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Topological games and products I
by

Yukinobu Yajima (Yokohama)

Abstract. Our main purpose in this paper is to show the following result: If a paracompact
space X has a g-closure-preserving cover by compact sets and Y is a paracompact space, then
the inequality dim X'x Y< dim X+ dim ¥ holds. As a matter of fact, we shall prove it in the more
generalized forrm. The main tool of its proof is the topological game (in the sense of R .Telgirsky).

§ 1. Introduction. R. Telgarsky [12] introduced and studied the concept of
topological game G(K, X). Moreover, making use of it, he showed that the topologi-
cal product of paracompact spaces one of which has a o-closure-preserving cover
by compact sets is paracompact (cf. [12, Theorem 14.7]). In fact, he obtained this
result by proving the form which is generalized in terms of topological game
(cf. [12, Theorem 14.61). In § 2, we prove our main theorem. It is another general-
ization of the above result. Besides, the product inequality of covering dimension
simultaneously holds in it, which is given by proving that a locally finite open cover
of product space has a locally finite refinement by cozero rectangles. Here, the product
space with this topological property is named to be stronaly rectangular. In § 3, we
apply the technique used in the proof of the above theorem to the product of Hurewicz
spaces. In § 4, furthermore, we investigate what kind of a topological product is
strongly rectangular. In § 5, we state several questions unanswered.

Throughout this paper, each space is assumed to be a Hausdorff space. However,
for a topological product X x Y, we shall mainly discuss in the case Xx Y’ is normal
and we assume either X or Y is non-empty. Non-negative integers are denoted by
the letters i, j, k, m, n etc, and u denotes an infinite cardinal number.

The descriptions and the details of the topological game G(K, X) are foung
iA [12]. Let us note that a sequence (E,: n=0) of closed subsets of X is a play for
G(K, X) if and only if each finite subsequence (Ey, ..., E,) of it is admissible for
G(K, X). In particular, we consider as K, in this paper, the following two classes

of spaces:’
DC — the class of all spaces which can be decomposed into a discrete collection

by compact sets.


GUEST


142 Y. Yajima

DC, — the class of all spaces which can be decomposed into a discrete collection
by u-compact sets (*).

The topological game G(DC, X) (G(DC,, X)) is closely related to a space
which has a o-closure-preserving closed cover by (u-)compact sets. These facts
are known from the following results.

ProrosiTioN 1.1. If a space X has a o-closure-preserving cover by compact sets,
then Player I has a winning strategy in G(DC, X).

ProrosirioN 1.2. If a space X has a o-closure-preserving closed cover by
u-compact sets, then Player I has a winning strategy in G(DC,, X).

Proposition 1.1 is given in [12, Corollary 10.2]. However, this result is essentialy
due to H. B. Potoczny [7]. Proposition 1.2 follows from [12, Theorem 4,7] and
[13, Lemma 5].

A subset of a topological product X x Y of the form A x B is called a rectangle.
For a rectangle E in X'x ¥, E' and E" denote the projections of E into X and ¥
respectively. So we have E = E'x E”. A rectangle E in X'x ¥ is said to be a cozero
(zero, open and closed) rectangle if E' and E" are cozero (zero, open and closed,
respectively) in X and Y respectively.

§ 2. Strongly rectangular products. At first, we state the following definition.

DEFINITION. A topological product X¥x Y is said to be strongly rectangular
if each locally finite open cover of X'x ¥ has a locally finite refinement by cozero
rectangles.

ProPOSITION 2.1. The following conditions are equivalent.

(a) X'x Y is strongly rectangular.

(b) Each finite open cover of X x Y has a locally finite refinement by cozero rec-
tangles.

(c) For each closed subset F and each open set U of Xx Y with Fc U, there is
a locally finite collection % by cozero rectangles such that FoUA=U.

(@) X% Y is normal and for each zero-set F and each cozero-set U of XxY
with F< U there is a locally finite collection W by cozero rectanglessuch that F= | J U< U.

(e) For each pair F,, F, of disjoint closed subsets in X'x Y, there is a continuous
Junction f: Xx ¥ [0, 1] such that f(Fo) =0, f(F) =1 and

fix, J’) = tgrgt(x)hz(y) »

where g2 X — [0, 1] and h,: Y — [0, 1] are continuous and the sum is locally finite.

This proposition has been pointed out by R. Telgdrsky. Its proof is left to the
reader.

Our main theorem is as follows, where let x be the cardinal function denoting
character. .

