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On the metrizability of F,-spaces and
its relationship to the mormal Moore space comjecture
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Abstract. A space each subspace of which is a paracompact M-space is called an Fpp-space.
The main aim of the present paper is to describe the structure of non-metrizable Fpp-spaces by
showing that they always contain certain “typical” subspaces. Many interesting corollaries and
an unexpected connection with certain investigations concerning the normal Moore space con-
jecture follow. -

Introduction. It turned out in the late sixties that the following conditions are
equivalent for a regular T, space X (see [1], [20], [22]:

(a) X is a paracompact p-space.

(b) X is a paracompact M -space.

(c) There is a perfect map of X onto a metrizable space.

(d) X is homeomorphic to a closed sybspace of the product of a metrizable
space and a compact T, space.

The class of paracompact M-spaces has been shown to be countably productive
and hereditary with respect to closed subspaces. On the other hand, arbitrary sub-
spaces of paracompact M -spaces may fail to be paracompact M-spaces. (Take, as
an example, any T, compactification of a non-paracompact Tychonoff space.)
Following [2], we shall call a space each subspace of which is a paracompact M -space
an F,,-space.

Metrizable spaces are obviously F,,-spaces and the one-point compactification
of any uncountable discrete space is an easy example of a non-metrizable F,,-space.
Concerning the natural question how far F,,-spaces are from metrizable spaces,
A. V. Arhangel’skil [2] posed the following problems.

Al. Is the Souslin number of an F,,-space equal to its weight?

A2. Does every F,,-space have a dense metrizable subspace?

A3. What are the “simplest” metrizability criteria for F,,-spaces?

In [6] the present author has shown that every F,,-space is the union of <,
metrizable subspaces, and deduced that the answer is “yes” to Problems Al and A2,
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(By using a method different from that of [6], A=V. Arhangel’skif [3] answered
Problem A2 independently. For partial answers which preceded the results men-
tioned above, see [2], [14], [17], [4], [5].) Concerning Problem A3, the author [7] has
shown that the class of metrizable spaces coincides with the class of perfectly normal
F,,-spaces (se¢ Corollary 4.4 in this paper).

The main aim of the present paper is to describe the structure of non-metrizable
F,,-spaces by showing that they always contain certain , typical” subspaces (The-
orems 3.3 and 4.3). In particular, it will turn out that Problem A3 has an unexpected
connection with certain investigations concerning the normal Moore space conjecture,

Sections 2 and 3 are essentially devoted to the proof of Theorem 3.3 mentioned
above. Numerous corollaries of this result are included is Section 4. In Section 1
we prove a decomposition theorém concerning first countable F,,-spaces, which
we shall use in the, proof of Theorem 3.3 and which is interesting in itself
(Theorem 1.7). °

0. Preliminaries. Throughout the paper, |4| denotes the cardinality of a set 4.
Cardinals are identified with initial ordinals. Given a topological space (X, ),
cl, 4 will denote the closure of 4 in (X, 7). However, since 7 will usually by omitted
from the term (X, 1), we shall often write clA (or cly4) for cl,4. We shall say
that A< X is a discrete subset of (X, 7) if 4 has no accumulation points in (X, 7).
(Thus, A is a discrete subset of (X, 1) iff (4, 7]4) is a closed discrete subspace of
(X, 7).) Given a subset 4 of a topological space X, y(d4, X) will denote the character
of 4 in Y (i.e:, the smallest infinite cardinal number x such that 4 has a neighbour-
hood base of cardinality <x in X). x(x, X) stands for x({x}, X). The pseudo-
character of X at a point x, denoted by ¥ (x, X), is defined to be the smallest
infinite cardinal number % such that {x} is the intersection of <x open subsets of X.

A space X is said to be of point-countable type if it can be covered by compact

subsets which have countable character in X. A cover & of X is said to be separ-
ating if for every pair of distinct points x, y € X there is a G in & with xeG,
y¢G. ' :

We shall say that a space X is of Q-type if every subset of X is an F,,and X
is not ¢-discrete. .

Let (X, 7) be a topological space, and Jet R be an equivalence relation on X,
For any point x in X, let [x]g denote the equivalence class of x. If A<.X, , then let
[4]z = U {[x]z: x € A}. If R' is an equivalence relation on a subset X’ of X, then R’
is said to be finer than R if [x]p <[x]; for every point x e X”, Let Tg denote the
topology on X consisting of those 7-open subsets which can be represented as unions
of some equivalence classes of R. R is said to be closed if, for every closed subset 4
of (X, 1), [4]g is also a closed subset of (X, 7). Let us say that R is perfect if R is
closed and all equivalence classes of R are compact subsets of (X, 7).

