\operatorname{ind}(\operatorname{pro}(W_0))$ such that

$$JG = F: (X, x)^* \to (Y, y)^*, \quad G[(A, x)^* = F](A, x)^*: (A, x)^* \to (B, y)^*,$$

where $J: (B, y)^* \to (Y, y)^*$ is given by the inclusions $j_n^m: (B, y)_n^m \to (Y, y)_n^m$.

If one applies (7.1) to the identity morphism $I: (X, A, x)^* \to (X, A, x)^*$. one obtains

(7.2) Let $(X, A, x)^*$ be a direct sequence in $pro(\mathcal{W}_0^2)$ with each $(X, A, x)_n^m$ simplicial, each X_n^m connected, each $(X, A, x)_n^m$ a subcomplex of $(X, A, x)_n^{m+1}$, and $\dim X_n^m \leq K < \infty$. If $\pi_k(X, A, x)^* = 0$ for $1 \leq k \leq K+1$, then there is a morphism $R: (X, x)^* \to (A, x)^*$ in $\operatorname{ind}(\operatorname{pro}(\mathcal{W}_0))$ such that JR = I and $RJ = R[(A, x)^* = I]$. Consequently, the morphism $J: (A, x)^* \to (X, x)^*$ given by the inclusions $j_n^m: (A, x)_n^m \to (X, x)_n^m$ is an isomorphism in $\operatorname{ind}(\operatorname{pro}(\mathcal{W}_0))$.

Note that by using (2.7) and a CS-cofinal subsequence, we may assume that $\pi_k(Y, B, y)^* = 0$ implies that each $(j^{m+1,m})_k$: $\pi_k(Y, B, y)^m \to \pi_k(Y, B, y)^{m+1}$ is the zero homomorphism in pro(G).

The following lemmas will be useful in proving (7.1).

(7.3) (cf. (6.2) of [Mar]). Let (P, Q, p) be a simplicial pair with $\dim(P \setminus Q) \leq K+1$. Then for any $m \in \mathbb{N}$, there is an increasing function $\sigma_m \colon \mathbb{N} \to \mathbb{N}$ such that, for all n, if $n^* = \sigma_m(n)$ and if $\varphi: (P, Q, p) \to (Y, B, y)_{n^*}^m$ is a map, then there is a map $\psi: (P, O, p) \rightarrow (B, B, y)_n^{m+1}$ such that

$$\varrho_{n,n^*}^{m+1,m} \varphi \simeq j_n^{m+1} \psi$$
 where $\varrho_{n,n^*}^{m+1,m} : (Y, B, y)_{n_*}^m \to (Y, B, y)_n^{m+1}$

is the composition of the projection map $q_{n,n}^m$: $(Y,B,y)_{n}^m \to (Y,B,y)_n^m$ and the inclusion map

$$i_n^{m+1,m}: (Y, B, y)_n^m \to (Y, B, y)_n^{m+1}$$

and

$$j_n^{m+1}: (B, B, y)_n^{m+1} \to (Y, B, y)_n^{m+1}$$

is the inclusion map.

Proof. Since $(j^{m+1,m})_k$: $\pi_k(Y, B, y)^m \to \pi_k(Y, B, y)^{m+1}$ is the zero-morphism, $1 \le k \le K+1$, for each $n \in N$ there is a chain $n_0 = n \le n_1 \le ... \le n_{k+1} = \sigma_m(n)$ such that $(\varrho_{n,n+1}^{m+1,m})_k = 0$ for $0 \le i \le K$, $1 \le k \le K+1$. Choose a triangulation of (P, Q, p) such that Q is a full subcomplex of P. Let $L_k = (Q \cup P^k) \times I \cup (P \times 0)$, where P^k is the k-skeleton of P, $0 \le k \le K+1$.