W

™) A space is said to be u-compact if each its open cover of power <u has a finite subcover,
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THEOREM 2.1. Let X be a collectionwise normal space and Player I has a winning
strategy in G(DC,, X) and let Y be a paracompact space with y(Y)<p. Then the
product space X'x Y is collectionwise normal, p-paracompact (*) and strongly rec-
tangular.

In order to prove Theorem 2.1, we need the following two lemmas.

LemMA 2.1. Let F be a p-compact closed subset of a normal space X and let ¥
be a completely regular space with y(Y)<u and ye Y. If ® is a finite collection of
open sets in Xx Y such that  coverse F % {y}, then there exists a finite collection
U= {U;xV:i=1,..,k} by cozero rectangles in X x Y such that F={J {U;: i<k},
y&V and U refines ®.

Lemma 2.2. Let {Z,: « & Q} be a locally finite collection by zero-sets in a space X
such that there is a locally finite collection {H,: a e Q} by cozero-sets in X with
Z,=H, for each a€ Q. Then \J {Z,: € Q} is a zero-set in X.

Lemma 2.1 is well-known and easy to prove. Lemma 2.2 is given in [4].

Proof of Theorem 2.1. Let s be a winning strategy 6f Player 7 in G(DC,, X)-
Let ® be any open cover of X'x Y, satisfying the following condition;

(1.0) for each p-compact closed subset F in Xx Y, ® contains a finite subcol-
lection & which covers F.

First, we shall construct a sequence {,: n>0} of collections by cozero
rectangles, an inverse system {(3Bn, om>: n20, m<n} of a sequence of collec-
tions 3, by zero rectangles with the bonding maps ¢y, of 3, into 3,,, a sequence
{$,: n=0} of collections by cozero rectangles and a countable collection
{V(n, m): n, mz0} of cozero-sets in Xx ¥, where Uy = {@}, 3o = Ho = {Xx Y}
and V(0, m) = X x Y for each m>0, satisfying the following conditions (1.1,)~(1.11,)
for each n>1:

(1.1,) U, is locally finite in X'x T.

(1.2,) 3, is locally finite in Xx Y.

(1.3,) Bach UxVel, is contained in some Ge 6.

(1.4,) Z=@}-1(Z) for each Z e 3,.

(1.5) If peZ,—1 € 3yp-q and pE U, then there exists some Z, €3, such
that p € Z, and @p—((Z,) = Zy-1.

i i . -
(1;6,,) If (Zy, s Zyy €13 satisfies 9i(Z) = Z; for each j<isn, then
=0

the finite sequence (Eo, ..., Ep,) defined by E, =X, Exn = z; a.nd. Ejieq
= §(Eq, ..rs Epi-7) for each 1<i<n, which are well-defined, is admissible for
G(DC,, X).

(1.7) $, = {H(Z): Ze3,} such that Zc H(Z) for each ZE,S”'

(1.8,) 9, is locally finite in XxY.

1.9) U3, =N{Vin,m: m>0}, where ¥(n,0) = Xx Y.

(® A space is said to be u-paracompact if each its open cover of power <u has a locally
finite open refinement.
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(1.10,) C1lV(n, mycV(n,m—1) n ¥(n—1,m) for each m>1.

(1.11) YU,c¥mn-1,n-1).

Assume {1L,: i<n}, {(Bi, ohy: m<i<n}, {$, i<n} and {V(E, m): i<n, m30},
satisfying (1.1)~(1.11;) for each i<n, have been already comstructed. Now, fix
Z e 3,.By (L.6,), we can define E, = X, Ey; = (¢{(2)) and Ey;—y = 5(Eq, ., Eyyy)
for 1<i<n and the finite sequence (Ey, ..., E,,) is admissible for G(DC,, X). So
§(Eo, -, £y,) is the union of a discrete co'lection {F,: ¢ & Q(Z)} by u-compact
closed subsets of Z’. We choose two discrete (in X) collections {W,: oe2(Z)}
and {C,: 2 € Q(Z)} such that W, is a cozero-set in X; C, is a zero-set in X and
FyeW,=C, for each « e Q(Z). Then, applying Lemma 2.1 to Z, it follows from (1.0),
(1.7,), \1.9,) and paracompactness of ¥ that there exists a locally finite collection
W(Z) = {Uy:x V32 i=1,..,k;, and le A(w)} by cozero rectangles for each
o € Q(Z), satisfying the following conditions (i)~(v):

(W F.cUy = U{Uy:: i<k;}=W, for each Ae A(a).

(i) {Va: AeA(@)}is alocally finite collection by cozero-sets in ¥, , covering Z*/

(iii) Bach U,;x ¥, s contained in some G e ®, '

(v) UycH(Z) and V,cH(Z)" for each 1e A(x).