" Making use of the definition of paracompact M -spaces with the aid of perfect
maps, one can easily prove the following assertion; k

ProrosiTioN 0.1. 4 regular Ty space (X, 1) is a paracompact M-space if and
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only if there is a perfect e(juz‘valence relation R on (X, t) such that tx has a o-locally
finite base.

Finally, we shall need a special case of Lemma.1.2 in [6].
ProrosITION 0.2. Let (X,7) be a T, space, and ket X, and X, be non-void
subsets of X such that X; = X,. Suppose that R, and R, are perfect equivalence re-

lations on (X1, 1|X}) and (X, ©)X3), respectively. Define an equivalence relation R
on X, by putting

x~gpy Hf xe~pyand xe~gy.

Then

(2) R is a perfect equivalence relation on (Xy, t|X1);
() X )r = sup{(tlXDr, » (1 X2)p, | X7 }-

1. A decomposition of first countable F,,~spaces into the union of metrizable
subspaces. In this section we shall need the following four well-known results.

Lemma 1.1 (see [18], p. 524). Let X be a set with | X| = 2°, and let € be a family
of subsets of X such that |€]<2® and |C| = 2° for each C in €. Then there are disjoint
subsets Ay, A, of X such that X = A, U A, and C~ A; # B for each C in € and
each ie{l,2}.

Lemma 1.2 (see [16], p. 33). If X is a first countable compact T, space, then either
1X|<w or | X| = 2° .

Tueorem 1.3 (J. Nagata [21]). 4 paracompact M-space with a point-countable
separating open cover is metrizable. :

Lemma 1.4 (A. Hajnal and L. Juhdsz [11]). If X is a compact T, space with no
isolated points, then there is a countable subset S of X with |c1S]|=2°.

In what follows we shall actually make use of the follswing corollary of
Lemma 1.4, which can be established with the help of the well-known fact that
an uncountable compact T, space satisfying the first axiom of countability has a non~
empty compact subspace with no isolated points (see [16], p. 33, e.g.).

CoROLLARY 1.5. If X is c; first countable compact T, space with | X |>w, then
there is a countable subset S of X with |clS| = 2°.

LemMma 1.6. If X is a first countable compact T, space, then there are disjoint sub-
spaces Ay and A, of X such that X = A, U A; and neither 4, nor A, contains an
uncountable compact subspace. )

Proof, We may assume |X|> . Then, by Lemma 1.2, |X| = 2®. Thus, denoting
by € the family of all compact separable subspaces of cardinality 2° of X, we have
|€|<|X|® = 2° Applying Lemma 1.1, X can be split into two disjoint subspaces,
A, and A,, such that C n 4, # G for all Cin € and i in {1, 2}. We show that if C;
is an arbitrary compact subspace of 4; (ie {1, 2}), then |C||<w. Indeed, let us
suppose indirectly that |C;|> . Then by virtue of Corollary 1.5 there is a compact


GUEST


48 . Z. Balogh

separable subspace C; of C; with |C;| = 2. Then Cj is a compact separable subspace
of X with Ci{<=4;, |Ci| = 2°, in contradiction with the definition of 4, and 4,.

Remarks. 1. The proof of Lemma 1.6 yields the following more general result:

If X is a first countable T, space with |X|<2%, then X can be split into two
disjoint subspaces, 4, and 4,, such that neither 4, nor 4, contains an uncountable
compact subspace.

2. Lemma 1.6 generalizes a result of A. V. Arhangel’skif [2], which says thét the
conclusion of Lemma 1.6 is valid for perfectly normal compact T, spaces.

3. There are first countable compact T, spaces which have more than 2° compact
subspaces of cardinality 2° (e.g., think of Alexandroff’s double circumference);

thus in the proof of Lemma 1.6, Lemma 1.1 cannot be directly applied to the family
of such subspaces.

THEOREM 1.7. Every first countable F,,-space is the union of countably many
metrizable subspaces.

Proof.'Since X has a perfect map onto a metrizable space, we infer that there is
a point-countable (moreover, ¢-locally finite) open cover ® of X such that

(@) C; = N{G: xe Ge®} is compact for each xe X;

(® €= {C,: xeX} is a partition of X into disjoint subsets.

