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Coincidence of maps in Q-simplicial spaces
by

G. S. Skordev (Sofia)

Abstract. Let X and ¥ be compact Hausdorff spaces and let Y be a finite dimensional Q-sim-
plicial space (in the sense of R. Knill) and dim Hy(Y, Q)< . If p,q: X - Y and p is a Vietoris
map, and the number of a coincidence of p and ¢ is mot zero then there exists a point x € X such’
that p(x) = g(x).

The aim of this paper is to give an affirmative answer to the questions of.
L. Gérniewicz ([1], p. 9, Problems 5 and 6) in the particular case where the space is
finite dimensional. The following theorem is proved.

TuEOREM. Let X and Y be compact, Hausdorff spaces and let Y be a finite dimen-
sional, Q-simplicial space (in the sense of R. Enill, [2]), and dim Hy(Y, Q)< 0. If
p,q: X— Y, and p is a Vietoris map, and the number of a coincidence L(p, q) # 0,
then there exists a point x € X such that p(x) = g(x).

1. Preliminaries.

1. Vietoris and Cech Iiomology theories, [2]. We shall consider only compact,
Hausdorff spaces and their continuous mappings.

For a compact Hausdorff space X, by Cov(X) we shall denote the set of all
finite, open coverings of X ' If A is a subset in X and o € Cov(X) we shall write
diam 4 <a, if some element of the covering o contains 4.

If f: X— Y is a continuous map and peCov(Y), B = {Uy, .., U, then
by f~*(B) we shall denote the covering {f Uy, wes fTHU} € Cov(X).

For a & Cov(X) the s-Vietoris simplex 6° = (o, -e» ¥s) i called an a-Vietoris
simplex if there exists an element U of the covering « containing all of the vertices .
of the simplex ¢”, i.e. y;€ U, i=0,1,...5

The simplicial complex spanned on all «-Vietoris simplexes in the space .Y
will be denoted by Y(x). The chain complex of this simplicial complex ¥(«) with
rational coefficients Q will be denote by VY, ®).

Suppose &, , d, € Cov(X) and oy <oz There is an embedding

W(al) lZ]_): V(X! al) ad V(X’ “1)

which is a chain map.
5'
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Consider again the mapping f: X ~ ¥ and the coverings
BeCov(Y), f~'HeCov(X).

If y>f~!(B) then the map f induces a chain homomorphism f(p, B): v(X,y)
— V(Y, B), defined as follows. For the y-Vietoris simplex t* = (%05 X1, cony )

f()’; ﬁ)(’rﬁ) = (f(xo): -'-’f(xs)) .
" = {c"(0): ¢"(0) e V(X, @), x € Cov(X)}

A collection

of n-dimensional cycles (n-cycles) is an n-F-cycle (an n-dimensional Vietoris
cycle) if: a) ¢"() is a cycle in the chain complex V(X @), and b) the chains (o)
and ¢"(t) are homologous in V(X a,), if a; <ay, i.e. (o, al)(c"(zxz)) is homologous
to the chain ¢"(er;) in V(X ).

We shall denote by H;(X) the n-dimensional Vietoris homology group of the
space X with rational coefficients.

Let us consider once more the mapping f: X' — Y. Let A" be an element of
HL(X) and let ¢ be an n-VP-cycle in the homology class #". For cach covering
y€Cov(Y), y>f"Y(B) consider the simplicial map

F@. B: VX, - V(Y B ;

FEy = {8, B)(e"(f~*B)), B & Cov(¥)}
and f,,(h") as the homology class of the cycle fc.
Let a e Cov(Y) be a covering. By N(a) we shall denote the nerve of . The
chain complex with rational coefficients Q of N(a) is denoted by
CyN()) = {C(N©@): n=0,1, ).

X o <oy, ay,a, € Cov(X), then there is an augmentation preserving chain
map

we define

(a2, 1)t Cu(N(22)) = Co( N (2ty))
(every two such maps are chain homotopic).

s = {s"@): 5"@) & C,(N ()}

“is called an n-C-cycle (an n-dimensional Cech eycle) if s"(r) is a cycle on N(x),
and for a; <a, the chains s"(x,) and o (0, 0;)8(at;) are homologous.

The n-dimensional Cech homology group of the space X with rational coef-
ficients is denoted by HE(X).

It is well known that the groups H’(X) and H(X) are isomorphic for every
compact Hausdorff space. We shall use this isomorphism, but we shall also need
a more precise result. To state this result we shall recall two definitions.

Let e Cov(X) and A be is a subset of the space X; then

St(4,0) = ( {U: Uea,Un 4 # @}.
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The support of the chain ¢” in V(X «) is defined to be the smallest closed sub-"
set W in the space X such that ¢" is a chain of V(W, «|W) (if & = {Uy, ., U,
then a|W = {U; n W,..., U, n W).

If 5"e C,(N(@) let car(s") be the smallest subfamily § of « such that
s" € C,(N(B)) (B need not be a covering of X), and let

sup(s") = | {U: Uecar(s"}.
Lemma 1.1 (C. H. Dowker, [5]). Let a e Cov(X). Then there are chain maps
k(@): Cu(N (@) — V(X,0),
H@): VX, ) > ClN()) .
such that
a) k(o) and 1(0) preserve the augmentations,
b) k(x) and 1(6) are chain homotopies inverse to each other,
c) sup(k(@) (") =sup(s”) for s"e C,(N(@®),
d) sup({(«) (c") =St(sup(c™), a) for c"e V(X, a).
Now and later on we shall denote H,(X) and H;(X) by H,(X).