) Upyx V=V (n,n) for each AeA(x).

Here, we set U, = U {U(Z): Ze 3, and a e Q(Z)}. From the above conditions
()-(v) and (1.8,), we can see that the conditions (1.1, ), (1.3,,,) and (1.11,4.) are
satisfied. For each Ze 3, and weQ(Z), we take a locally finite cover B(Z)
= {B,: L€ A(x)} of Z" by zero-sets in ¥ such that B, V, A Z" for each A e A(e).
Let W(Z) = U{W,nZ": aeQ(Z)}. So we put 7 = (Z\W(Z))xZ". Then Z is
a zero rectangle. Next, we put Z(x, 1) = (C, NZWNU,) x B, for each ae Q(Z)
and A€ A(ax). Then each Z(x, 1) is also a zero rectangle. Here, we set

Bor1 ={Z: Ze 3} U{Z(a, ): Ze 3,,0eQ(Z) and led(m)} .
It is easy to see the condition (1.2,,,) being satisfied. The bonding map
Out?t Bpeg — 3, is defined by ¢"Y(Z) = Z and ou* (2, D)) = Z for each
an::r 3ns 0 € 2(Z) and A e A(x). Then the condition (1.4,41) is clearly satisfied and
Oyt = h o It for m<n. Assume p = (x,))eZ,e3, and p¢(U,,;. In
case of x ¢ W(Z,), we have pe Z, € 3,,, and oyt Y Z,) = Z,. So, moreover, assume
xe W(Z,). We can take some o € Q(Z,) with xe W, and take some Ay € A(xy)
with y e B, € B,(Z,). Since U,, x V3, is contained in () U,,,, we have x & Uy,
Hence
(x,ne (( Wew N ZN\ U;.o) X By, cZ(0g, A9) € 3y
and @i (Z, (e, .10))+= Zy. Thus the condition (1.5,.,) is satisfied. Take any
nt+1
Loy s Zyy Ly eﬂo& such that ¢3(Z)) = Z; for j<i<n+1. If we put E, = X,

Ey = Z; and Ey;_y = 5(Eo, ., Eyy_,) for 1<i<n, then they are well-defined and
the sequence (B, ..., F,,) is admissible for G(DC,, X) because of (1.6,). Moreover,
We put Epueq = 5(Eq, ..., £o,) and E,,p = Z;,,. In order to show that the
sequence (Ey, ..., E;,.,) is admissible for G (DC,, X), it is enough.to show
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Eyyi2 S Eyyand Eyyyy 0 Eypyy = B, Note that 93" 1(Z,, ;) = Z, implies Z,,,., = Z,
or Z"“ = Z(ay, 4o) for some % eQ(Z,) and AyeAd(w). By Z,41<Z,
Ejur 2 Eyy is clear. Since E,; = (py(Z,)) for 0<i<n, we have

S(an At Eln)c W(Z,,) a Zr’:

and s(E,, ..., Ey,) N Cyy = FpucU,,. So we can verify that s(Ey, ..., Ea,) is disjoint
from both Z, and (Z,(to, Ay)). Hence Ey,,, and E,,, , are disjoint in either case
for Z,,,. Thus the condition (1.6,,,) is satisfied. Now, we put H(Z) = H(Z) for
each Z € 3,. From (1.7,), note that Z'c H(Z)' and Z"' < H(Z)"'. Since the collection
{CynZ': e Q(Z)} is discrete in X, we can take a discrete collection {L,: & € Q(Z)}
of cozero-sets in X such that C,nZ' <L, H(Z) for each a € Q(Z). So we put
H(Z(a, A)) = L,x V, for each «eQ(Z) and Ale A(x). Here we can set H,44
= {H(Z): Z € 3,+,}- Thus we have defined the collection £, by cozero rectangles.
It is easy to verify that the remaining conditions (1.7,4 ) and (1.8, ) are satisfied.
By (1.2,),°(1.7,), (1.8,) and Lemma 2.2, {J 3,4+ is a zero-set in X'x Y. Note that
U Bpr1€ U 3.V (1, m) for each m=0. So, we can inductively obtain a countable
collection {V(n-+1,m): m=0} of cozero-sets in X x Y satisfying the conditions
(1.9,4+4) and (1.10,,). From the facts mentioned above, we have inductively con-
structed the desired collections {1}, {3,, @n}> (.} and {V(n, m)} satisfying the
conditions (1.1,)-(1.11,).

Now, we set U = |J {2,: n>0}. We shall show that U is a cover of Xx Y.