Applying Lemma 1.6, it follows that for each C in €, ¢ = 4,(C) v 4,(C)

holds, so that neither 4,(C) nor 4,(C) contains an uncountable compact subspace.
Let

X, =U{4(C): Ce®} (i=1,2).

We are going to show that each X (i = 1, 2) is the union of countably many
metrizable subspaces. Indeed, since X; (i = 1, 2) has a perfect map onto a metri-

zable space, (by writing X;, ®;, C,; and G, instead of X, &, C, and G, respectively) .

we infer that there {s a point-countable open cover ®, of X, satisfying (a) and (b).
Let us now define

6 =6,0{GnX;: GeB}.

Clearly G} is a point-countable open cover of X; and it can easily be seen that

@) K, = N {G: xeGe6]} is compact for all xeX;;

(b.') K; = {Ky: xe X}} is a partition of X; into disjoint subsets:
. Since for each x e X; we have K, X, n C, = 4,(C,) and 4,(C,) contains no
uncountable compact subspaces, we infer that each K;eR; is countable, i.e.
K, = {x,(K)): n<o}, with repetitions permitted. Let ’ ’

X = {x(K): K, eR;}.

Now .the tra(?e of G on X,;is a point-countable separating open cover of X,;;
thus X;, is metrizable by Theorem 1.3. Since X = U {Xu: n<w, i= 1,2}, this
completes the proof. : o ‘

Besides Theorem 1,7, we shall also need the following result, which was inde-
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pendently found by A, V. Arhangel’skii [3] and the author [6], by using different
methods.

THEOREM 1.8. Every F,,-space has a dense metrizable subspace.

2. F,,-spaces of the form A(X). Let us first recall the construction of the
Alexandroff duplicate of a topological space due to R. Engelking [8].

Given an arbitrary topological space X, we can topologize the set
A(X) = X u X", where X" is a disjoint copy of X, in the following way. For every
x e X let x’ denote the point corresponding to x, and for every subset § of X let us
define §' = {x': xe S}. Now, let a denote the topology of A(X) generated by
the base

M B={{x}: xeX}u{UuU'—4": Uis an open subset and 4 is a finite
subset of the space X}.

The resulting space, (4(X), a), is called the Alexandroff duplicate of X. If there
is no danger of confusion, then we shall briefly write 4(X) for (4(X), a).

We shall need the following simple fact from [8]:

PrOPOSITION 2.1. If X is a T, space and B is an arbitrary subset of X, then

clyB = B v B
where B® denotes the set of all accumulation points of B in X.

The easy proofs of the following two propositions are left to the reader.

PROPOSITION 2.2. Let (A(X), a) be the Alexandroff duplicate of a T, space X,
and let © be a T, topology on A(X) such that 1| X = a|X, t|X"’ = a|X’, and X is a closed
subset in . Further, let R, denote the equivalence relation on A(X) the equivalence
classes of which are {{x,x'}: x € X}. Then the following conditions are equivalent:

(2) R, is closed (thus, perfect) with respect to T;

(b) = a. : )

PrOPOSITION 2.3. The Alexandroff duplicate of a paracompact M-space is
a paracompact M-space.

In what follows we shall need the following two well-known facts.

PROPOSITION 2.4 ([1]). Every G, subspace and every closed subspace of a p-space
is a p-space.

LEMMA 2.5. If a paracompact M-space X is the union of countably many closed,
metrizable subspaces, then X is metrizable.

Proof. This lemma is a special case of Theorem 7.1 in [13].

THEOREM 2.6. Let A(X) be the Alexandroff duplicate of a metrizable space X.
Then the following conditions are equivalent:

(2) Every subset of X is an F,.

(b) A(X) is an F,,-space.

Proof. (a) = (b). Considering that the class of all paracompact p-spaces and
the class of all paracompact M-spaces coincide, it.is enough to prove that 4(X)
is hereditarily paracompact and is a p-space hereditarily.