As in the proof of (6.2) of [Mar], there is a sequence of maps $\chi_k: L_k \to Y_{n_{k+1-k}}^{m+1}$ such that

$$\chi_k(x, t) = Q_{n_{K+1-k}, n_{K+1}}^{m+1, m} \varphi(x), \quad \text{if } (x, t) \in (Q \times I) \cup (P \times 0),$$

$$\chi_k(x, 1) \in B_{n_{K+1-k}}^{m+1}, \quad \text{if } x \in P^k,$$

$$\chi_k(x, 1) = y_{n_{K+1-k}}^{m+1} \quad \text{if } x \in P^0 \setminus Q$$

Observe that $L_{K+1} = P \times I$ and consider $\chi_{K+1} : P \times I \rightarrow Y_n^{m+1}$. Setting $\psi(x) = \chi_{K+1}(x, 1)$ for all $x \in P$, we obtain a map $\psi: (P, Q, p) \to (B, B, y)_n^{m+1}$ that satisfies the required conditions. By induction, one can achieve that $\sigma_m(n) < \sigma_m(n+1)$ and $\sigma_m(n) < \sigma_{m+1}(n)$.

(7.4) (cf. (6.3) of [Mar]). Let (P, p) be a simplicial complex, $\dim P \leq K$. Let $\varphi_0, \varphi_1: (P, p) \to (B, y)_{n*}^m$ be maps such that

$$j_{n^*}^m \varphi_0 \simeq j_{n^*}^m \varphi_1 : (P, p) \to (Y, y)_{n^*}^m$$

Then

$$\varrho_{n,n^*}^{m+1,m}\varphi_0 \simeq \varrho_{n,n^*}^{m+1,m}\varphi_1: (P,p) \to (B,y)_n^{m+1}.$$

Proof. As in (6.3) of [Mar], the homotopy between $j_{n^*}^m \varphi_0$ and $j_{n^*}^m \varphi_1$ gives a map

$$\varphi: (P \times I, P \times 0 \cup P \times 1, p \times I)/(p \times I) \to (Y, B, y)_{n}^{m}$$
.

By (7.3) there is a map ψ : $(P \times I, P \times 0 \cup P \times 1, p \times I)/(p \times I) \rightarrow (B, B, \nu)_n^{m+1}$ such that

$$\psi|(P\times 0\cup P\times 1,p\times I)/(p\times I)\simeq \varrho_{n,n^*}^{m+1,m}\varphi|(P\times 0\cup P\times 1,p\times I)/(p\times I)$$

in $(B, v)_{n}^{m+1}$ so that

$$\rho_{n,n^*}^{m+1,m} \varphi_0 \simeq \psi | (P \times 0) \simeq \psi | (P \times 1) \simeq \varrho_{n,n^*}^{m+1,m} \varphi_1 \text{ in } (B,y)_n^{m+1}.$$

(7.5) (cf. (6.1) of [Mar]). Let $(X, A, x) = \{(X, A, x)_n, [P_{nn'}]\}$ be an inverse system in \mathcal{W}_0^2 with each $(X, A, x)_n$ simplicial and $\dim X_n \leq K < \infty$. Then every $\operatorname{pro}(\mathcal{W}_0^2)$ -morphism $f: (X, A, x) \to (Y, B, y)^m$ admits a $\operatorname{pro}(\mathcal{W}_0)$ -morphism $a: (X, x) \rightarrow (B, v)^{m+2}$ such that

$$j^{m+2}g = j^{m+2,m}f: (X,x) \to (Y,y)^{m+2}$$

and

$$g|(A, x) = j^{m+2,m} f|(A, x): (A, x) \to (B, y)^{m+2}$$

Proof. Let $n^* = \sigma_{m+1}(n)$ and $n^{**} = \sigma_m(n^*)$. Let $f_n: (X, A, x)_{f(n)} \to (Y, B, y)_n^m$ be a sequence of maps such that (f, f_n) is a map of inverse systems representative of f. Let $g: N \to N$ be given by the composition $g(n) = f(n^{**})$. Consider $f_{n^{**}}: (X, A, x)_{g(n)} \rightarrow (Y, B, y)_{n^{**}}^m$. According to (7.3) there is a sequence of maps $\psi_n: (X, A, x)_{g(n)} \to (B, B, y)_{n^*}^{m+1}$ such that $\ell_{n^*, n^{**}}^{m+1, m} f_{n^{**}} \simeq j_{n^*}^{m+1} \psi_n$. Define a sequence of maps $g_n: (X, x)_{n(n)} \to (B, y)_n^{m+2}$ by the composition $g_n = \varrho_{n,n^*}^{m+2, m+1} \psi_n$.