CramM 1. For each {Z,: n=0) elim{3,, ¢h}, we have N{Z,: n=0} = @.

Proof. We put Eg = X, E,, = Z,, and Eayyy = 5(Eq, ..., Ey,) for cach n>1.
By (1.6,), they are well-defined and the infinite sequence (E,: n>0) is a play for
G(CD,, X). From the definition of 5, we have () {E,,: n»0} = N{Z;: n=0} = &.
Hence () {Z,: n=0} = @ holds. Claim 1 is proved.

Assume poeXx YNUU. Since ppeZ,=XxYe3, and po¢UY, for
each 730, by (1.5,), we can inductively choose a sequence {Z,: n>0} of zero rec-
tangles such that pyeZ, €3, and @)_((Z,) = Z,-, for each n>1. So we have
(Z,: n20) elim{3,, ¢} and p,e(){Z,: n>0}. This contradicts to Claim 1.
Hence U is a cover of X x Y. Thus, by (1.1,) and (1.3,), U is a o-locally finite refine-
ment of G by cozero rectangles. Moreover, we shall show that i is locally finite
in Xx7Y.

Cramv 2. N {U 3,: >0} = @.

Proof. Assume ge(){U 3, 70} Let 3,(q) be {Ze3,: geZ} for each
n0. It follows from (1.2,) and (1.4,) that each 3,(g) is a non-empty finite sub-
collection of 3, such that ¢"_(3,(2))=3,-1(g). By Konig’s lemma, there exists
some {Z,: nz0> elim{3.(q), ¥L{3.(q)}. Then we have (Z,: n>0) elim{3,, ¢}
and ge () {Z,: n>0}. This contradicts to Claim 1. Thus Claim 2 is proved.

Let p be any point of X'x Y. By Claim 2, we can take some 7 >0 such that
p¢U 3, - By (1.9,) and (1.10,), we can also take some no=ny such that p
& Cl'V(ny, ny). Hence p¢Cl¥(ny,no). From (1.10,) and (1.11,), we have p

5 — Fundamenta Mathematicae CXIIT/2
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¢ CI(U {U U, n>n,)). Since U {2, n<no} is locally finite in X'x ¥, Wis locally
finite at p. Thus, we can obtain the following conclusion; s

(¥) each open cover G of X x Y satisfying the condition (1.0) has a locally finite
refinement U by cozero rectangles.

Let {Dy: £€E} be any discrete collection of closed subsets in X'x Y. Put
G = {Xx I\U {D,: 1 # &}: £ 5} Since each countably compact closed subset
in X' ¥ intersects at most finite many elements of {D;: & € &}, © satisfies the con-
dition (1.0). It follows from the conclusion (%) that ® is a normal cover of X'x ¥.
So it is easy to show that there exists a disjoint collection of open sets separating
{Dy: £eE} in Xx Y. Hence Xx ¥ is collectionwise normal.

Let G be any open cover of X'x ¥ of power <u. Since & clearly satisfies the
condition (1.0), it follows from the conclusion (x) that X'x ¥ is u-paracompact.

Let ® be any locally finite open cover of X x Y. Since each countably compact
closed subset in X x Y is covered by some finite subcollection of &, G satisfies the
condition (1.0). So, it follows from the conclusion (x) that X'x Y is strongly rec-
tangular. Thus, the proof of Theorem 2.1 is complete.

B. A. Pasynkoi"’ [6] defined rectangular product and stated that the inequality
dimX x Y<dimX+dim ¥ holds if X'x ¥ is rectangular. A strongly rectangular
product X x Y is clearly rectangular. From this result and Theorem 2.1, we obtain
the following.

COROLLARY 2.1. Let X be a collectionwise normal space and Player I has a winning
strategy in G(DC,, X) and let Y be a paracompact space with y(Y)<u. Then the
inequality
(%) dimXx ¥Y<dimX+dim Y
holds.

Remark. We can immediately prove Corollary 2.1 using neither the above
Pasynkov’s result nor the fact X'x Y is rectangular. In fact, let dimX<n and
dim Y<m. A given continuous map from a closed subset of X x Yinto (z-+ m)-sphere
S"*m can be extended to X x Y by using the same technique as in the proof of
Theorem 2.1. Since Theorem 2.1 guarantees X'x ¥ is normal, this implies
dimXx Y<n+m.

From Theorem 2.1 and Proposition 1.2, we obtain the following generalization
of [12, Theorem 14.7].

THEOREM 2.2. Let X be a collectionwise normal spﬁce which has a o-closure-
preserving. closed -cover by p~compact sets and Y be a paracompact space with
1(Y)<u. Then the product space X x Y is collectionwise normal, p-paracompact
and strongly rectangular.