4 — Fundamentha Mathematicae CXIII/1
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In order to prove that every subspace of A(X) is compa 1
show that subspaces of the form Y =pU v X, gvh)cre IZ?T: Zrlxn 1:);)?1’1 :ﬁbz];? Iifﬁ;t
are paracompact. Indeed, by the definition of A(X), U L U’ and X' — U’ are clo eri
subspaces of Y. By Proposition 2.3 U w U’ is paracompact. (One easily veri,;ies
that the topology on U u U’ induced by the topology of A(X) is the same as th
t(?pology of A4(X) considered as the Alexandroff duplicate of the subspace U of X, (;
Since the (discrete) subspace X' —U’ of ¥ is clearly paracompact, we concluci
that Y= UL U’ v (X'~U") is also paracompact, ’ ’

Now, let Z be an arbitrary open subspace of 4(X), and let U = Z A X, Then

Z=UuX'~-X"-2)

isa closed subspace of the paracompact subspace U u X”; thus, Z is paracompact
Since a T, space is hereditarily paracompact iff each of its opel; subspaces is par :
compact, we conclude that 4 (X) is hereditarily paracompact. P
. —Toypro;j th.at every sub}pace Y of A(X) is a p-space, let ¥, = ¥ X and
h za_é S 1; : aL.cSm;eAX - Y1 is an {7, subse;t of the space X, it follows that X’ U Y,
sa 6y o ;E' e of A(X )/, thl}S X U Y, is a p-space by Proposition 2.4. Further
iy V] YIT(X —Y;) is a closed subspace of the subspace X' U Y’

15(2) p-sz)e;cc;: aiz;lbn by Proposition 2.4. N

=> (a). Let H be an arbitrar

Then the natural map f: ¥— X yds:ﬁbnszctloli;h;osrpmai?g oadiet = 1 G-

S I ek
. x, if y=xeH
};ha one-to-one Fontingous map of ¥ onto the metrizable space X, Thué by
eorem 1.3, Y is metrizable. Therefore H’ is an F, subset in ¥, i.e. H' = L) F,
s LG = n

n<wo

such that clyF, = F,u Fin (X—H) = F/
v Fy = 4 = F,. Then clyF, = F, u F?
n<w, which implies that H = |J F, is an F, subsetxof'l X. iR for overy
n<o ’

Remark. It can easily be seen that th
. . e Alexandroff duplicate of a paracom-
f}?:tﬁj;:tsf;: 1sfa§1a1m a pa;ac?mpact T, space. Using this instead of ProposI;tion 2.3
of ‘the proof of (a) = i y ives i o
o o P (2) = (b) in Theorem 2.6 gives the following more

The Alexandroff duplicate of itari i
parsconpmny plicate of a hereditarily paracompact T, space is hereditarily

PROPOSITION 2.7. Let A(X) be the Alexandroff dupli ;
uplicate of i
Then the following conditions are equivalent: T Sl o & miraable shgce X,
(&) A(X) is metrizable. e
(b) X' is a Gy subset of A(X). |
(c) X is a-discrete.
Proof. (a) = (b). Obvious.

(b) = (c). Let X" = |) D, where D;, is a closed subspace of 4(X) for each

n<wo

: ©
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n<o. By virtue of Proposition 2.1, D! = @, so that D, is a closed discrete subspace
of X (n<w). Then (c) follows by X = U D,.

n<w
(c) = (a). Let X be the union of a family {D,: n<w} of closed discrete sub-
spaces. Then, for each n<w, D,u Dy is a closed discrete (and thus metrizable)
subspace of X. Then A(X) is metrizable by Proposition 2.3 and Lemma 2.5.
The following result, which derives from Theorem 2.6 and Proposition 2.7,
plays an important role in what follows.
TuroREM 2.8. The Alexandroff duplicate of a metrizable space X is a non-metrizable
F,,-space if and only if X is a space of Q-type.

3. Non-metrizable, first countable F,,-spaces. In order to prove the main result
in this-section, we shall need the following two lemmas.

Lemma 3.1::If a paracompact M-space X is the union of a family {X,: n<w}
of metrizable subspaces, then X* = () olX, is a metrizable subspace.

“H<®
In particular, if a paracompact M-space X is the union of countably many dense
metrizable subspaces, then X is metrizable.
Proof. By virtue of Theorem 1.3 it is enough to show that X* has a point-
countable base, and this results from the following theorem of E. Michael and

M. E. Rudin [19]:
If X is a regular Ty space, X = | X,, and each subspace X, has a o-disjoint

n<@
base, then X* = () clX, also has a o-disjoint base.

n<o

Lemma 3.2. Let (X, ©) be a hereditarily paracompact regular Ty space, and let R
be a perfect equivalence relation on (X, ) such that tx has a o-locally finite base.
Suppose that X is the union two metrizable subspaces, Xy and X, such that
X=X (=1,2). Then (X,7) is metrizable.