To show that (g, g_n) is a well defined map of inverse sequences, it suffices to show for all $n \in N$, $g_n p_{q(n), q(n+1)} \simeq q_{n, n+1}^{m+2} g_{n+1}$. First, note that

$$q_{n,n+1}^{m+2}\varrho_{n+1,(n+1)*}^{m+2,m+1}=\varrho_{n,n*}^{m+2,m+1}q_{n*,(n+1)*}^{m+1}\,.$$

Since

$$g_n p_{g(n),g(n+1)} = \varrho_{n,n^*}^{m+2,m+1} \psi_n p_{g(n),g(n+1)}$$

and

$$q_{n,n+1}^{m+2}g_{n+1} = q_{n,n+1}^{m+2}e_{n+1,(n+1)*}^{m+2}\psi_{n+1} = e_{n,n*}^{m+2,m+1}q_{n*,(n+1)*}^{m+1}\psi_{n+1}$$

by (7.4), it suffices to show that

$$j_{n*}^{m+1} \psi_n p_{q(n), q(n+1)} \simeq j_{n*}^{m+1} q_{n*, (n+1)*}^{m+1} \psi_{n+1}$$

But,

$$\begin{split} j_{n^*}^{m+1} \psi_n p_{g(n), g(n+1)} &\simeq \varrho_{n^*+1, m}^{m+1, m} f_{n^*} e_{g(n), g(n+1)} \\ &\simeq \varrho_{n^*, n^*}^{m+1, m} q_{n^*}^{m} e_{(n+1)^*} e_{(n+1)^*} \\ &\simeq q_{n^*, (n+1)^*}^{m+1, m} \varrho_{(n+1)^*, (n+1)^*}^{m+1, m} \\ &\simeq q_{n^*, (n+1)^*}^{m+1, m} \varrho_{(n+1)^*}^{m+1, m} \psi_{n+1} \\ &\simeq q_{n^*, (n+1)^*}^{m+1} \varrho_{(n+1)^*}^{m+1} \psi_{n+1} \\ &\simeq l_{n^*}^{m+1} q_{n^*+1, (n+1)^*}^{m+1} \psi_{n+1} \end{split}$$

and (g, g_n) is well defined.

The pro(\mathcal{W}_0)-morphism $g:(X,x)\to (B,y)^{m+2}$ determined by (g,g_n) is such that

$$j^{m+2}g = j^{m+2,m}f$$
 and $g|(A,x) = j^{m+2,m}f|(A,x)$.

Proof of (7.1). Let (f_m) be a special map of direct systems that is representative of F. By (7.5) there is a sequence of $\operatorname{pro}(\mathcal{W}_0)$ morphism $g_m: (X, x)^m \to (B, y)^{m+2}$ such that $j^{m+2}q_m = j^{m+2,m}f_m$ and $q_m|(A, x)^m = j^{m+2,m}f_m|(A, x)^m$.

Consider the map of inverse systems $\varrho^{m+1,m}\colon (B,y)^m\to (B,y)^{m+1}$ defined by $\varrho^{m+1,m}=(\sigma_m,\varrho^{m+1,m}_{n,n^*})$. One can show that $\varrho^{m+1,m}\simeq j^{m+1,m}\colon (B,y)^m\to (B,y)^{m+1}$ so that $(B,y)^*=[(B,y)^m,[\varrho^{m+1,m}]]$ and the sequence $(g_m)\colon (X,x)^m\to (B,y)^{m+2}$ will define a map of direct systems, if

$$g_{m+1}i^{m+1,m}=\varrho^{m+3,m+2}g_m$$
.