From Theorem 2.2, we have the following corollaries.

COROLLARY 2.2. If X is @ paracompact space which has a o-closure-preserving
cover by compact sets and Y is a paracompact space, then the product space X x Y is
paracompact and the above inequality () holds.
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COROLLARY 2.3. If X is a collectionwise normal space which has a o-closure-
preserving closed cover by countably compact sets and Y is a paracompact first countable
space, then the product space X x Y is collectionwise normal, countably paracompact
and the above inequality’ (+) holds. i

§ 3. Hurewicz spaces. A regular space X is said to be a Hurewicz space [17if
for each sequence {®,: n>1} of open covers of X there exists a cover
$ = U {$,: n=1} of X, where $, is a finite subcollection of &, for each nz1.
Note that each Hurewicz space has the Lindel6f property and each ¢-compact space
has the Hurewicz property.

A. Lelek [1] showed that the product of two Hurewicz spaces meed not be
normal under continuum hypothesis. On the other hand, R. Telgdrsky [11] proved
that the product of a Hurewicz (Lindelof) C-scattered space and a Hurewicz space is
a Hurewicz space. Being encouraged by this positive result, we can obtain another
positive result concerning the Hurewicz property of product spaces.

First, we state “the following lemma. )

Lemma 3.1. Let F be a compact subset in a space X and R be a closed subset of
a Hurewicz space Y. Furthermore, let {®,: n=1} be a sequence of collections of
open sets in X x Y such that each ®, covers Fx R. Then there exists a countable col-
lection W = \J {W,: n>1} by open rectangles, where each W, is a finite collection
represented by the form

(U, x Vi j= 1,0, MQ) and i = K(n—1+1,..., K}

such that Fe{J {U, ;: j<M(@)} for each i»1, ReU {V: i=1} and U, refines ©,.
" This is a modification of the result of R. Telgdrsky [11, Lemma 3.6] and the
proof is also quite similar to his one.

Turorem 3.1. Let X be a Lindeldf space and Y be a Hurewicz space. If Player I has
a winning strategy in G(DC, X), then the product X x Y is a Hurewicz space.

Proof. Let s be a winning strategy in G(DC, X) and let {®,: n=1} be a se-
quence of open covers of X'x Y.

We shall construct a sequence {11,: n>0} of collections by open rectangles
and an inverse system {{%®,, Yny: 120, m<n} of a sequence of collections R, by
closed rectangles with the bonding maps ¥y, of R, into Ry, where 1, = {} and
R, = {X'x Y}, satisfying for each nx>1

2.1,) Y, is countable,

(2.2,) R, is countable,

(2.3,) for each k=n there exists a finite subcollection $f of G, such that 0,
refines {$;: k=n},
and the three conditions (2.4,)-(2.6,) which are the same ones as (1.4,)-(1.6,)
in the proof of Theorem 2.1 respectively provided that we replace 3,,Z and @,
by R,, R and y, respectively.

5%
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Assume that {;: i<n} and {(R;, Yhy: m<ign} satisfying (2.1)-(2.6) for
i<n have been already constructed. By (2.2,), we represent R, by {Rpn: m=1}.
Now, fix R, € 9,. As the previous case, we can put E, = X, By = (Vi(R,)) and
Eyyq = 5(Eg, oo, Eay_y) for 1<i<n. Since R,, has the Lindelof property, cach
discrete collection of subsets of R), is at most countable. So 5(Ej, ..., Ep,) is the
union of a discrete countable collection {F;: i1} by compact sets in X. We take
a discrete collection {W;: i1} of open sets in X such that F;< W, for each i>1.
Applying Lemma 3.1 to Fy, Ry, and {6;: j=n-+m+i—1}, we can obtain a countable
collection |J {¥F";: j=1} by open rectangles, where each 7 is represented by
the form

(UL xVEht=1,..,M(,i) and r = K(G—-1,0)+1, .., K(j, D}

such that F,c Ul = {J{U} ;2 t<M(r, D} W, for each rzl, RicU{vh rz1}
and U} refines &, psi4jm2-

Here we set M,,, = U {¥';: m,i,j=1}. The condition (2.1,4,) is clear.
For each k>n+1, we put

Bptt = (U7 m, i,j>1 and ntm+i+j=2 =1k},

Then we have 1, ; = U {85**: kzn+1} and cach Bi** is a finite collection which
refines ®,. So we can choose some finite subcollection $H;™! of &, such that BE**
refines $;+1. Then the condition (2.3,4,) is satisfied. The construction of
Ry g, Y11 is similar to the previous <3,, ¢n* ). Indeed, fix R, € R, again. We
take a locally finite closed cover BY = {B!: r1} of R, such that Bic ¥V} n R,
for each rx1. Let W(m) = U {W,n R,: i>1} and let K, = (RAWm)x R, .
Moreover, let R, (i, r) = ((CIW; n Ri)NU)x B for each i, rz1. Here we set

Rurr = (R m=1} U {R,(, 1) m, i, r21}).