Proof, By virtue of Proposition 0.1 and Theorem 1.3 it is enough to show that

(X, 7) has a point-countable separating open cover.
To prove this, let B, =  B;, be a base for (X;, 7|X;) such that, for each

n<o

n<w, B, is a discrete family in (X;, 7|1X)). Further, let B be a o-locally finite base

of the space (X, Tg)-
For every B in B, let us choose an open subset B of (X, ) such that BnX,= B,

and let us define )
B, ={B: BeB,}

Since (X, ) is hereditarily paracompact, there is a o-point finite refinement
®,, of B, with U6, = UB;,. Now, let us put
6 =Bul {6, n<w,i=1,2}.

® is clearly a point-countable (moreover, a g-point finite) open cover of (X, ).
It remains to show that ® is also separating. -

r

(<o,i=1,2).
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To verify this, let x, y be a pair of distinct points of X. Now, if y ¢ [x], then
there is a B in B(<=6) with x e B, y ¢ B. So suppose y € [x]z. Then [X,]; = X,
(i = 1,2) implies that x and y are in the same subspace X,. Thus, there is a B, in B,
with x € B;, p ¢ B;. Letn< o be such that B, € B,,. Then | &, = B,, implies that
there is a G, € 6, with x € G,. Since ®,, is a refineriient of B,, and B, is the only
member of B,, containing x, it follows that x € G=B;. Moreover, y € X and y ¢ B,
imply y ¢ B,, and thus y ¢ G;.

THEOREM 3.3. 4 first countable F,,-space (X, 1) is metrizable if and only if it
does not contain a subspace homeomorphic to the Alexandroff duplicate of a metrizable
space of Q-type.

Proof. If (X, 7) has a subspace homeomorphic to the Alexandroff duplicate
of a metrizable space of Q-type, then (X, 7) is non-metrizable by Theorem 2.8.

Conversely, suppose that (X, 7) is a first countable, non-metrizable F,,-space.
By virtue of Theorem 1,7 X is the union of a family {4,: n<w} of metrizable sub-
spaces. (From now on, by a subspace we shall mean a subspace of (X, ), and we
shall briefly write Y for a subspace (Y, 1} Y).)

It follows from the non-metrizability of (X, ) that there is an my<w such
that 4,, is not contained in a dense metrizable subspace of (X, 7). Indeed, if there
were no such index n,, then X would be the union of countably many dense, metri-
zable subspaces, and Lemma 3.1 would imply that (X, t) is metrizable.

Let U,, = X—cl.4,,. Since by Theorem 1.8 the subspace U,, has a dense

metrizable subspace, there is a dense subspace S = |) S, of U,, such that S is
k<o

a closed discrete subspace of S for every k<w. By the definition of U,, and S,
Zy = A4,, U S; is a closed subspace of the subspace Z = A,, U S. Since, by the
assumption on 7, 4,, U S is non-metrizable, we infer by Lemma 2.5 that there is
a ko<w such that Z; is non-metrizable.

Now, let R, be a perfect equivalence relation on the subspace Z,, = Apy VS
such that (t]Z,,)g, has a o-locally finite base. (In what follows, we shall call such
an equivalence relation a good equivalence relation.) Since A4, is closed in the sub-
space Z,,, Lemma 1.6 implies that, for each equivalence class C of Ry, there is
a decomposition C n 4,, = M,(C) U M,(C) such that neither M 1(C) nor M,(C)
contains an uncountable compact subset. Let M; = {J {M(C): Cis an equivalence
clases of Ro}, M{* = M, U Sy, (i = 1, 2), and let R; be a good equivalence relation
on the subspace M. By virtue of Proposition 0.2, we may assume that each R,
(i = 1,2) is finer than R, and thus, since A, is closed in the subspace M}, it follows
that

[M;n C;l<a) for each equivalence class C; of R,.
For every equivalence class C; of R, let M;nC;= |J X,(C), where
m<w

| Xu(C)I<1 for each m<w. Further, let

4 =) {X,(C): C; is an equivalence class of R},
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and

Yy =AU Sy (m<o,i=1,2).