Let $n^* = \sigma_{m+2}(n)$, $n^{**} = \sigma_{m+1}(n^*)$, $n^{***} = \sigma_m(n^{**})$, $g_m(n) = n'$, $g_{m+1}(n) = n''$, and $n^* = f_{m+1}(n^{***})$. Then it suffices to show that for all $n \in \mathbb{N}$, there is a $k \in \mathbb{N}$, $k \ge g_m(n^*) = n^*'$, $g_{m+1}(n) = n''$ such that

(A)
$$g_n^{m+1} i_{n''}^{m+1, m} p_{n'', k}^m \simeq \varrho_{n, n^*}^{m+3, m+2} g_{n^*}^m p_{n^*, k}^m$$

Note that $n^{***} > n^{**}$, so $n\$ = f_{m+1}(n^{***}) > f_{m+1}(n^{**}) = n''$. Choose $k \in \mathbb{N}$, so that $k > f_m(n^{***}) = n^{*'}$, $f_{m+1}(n^{***}) = n\$$ and

$$f_{n \leftrightarrow *}^{m+1} i_{n \$}^{m+1, m} p_{n \$, k}^{m} \simeq j_{n \leftrightarrow *}^{m+1, m} f_{n \leftrightarrow *}^{m} p_{n \leftrightarrow *}^{m}$$

Then

(B)
$$\varrho_{n^{**},n^{***}}^{m+1,m} f_{n^{***}}^{m} p_{n^{*'},k}^{m} \simeq f_{n^{**}}^{m+1} p_{n'',n}^{m+1,m} i_{n^{*}}^{m+1,m} p_{n^{*},k}^{m} .$$

Consider the left side of (A),

$$g_n^{m+1}i_{n''}^{m+1,m}p_{n'',k}^m = \varrho_{n,n^*}^{m+3,m+2}\psi_n^{m+2,m+1}i_{n''}^{m+1,m}p_{n'',k}^m.$$

By (7.4) it suffices to show that

$$j_{n^*}^{m+2}g_{n^*}^m p_{n^*,k}^m \simeq j_{n^*}^{m+2}\psi_n^{m+2,m+1}i_{n''}^{m+1,m}p_{n'',k}^m$$

This may be shown to follow from (B) using straight forward manipulations. Both JG = F and $G|(A, x)^* = F|(A, x)^*$ are consequences of (7.5).

- 8. Whitehead theorem for maps. Let $f: (X, x_0) \to (Y, y_0)$ be a map between two σ -compact metric spaces. Let (Z, z_0) denote the (pointed) mapping cylinder of f and let $i: (X, x_0) \to (Z, z_0)$ and $j: (Y, y_0) \to (Z, z_0)$ denote the usual embeddings. Then,
- (8.1) (i) (Z, z_0) is a σ -compact Hausdorff space,
 - (ii) $\dim Z \leq \max\{1 + \dim X, \dim Y\}$,
 - (iii) f is a CG-shape equivalence iff i is a CG-shape equivalence, and
- (iv) f induces a monomorphism (epimorphism) of homotopy bi-groups iff i induces one.

We can now state and prove our main result:

(8.2) Let (X, x_0) and (Y, y_0) be (pointed) σ -compact metric spaces, connected and finite-dimensional and let $f: (X, x_0) \to (Y, y_0)$ be a map which induces bimorphisms $F_k: \pi_k(X, x_0)^* \to \pi_k(Y, y_0)^*$ of homotopy bi-groups for

$$0 \le k \le K = \max\{1 + \dim X, \dim Y\}$$

and an epimorphism for k=K+1. Then f is a CG-shape equivalence, i.e. there is a CG-shape map $G: (Y, y_0) \to (X, x_0)$ such that FG = I and GF = I. Here F denotes the CG-shape map induced by f and I denotes the identity shape maps.