Then %, ; is a countable collection by closed rectangles. We define Y5+ 1: R, , — 9,
as the previous ¢)**. It clearly satisfies the condition (2.4, ;). The verifications that
the conditions (2.5,,) and (2.6,..,) are satisfied are quite similar to the previous
cases of (1.5,+4) and (1.6, 1) respectively, so they are omitted. Thus we have con-
structed the desired collections {,} and {®,,y},} satisfying the conditions
2.1,)-(2.6,).

Now, we set i = |J {U,: n>1}. Then we can verify, as in the previous case,
that ¥ is a cover of X'x Y. From (2.3,), U refines U {$;: k=znz1}. Put
Hr=U{DHe: n=1,..,k} for each k>1 and put $ = {J {$,: k>1}. Then cach H,
is a finite subcollection of &, and $ is refined by . Hence $ is a cover of X'x Y.
The proof is complete.

Remark. We can see from Theorem 3.1 that if X is a Lindeldf space and
Player I has a winning strategy in G(DC, X), then X is a Hurewicz space. This fact
also follows from [9, Theorem 7]. Moreover, note that Theorem 3.1 is a gener-
alization of [12, Theorem 14.12]. :

From Theorem 3.1 and Proposition 1.1, we obtain
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CorOLLARY 3.1. If X is a Lindeldf space which has a o-closure-preserving cover
by compact sets and Y is a Hurewicz space, then the product X'x Y is a Hurewicz
space.

§ 4. Other strongly rectangular products. Here, we shall deal with other well-
known spaces than ones we have dealt with all this while. We consider when the
products of those spaces are strongly rectangular.

THEOREM 4.1. If X is a paracompact space which has a countable closed cover
by C-scattered subsets and Y is a paracompact space, then the product space Xx Y
is strongly rectangular.

The proof of Theorem 4.1 is obtained by the modification of that of [10, The-
orem 2.3] and a few devices. The details of it is left to the reader as a exercise.

Remark. After the first version of this paper, R. Telgdrsky has informed the

" following result by letter:

For a paracompact space X, Player I has a winning strategy in G(DC, X) if
and only if he has a winning strategy in G(SC, X), where SC denotes the class of all
C-scattered spaces. :

In truth, from this result, we can see the following facts; 1) [12, Theorem 14.6]
is a consequence of our Theorem 2.1, 2) [11, Theorem 3.5] is a consequence of our
Theorem 3.1 and 3) our Theorem 4.1 is a consequence of Theorem 2.1.

Let Y be a metric space. Let 8 = |J {$;: 21} be an open basis of ¥ satisfying
) By = {V(etg, oo, )2 43 EQq5 ey o;€Q;} is a locally finite open cover
of Y, N

(2) mesh®B,;<1/i,

3) V(ogs s = U {V@, oy o, %e1) B4g € Q1)

Here, it should be noted that some of ¥(xy, ..., %) may be empty and every
metric space has such an open basis.

Let X be a normal space. An open cover I of X'x Y is said to be a basic cover 31

if ¥ has the form
W= {Uy, oo 0) X V{15005 01 00y €815 s a; €0, and i>1}

and if U@, ...,q;) ate open sets in. X such that

Uy, ooy ) S U0y 5 s 0 eg)  fOT 0 €Q45 0, gy €y -
If, for a basic cover X of X'x Y, there exists a collection
. {Flatyy onr o)t 0 €2y, o 0, € Q and i»1}

of closed subsets of X such that
Fotgy ey 0) S U(0g5 w0 45)
U {F(egs s ) X V(0 s @)1 0 €245y gye® and i»1} =Xx7Y,

then we say that U has a special refinement 3]
X £
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Lemma 4.1. Let X be a normal space and Y a metric space. Then a basic cover
of Xx'Y has a special refinement if and only if it is a normal cover.

LeEMMA 4.2. Let Y be a non-discrete metric space. If X x Y is normal, then X x ¥
is countably paracompact.

Lemma 4.1 is due to K. Morita [3] and Lemma 4.2 is due to M. E. Rudin and
M. Starbird [8].