‘We shall prove that there is a non-metrizable subspace among the subspaces Y-
Suppose indirectly that Y, is metrizable for every m<a and i = 1, 2. Then,

by Lemma 3.1,
Y = () {clyg, Yo m<o, i= 1,2} S,

is a metrizable subspace of the subspace Z,,. Since metrizable spaces are perfectly

normal, the subset S;, (consisting of isolated points of ¥) %s the union of a count-

able family {F;: I<w} of subsets closed in ¥ (and thu‘s in Zko). Then, for e:‘a.ch

l<w, Ny = A,, U F, is a closed subspace of Z,, and, since N; is thfa topol'oglcal

sum of the discrete subspace F; and the metrizable subspace A,,.‘,, N, is metrlzab‘le.

Thus, by Lemma 2.5, Z,, = U N, is metrizable, in contradiction with the choice
. e

of k.

Thus we can choose an my<o and i, € {1,2}, so that the stfbspace Yrmoto
= Apyip Y Sko is nOn-metrizable. Let R* be a good equivalence relation on ¥, :,-
By Proposition 0.2 we may assume that R* is finer than ..R,-o..Therefore,_for e*ac.h
Etﬁivaiénce class C* of R*, |4y, 1, n C*|<1 holds. Considering that c.ach C* is
a first countable compact subspace, and S, N C* = C*—4,,;, n C* is an ope):
discrete subspace of C*, we conclude that |Sy, N C*|<w for each equivalence class C
of R*, i.e.,

Sien C* = U X}(C%, where |X}(C¥)I<1
j<a

for every j<. Let us now define
D; = {X;(C*: C* is an equivalence class of R*}
and
W, = AV D (j<o).
Then, by virtue of Lemma 2.5 and of Y, = 19 W;, there is a jo < such that
o

the subspace Wj, = Api, Y Dy, 18 non-metrizal?le. .

Let us now czmsider a good equivalence relation R%on Wi, By v1rtue: of Prop-
osition 0.2 we may assume that R} is finer than R*. Then by the construction of Wy,

we infer that

(1) Anoty 0 Dy = B

(2) Ao, is @ closed metrizable subspace of Wj;

(3) Dy, is an open discrete subspace of Wj,; i

(4) for each equivalence class Cf' of RY |CT' N Aol <1 and |Cy N Dyl<1
hold.

Let us define k
T={te dp: I[tlrel = 2},
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and let~

T'={t':teT}, where {t'}=1[tlexnDy.

Further, let L = {we W : |[Wlgsl = 1}. It follows from (4) that ¢’ uniquely exists
for all ¢ in T and that W), is the union of the pairwise disjoint sets 7, T* and L. It
can easily be seen that the restriction of a good equivalence relation R to a subspace
which is the union of some equivalence classes of R (in particular, the restriction R}
of R} to the subspace 4(T) = T U T’ and the restriction Ry, of R to the sub-
space L) is again a good equivalence relation. Since Ry, is the relation “=" on L
and Ry is closed, it follows that

(lD)g, = TlL .
Since, by the definition of a good equivalence relation, (r]L)R;_ has a g-locally finite
base, we find that the subspace L is metrizable. Then the subspace 4(T) is non-

metrizable, since otherwise by Lemma 3.2 W, = A(T) u L would also be metri-
zable, in contradiction with the choice of j,.

Now, let us equip 4(T) = Tu T' with the topology a of the Alexandroff

duplicate of the subspace 7. By conditions (1)-(3), and since R} is a closed equiv-
alence relation on the subspace A(T), Proposition 2.2 implies that 7|A(T) = a,
i.e., the subspace 4(T) is homeomorphic to the Alexandroff duplicate of the sub-
space T.

Finally, since 4 (T) is a non-metrizable F,,-space, it follows from Theorem 2.8
that the subspace T is a metrizable space of Q-type.

4. On the structure of non-metrizable F,,-spaces. In order to prove a charac-
terization of non-metrizable F,,-spaces, we shall need a result of Arhangel’skii [2]
quoted as Lemma 4.2 in our paper. It is claimed in [2] that this result can be proved
by a slight change of argument in the proof of Theorem 2 in [2]. Since it is not clear
from [2] that Theorem 2 has nothing to do with the continuum hypothesis
(cf. {13], [4)), and the changes needed are nontrivial, it seems worthwhile to give
a proof of Lemma 4.2 here.

When proving Lemma 4.2, we shall make use of the following proposition, the
easy proof of which is left to the reader.

PROPOSITION 4.1. Let X be a regular T, space. Then the following assertions
hold:

(a) If x € X and there is a compact subspace C of X with xe C and x(C, X) = o,
then y(x, X) = Y (x, C).

o) IfZ is a dense subspace of X and x e Z, then y(x,2Z) = y(x, X).