Proof. Let (Z, z_0) be the mapping cylindar of f. Z is σ -compact, connected and $\dim Z \leqslant K < \infty$. The inclusion $i\colon (X, x_0) \to (Z, z_0)$ induces a bimorphism I_k of homotopy bi-groups for $0 \leqslant k \leqslant K$ and an epimorphism for k = K+1. By (5.1) there is an exact sequence of homotopy bi-groups belonging to the pair (Z, X, z_0) . By (2.6), $\pi_k(Z, X, x_0)^* = 0$ for $1 \leqslant k \leqslant K+1$. It follows by (7.2) that the inclusion $i\colon (X, x_0) \to (Z, z_0)$ is a CG-shape equivalence, which implies that f is a CG-shape equivalence.

References

[Bor] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.

[Dug] J. Dugundji, Elements of Modern Topology, McGraw-Hill, New York 1968.

140

[H-W]

T. J. Sanders

- [Mar] S. Mardešić, On the Whitehead theorem in shape theory I, Fund. Math. 91 (1976), pp. 51-64.
- [M-S. 1] and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [M-S. 2] Equivalence of the Borsuk and the ANR-system approach to shape, Fund. Math. 72 (1971), pp. 61-68.
- [Mor. 1] K. Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), pp. 31-52.
- [Mor. 2] On shapes of topological spaces, Fund. Math. 86 (1975), pp. 251-259.
- [Mos] M. Moszyńska, The Whitehead theorem in the theory of shapes, Fund. Math. 80 (1973), pp. 221-263.
- [R-S] L. Rubin and T. Sanders, Compactly Generated Shape, Gen. Top. and its Appl. 4 (1974), pp. 73-83.
- [S. 1] T. Sanders, Shape Groups for Hausdorff spaces, Glasnik Matematički 8 (28) (1973), pp. 297-304.
- [S. 2] Compactly generated shape theories, Fund. Math. 93 (1976), pp. 37-40.
- [Sp] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.

DEPARTMENT OF MATHEMATICS U. S. NAVAL ACADEMY Annapolis, MD

N. J., 1941.

Accepté par la Rédaction le 23, 7, 1979

Topological games and products I

by

Yukinobu Yajima (Yokohama)

Abstract. Our main purpose in this paper is to show the following result: If a paracompact space X has a σ -closure-preserving cover by compact sets and Y is a paracompact space, then the inequality $\dim X \times Y \leq \dim X + \dim Y$ holds. As a matter of fact, we shall prove it in the more generalized form. The main tool of its proof is the topological game (in the sense of R. Telgársky).

§ 1. Introduction. R. Telgársky [12] introduced and studied the concept of topological game G(K,X). Moreover, making use of it, he showed that the topological product of paracompact spaces one of which has a σ -closure-preserving cover by compact sets is paracompact (cf. [12, Theorem 14.7]). In fact, he obtained this result by proving the form which is generalized in terms of topological game (cf. [12, Theorem 14.6]). In § 2, we prove our main theorem. It is another generalization of the above result. Besides, the product inequality of covering dimension simultaneously holds in it, which is given by proving that a locally finite open cover of product space has a locally finite refinement by cozero rectangles. Here, the product space with this topological property is named to be strongly rectangular. In § 3, we apply the technique used in the proof of the above theorem to the product of Hurewicz spaces. In § 4, furthermore, we investigate what kind of a topological product is strongly rectangular. In § 5, we state several questions unanswered.

Throughout this paper, each space is assumed to be a Hausdorff space. However, for a topological product $X \times Y$, we shall mainly discuss in the case $X \times Y$ is normal and we assume either X or Y is non-empty. Non-negative integers are denoted by the letters i, j, k, m, n etc, and μ denotes an infinite cardinal number.

The descriptions and the details of the topological game G(K, X) are found in [12]. Let us note that a sequence $(E_n: n \ge 0)$ of closed subsets of X is a play for G(K, X) if and only if each finite subsequence $(E_0, ..., E_n)$ of it is admissible for G(K, X). In particular, we consider as K, in this paper, the following two classes of spaces:

 \overline{DC} — the class of all spaces which can be decomposed into a discrete collection by compact sets.