J. Nagata [5] proved that the product of a normal P-space and a metric space
is rectangular (i.e. a F-product), Where P-space is in the sense of K. Morita [2].
Moreover, it follows from [6, Proposmon 1. (3)] and above Lemma 4.2 that X'x ¥
is rectangular if X'x ¥ is normal and Y is metrizable. However, we can really obtain
the following result.

THEOREM 4.2. If X'x Y is normal and Y is metrizable, then X'x Y is strongly
rectangular.

Proof. If Y is discrete, then nothing should be proved. So we can assume Y is
non-discrete. Let & = {G,: 1€ .4} be any locally finite open cover of X'x Y. Let
B =) {B;: i>1} be the above open basis of ¥ satisfying the conditions (1)~(3).
For ay ey, .., 0;eQ; and A€ Q, we define two open sets U(ay, ..., o;: A) and
Uy, .., ) in X by

Uy, ..y a3 4) = J {U': U’ is an open set in X such that
U'xV{ay, ..,)=G,},
Uleey, o) = U {Uley, ooy i3 4): Ae A},
Since we have Uy, .., 0)S U0y, ...y &4, 04 1),
U= {Uly, .., )XV, ., ) g €2y, 0, 0,6 Q; and iz}

is a basic cover of X'x ¥. Note that 3 is a ¢-locally finite open cover of X'x Y. By
Lemma 4.2, X'x ¥ is normal and countably paracompact. Hence ! is a normal cover.
By Lemma 4.1, U has a special refinement. So there exists a collection

{Flotys oy 0, €Qy, 0,006 2, and i1}
of closed subsets of X such that
Flog,y vy ) Uy, oy ),
UF @y, s ) X Plety, ey )t 0y €9y, .0, ;€ 2, atd iz} =Xx¥Y. o

Now, fix a, €y, ..., ;€ Q; such that Vi, ..., @) is non-empty. It is casily

seen that the collection {U(ay, ..., a;; 1): de A} is locally finite in X and for each

Aed we have

Ulotgs oo 03 DX V(0135 ovey a) =G

@
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Since {Ufay, ..., 05; 4): Le A} covers Flay,...,a) and X is normal, there exists
a locally finite collection {E(ay, ..., a; A): 4 € A} by cozero-sets in X such that
Ey; ey 030Uy, oy 053 4),
Foy, oy 0)aU {E(@y, ..., 005 2): Aed}.

Put E(ey, ..., o) = U {E(ay, ..., a3 1): Le A}, Since E(ay, ..., w;) is a cozero-set
in X, we can choose two sequences .

{Glag, s a): n21}  and  {Zo4, ..., 2): n21}
of cozero-sets ;.nd zero-sets in X respectively “such that
By, s o) = U {Cyotgs vy )t m21} = U {Z(tg, s 0)): n=1},
Culatys s 0 Zy(004 5 vovy 0) S Cpy 1 (g 5 ooey ;)
for each n>1. Let Ae A. We define
!H(oci, s 03 A)
= By, ooy @3 ONU {Zi(By 5 oo, B): j<i and V(xy, ..., a)=V (B, ..., B} .

Since | {B;:/<i} is locally finite in ¥ and V(xy,..,a;) is* non-empty,
H(oy, ... 053 4) is a cozero-set in X. So, for each ocleQI,. »0;€Q; and e d
with V(ay, ..., ;) # &, we put

Woty, s ttzs A) = H(0ly s ooy 83 )X V(0ly ooy 0)) .
In case V(ay, ..., o) = &, we put W(ay, ..., o;; 1) = & for each 1 e A. Then each

Wi(ey, ..., 03 4) is a cozero rectangle in X'x ¥ such that W(x, ..., o%; )<=G,.
Here we set

W, = {W(ets oy i3 A2 0y €Qy, 0, 0,€Q; and A A}

“ for each iz1 and set W = {J {2B;: i>1}. Then each W, is locally finite in ¥'x ¥

and 98 refines ®. Thus it is enough to show that 98 is a locally finite cover of X'x Y.

Let p = (x, y) be any point of X'x’Y. We can choose some oy € 2y, ..., 0 € 2
such that peF(ay,..., o) x V(ay,...,0). So we have xeE(d,.., o) and
yeV(ay, ..., %) So we can define a natural number k, by

ko = min{k: x e E(@,..., &) and y € V(0iy, ..., o) for some a; € 2y, ..., 05, €2} .