Lemma 4.2. Suppose that X is a regular T, space such that each subspace of X is
of point-countable type (in particular, X is an F,,-space). Further, suppose that x e X
and y(x, X) = »>w. Then there is a discrete subspace D of X such that |D| = x

and the subspace D* = D U {x} of X is homeomorphic to the one-point com-
pactification of D.
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Proof. By virtue of Zorn’s lemma there is a maximal family ® of pairwise
disjoint open subsets of X such that

x¢clG for each Ge® .

By the maximality of G, U= ® is a dense open subspace of X. Let
Z = U v {x}, then by Proposition 4.1(b) x(x,Z) = x(x, X) = x>w. Now, let C
be a compact subspace of Z with xe C and x(C,Z) = o, and let
| G, ={GeB: CnG +T}.
Since by
{5} = N{C—cG: GeG,}
¥ (x, C)<|®,|, Proposition 4.1(a) implies that
[Gy]Zx(e, X) = x.

For each Ge®, let x; be an arbitrary point of G n C and let us define
D = {xg: Ge®,}, D* = DU {x}. It follows from the compactness of the sub-
space C that every open subset ¥ of C with x e V covers all but finitely many of
the pairwise disjoint open subsets G n C (G € 6y) of C. Thus, by the definition of D,
every point of D is isolated in the subspace D*, and for every open subset U of D
with x € U, |D*—U|<o holds, i.e., D* is homeomorphic to the one-point com-
pactification of D.

Finally, |®,|>» implies |D|>x, and |D|<x holds by x(x, D¥)<x(x, X) = 1.
Thus |D| = x.

By virtue of Theorems 2.8, 3.3 and Lemma 4.2 we find the following main result
concerning the structure of nonmetrizable F,,-spaces.

THEOREM 4.3. An F,,-space is metrizable if and only if it contains neither a sub-
space homeomorphic to the one-point compactification of an uncountable discrete space
nor a subspace homeomorphic to the Alexandroff duplicate of a metrizable space of
Q-type. '

COROLLARY 4.4. A topological space is metrizable if and only if it is a perfectly
normal F,,-space.

Proof. Only the “if” part needs proof.

To prove it, note first that neither the one-point compactification of an un-
countable discrete space nor the Alexandroff duplicate of a metrizable space of
Q-type is perfectly normal. (For the latter, see Proposition 2.7.) Since every subspace
of a perfectly normal space is perfectly normal, we can apply Theorem 4.3.

"Remark. For another proof of this corollary, see [71.

COROLLARY 4.4.1 (A. V. Athangel’skii [2]). A regular Ty space is a separable
metrizable space if and only if it is a Lindelof M-space hereditarily.

Proof. The “only if” part is trivial. The “if”” part follows from Corollary 4.4
and the fact that hereditarily Lindelof regular T, spaces are hereditarily paracom-
pact and perfectly normal.


GUEST


56 Z. Balogh

COROLLARY 4.5. The existence of a first countable, non-metrizable F,,-space
is equivalent to the existence of a metrizable space of Q-type.

Proof. This corollary follows from Theorems 3.3 and 2.8. -

It is well known (see [24]) that Martin’s axiom plus the negation of the con-
tinuum hypothesis implies the existence of a subspace of the real line which is a space
of Q-type. (Note that a subspace A of R is of Q-type if and only if it is a Q-set
in the sense of [24].) On the other hand, G. M. Reed deduced from a celebrated
result of W. Fleissner [9] (which states that every normal T, space with character
<27 is collectionwise Hausdorff in the constructible universe) that under Godel’s
axiom of constructibility (V = L) there are no metrizable (not even first countable
normal) spaces of Q-type at all (see [23], p. 46). Therefore the following corollary
holds:

CoRrOLLARY 4.6. The existence of a first countable, non-metrizable F,,-space
is consistent with and independent of the usual axioms of set theory. )

It follows from a result of M. Ismail [15] that every F,,-space (moreover, every
space which is hereditarily of point-countable type) has an open, dense, first count-
able subspace (see also in [10], [3]). Thus Corollary 4.5 and the result of Fleissner
and Reed mentioned above imply the following corollary:

CorOLLARY 4.7 (V = L). Every F,,-space has an open, dense, metrizable sub-
space.

The following two problems seem to be of special interest:

PRrOBLEM 1. I it true that every F,,-space is the union of countably many metri-
zable subspaces?

(Note that, by Theorem 1.7, the answer is “yes” for first countable F,,~spaces.)
ProBLEM 2. Does every F,,-space have an open, dense, metrizable subspace ?

(Note that, by Corollary 4.7, the answer is “yes” if Godel’s axiom of constructi-
bility holds.)

.Remark._ Finally, we would like to point out the relationship between certain
Testricted versions of the normal Moore space conjecture and the metrizability of
F,,-spaces.

‘It was shown by R. W. Heath [12] that if there is a norinal, separable, non-
metrizable Moore-space, then there is a subspace of the real line of Q-type. Thus,
Corollary 4.5 gives us the following result:

H there is a normal, separable, non-metrizable Moore space, then there is a first
countable, non-metrizable F,,-space.

. (_?n the other hand, let us consider the following construction, which is a gener-
alization of the familiar “bubble space”. Let X be a metrizable space of Q-type,.
¢ ‘a metric inducing the topology of X, and let us define the metric

A(Cxs, 1), (52, 12)) = VO ir, %)+ 1) (1 %2 Xy, 3 €0, o0))

icm

On the metrizability of Fpp-spaces 57

on the product set X' [0, o). Let = denote the topology on X'x [0, c0) induced by
all open sets in the product topology of X' [0, o) and all sets of the form

B(x,r) = {(x", rye Xx[0, w0): d((',r), (x,r)<r} {0}
(xeX,re(0, )

as a subbase. By a similar argument to that needed in the case of the (classical) bubble
space one can easily show that the space we get in this way is a normal, non-~
collectionwise Hausdorff Moore space. Then Corollary 4.5 implies the following
result:

If there is a first countable, non-metrizable F,,-space, then there is normal,
non-metrizable (not even collectionwise Hausdorff) Moore space.

The author wishes to express his thanks to the referee for his helpful suggestions
including a shorter proof of (b) = (a) in Theorem 2.6.

Added in proof. 1. H, R, Bennett and D. Lutzer (Fund. Math. 107 (1980), pp. 71-84),
proved that a GO space is metrizable iff it is an Fpp-space. (Note that in the class of GO
spaces hereditarily p-spaces are hereditarily paracompact.) This result also follows from The-
orem 4.3 since neither of the two special subspaces mentioned there is a GO space.

2. Independently of the author’s work, E. G. Pitkeev (Math. Zametki 28 (1980), pp. 603-
618) gave a complete characterization of non-metrizable Fpp-spaces by proving that they can
be “put together” from the two special subspaces mentioned in Theorem 4.3. His characteri-
zation gives affirmative answers to Problems 1 and 2.
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The equivalence of definable quantifiers
in second order arithmetic

by

Wojciech Guzicki (Warszawa)

Abstract. In this paper we generalize the notion of equivalent quantifiers .considered by
M. Dubiel in her paper [2] and show nonequivalent countably additive quantifiers in some model
of second order arithmetic.

Let L be the language of second order arithmetic 4, as des‘m"ibed in [1. If M
is a model of 4,, then by L, we denote the language L with additional constants to
denote elements of M. .

We consider a mapping which assigns to a variable x and a formula
@@, X1, .y %) Oof L, with free variables X, Xy, ..., X,, another formula
W%y, s x,) of L, with free variables X;, ..., X,, which we shall denote by

XP (X3 Xg 5 eens Xp)e . ) _
€ (plf M ;s a mondel of A,, we shall say that the mapping Q is a definable quantifier
in M iff the model M satisfies the following axioms:

) (o — ) — (Oxp — Ox),
@ Ox(pviy) — Qxov Ox,
3 Ox(x = x),

o) 3y Qx(x = ).

We call two quantifiers Q; and Q, equal in M iff for any formula @ (x4, ..., X,)
of L the following equivalence is satisfied in M:

Vg e Vo [0 X0 (6, %15 wer ) = QX0 (X, g, s X)) -

The above notion of equality of quantifiers is exactly the notion of equivaleno.e
of [2]. Our generalization closely corresponds to the following theorem, due to Kri-
vine and Mc Aloon [4]. . o

DermTioN 1. A formula 8(x) of the language Ly is countable-like in M (for
the quantifier Q) iff for any formula @(x,y) of Ly

ME Qy3x[8(x) & ¢(x, )] — Ax Qe (*,7) . ,
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