Here we can take some yq €, .., 7%, €2, such that xe€E(y,, ..., 71;,) and
Y € V(15 s Vo) Then, for each By € Qy, ..., f; € Q; and j <k, such that V(B .., B;)
contains V(yy, ..., 7,), we have x¢ E(By, ..., B;). We choose some A,€e.4 such
that x & E(Yq, .es Vaos 40)- Then we obtain x & H(py, .., Pioi o). Hence we have
DPE WYy, s Yros 4o). Thus W is a cover of X'x Y. . .
Next, we choose some 1, >k, such that x € C,,(yy, ..., ¥1,). Moreover, we choose
some ny>n; and some open neighborhood ¥V, of y in Y such that St(¥V,, B,)
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<V, s Vo) if n=ng, where St(Vo, B,) = U {VeB,: VnV, # J}. We put
0, = Cy(¥15 s T) X Vo. Then O, is an open neighborhood of p in X'x Y. Let
WeW, and nzny. Then we represent

W = W(ﬁl: sy ﬁn;/l) = H(ﬁla Rl ﬁrn’l)x V(ﬂl: AR ﬁn)

for some B, € 24, ..., B, € Q, and A€ A. Assume V), intersects ¥ (f3;, ..., B,). Then
V(Bys..-» B,) is contained in V(yy, .., 7). From ky<n, this implies that
H(By, ..., B,; A) are disjoint from Z,(yy, ..., Pr). Since Z,(y1, ..., 7,) contains
Co(¥15 ) Tho)> O, does not intersect W. Hence O, does not intersect, any elements
of U {2B,: n=ne}. Since each B, is locally finite in X'x ¥, MW is locally finite at p.
Thus we have shown that 9 is a locally finite refinement of ® by cozero rectangles.
The proof is complete.

LemMA 4.3. Let f: X — X and g: Y — Y be perfect maps of X and Y onto X
and Y respectively. If X x ¥ is paracompact and strongly rectangular, then X x Y is
strongly rectangular.

The proof is quite standard, so it is omitted.

S

THEOREM 4.3. If X is a paracompact P-space and Y is a paracompact M-space,
then the product X x Y is strongly rectangular.

- Proof. From the assumption of Y, there exists a perfect map g of ¥ onto
a metric space M. Then it follows from [2, Theorem 5.1] and our Theorem 4.2 that
X'x M is paracompact and strongly rectangular. So, using Lemma 4.3, we can sce
that X'x Y is strongly rectangular.

LemMMA 4.4. Let {Z;: i =1,...,m} be a finite collection by zero rectangles in
a topological product X x Y. Then the complement G of {Z;: i<m} in XxY
is the finite union of cozero rectangles in X x Y,

Proof. Let A be the set of all finite subsets of {1, ..., m}. For each Ae A we
put U, = X\U {Z;: iel} and V,= Y\U{Z/: iel}. Moreover, we put
Wi u= U,xV, for each 4, p& 4. Here we set

W= {W,,: L, pued,inp=03and W, ,=G}.

For each (x,y)€ G, weput g = {i<m: Xx{y} nZ, £ @} and po = {i<m:
UpxYNZ; # @} Then we have (x,»)e W, ,, €. Hence ¥ is the finite
cover of G by cozero rectangles in X'x Y.

TueoreM 4.4. If a product space X X Y has the Lindeldf property, then X'x Y is
strongly rectangular.

Proof. Let ® be any (locally finite) open cover of X x ¥. From the Lindeléf
property of X'x ¥, we can take a countable cover {E;: i1} of X'x Y by cozero
rectangles, refining ®. Then for each i>1 there exist two sequences {Ci.;i =1}
and {Z; ;: j>1} of cozero rectangles and zero rectangles respectively such that
E =U{C,; j21} =U{Z,;: j21} and Cy;eZ; ;= C, ;44 for each jz1, From

1]
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Lemma 4.4, there exists a finite collection N, by cozero rectangles such that
Uy ={E;} and UUW; = E U {Z,:-1: k<i—1} for each i»2. Here we set
U = {U;: i>1}. Then it is easily seen that 2 is a locally finite cover of X'x Y.
Clearly, U refines ®. The proof is complete.

§ 5. Questions. We state several natural questions unanswered concerning
strongly rectangular products.

5.1. Assume Y is normal (or paracompact) and rectangular. Is then Xx ¥
strongly rectangular ?

5.2. Assume X isa paracompact Z-space (or g-space) and Y is a para-
compact P-space. Is then X'x ¥ strongly rectangular?

Note that, from [6, Proposition 1.(5)], if 5.1 is affirmative then 5.2 is so.

Finally, the author wishes to thank Professor R. Telgdrsky for some valuable
advices and his kindness.
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