For every ae Cov(X) choose a continuous map a(x): X~ N(a) (one of
barycentric maps, [1], ch. IV, § 1). This map induces a Q-linear homomorphism

c(@)y = {0(W4n: n=0,1,..}: Ho(X)— H(N@).
It follows that
0 (02, 2)kn0 @dan = 0(0un O ;<.
Here
(o, By = {o(0ty Pay: n=0,1, ..}
is the homomorphism in the homology induced by the chain map
{0y, 0g): N(og) —N(eg)

We shall also use two other simplicial maps. Let « € Cov(X) we denote by

St(x) the covering {St(U;, &), ..., St(U,, o)} where « = {Uy, .., U}. If a5, 0,
€ Cov(X) and a; <St(x;), we say that a, is a star refinement of a;, and we shall

Write oy <soy.
1t is well known that every covering of the space X has a star refinement, [20].

For a; <, there is a chain map -
" o(ag, @)t VX, 05) — Co(N(xy)) .

This map is defined as follows. For each vertex x; of V(X «;) choose an element °
U, € a, which contains it and then choose an element W; e a; which contains t%le

set St(U;, o). Denote W; by v(a,, @;)(x;). The map, thus defined is a simplicial

map of X(ay) into N(xy).
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Now let ¢" = {c"(2): « € Cov(X)} be n-V-cycle. For each covering ae Cov(X)
let a<xa* (we choose one such covering o*) and define z"(e) to be

2'(0) = v(o*, )(c"(0™)) -

It is known that z* = {z"(): e e Cov(X)} is a Cech cycle and the correspon-
dence of ¢” to z" induces also an isomorphism of H,(X) onto H;(X). We shall denote
this isomorphism by

v(o*, @)y = {(0*, Dyt n=10,1,..}.

Let us define also a chain map

5ot 0): Cu(N@*) — V(X, ).

Let Ueo* choose x(U)eU and by definition (a*, a)(U) = x(U). By

Ba*, )y = {B(0*, et # =0,1,..} we shall denote the homomorphism of

Hy(N(@) into Hy(X (@) induced by 5(o*, ).
The projection

(0 Hy(X) — H*(X(“))
is defined as follows
b(o*, 95)*0'(“*)*

The following lemmas are well known.

Lemma 1.2. Suppose X is @ compact, Huausdorff' space and dJmH*(X )< 00.
Then there exists a covering o€ Cov(X) such that the projection m(uw)y: Hy(Y)
— Hy(Y () is @ monomorphism.

LemMa 1.3. Let X and Y be two compact Hausdorff spaces and let f be a map of X
in Y. Let fe Cov(Y) and o.e Cov(X) such that a>f~ (). Then

(LD T (BYwSu = (et Bluc (e -

2. The Vietoris-Begle theorem, [2]. Let us consider the map p: X — Y. We
assume that this map is a Vietoris map, i.e. p(X) = Y and for every point ye ¥
the space p~(y) is connected and H(p~ () =0 for i = 1,2, ...

It [2] it is proved that every Vietoris map is a n-Vietoris map for every
n=1,2,.. Let us recall that the map p of the space X onto the space Y is
a n-Vietoris map if for every covering o € Cov(X) and cach point y e ¥ there is
a covering B = B(«, ) & Cov(X) such that f>a and any k-cycle on ¥(p~*(3), B)
bounds on V(p~i(3), ) for 0gk<n.

Lemma 1.4. For each covering B e Cov(Y) and each covering o e Cov(X),
a>p~ (), there is a covering R = R(x, B) € Cov(¥) such that

a) R(a, p)>B,

b) there exists an augmentation preserving chain map T/, B) of the (n+1)-skel
eton of V(Y, R(x, B)) in V(X, o) such that for any Ik-simplex o* of V(¥, R(a, ﬁ))

O0sk<n+1, the chain p(a, PT(x, B)(c*) is a barycentric subdivision, dd*, of e
with sup(d*) < B,

(@) =

icm°

Coincidence of maps in Q-simplicial spaces

71

¢) for any k-simplex o* of V(Y, R(x, B)) there exists a point v eY for
which

(1.2)
(1.3)

St(y(c), Rz, B))>sup(a"),
sup(T(e") = St{p~Yy(d"), « .

This lemma is Lemma 2 from [2]. Statement c) is not explicitly formulated
in [2] but it follows (and is proved) from the proof of Lemma 2, [2]. )

We shall choose the point y(¢*) once for all.

Lrmma 1.5 (proof of Theorem 1, pp. 541-542, [2]). Suppose o, ¢, € Cov(X)
and oy <w,. Suppose also that By, B, e Cov(Y) and ay;>p~B), ay>p ().
Let T(ay, By) and T(a,, By) be chain maps from Lemma 1.4, and let

& = {6): ye Cov(V)}

be a Vietoris cycle. Then the chain T(a,, f,) (c R(az, B2)) ) is homologous to the chain
T(xy, ﬂx)(c (R(als ﬁ1))) on V(X o).
Therefore for any covering y € Cov(Y) for which y>R(x,, f,) and ):>R(az1 , B1)
the chain T'(x;, B;) (c"(y)) is homologous to the chain. T(x, B,)(c"()) on V(X ).
From this result it follows that

(a5 o) T (%25 Bodss = T(og, B

Here T(oty, Bo)wis T(0tys Bi)xi> T(0g, 04)y; are the homomorphisms induced
by the chain maps T(x,, f2), T(0, 1) m{(otas 0y), respectively; and we choose
R(ay, B1) = R(oz, Bo).

THEOREM V-B ([2]). Let p be a Vietoris map of a compact X onto Y, then the
homomorphtsm

1.4 for

0<ign.

Pu = {Pwit 1=10,1,..3: Hy(X) - H((Y)
is an isomorphism.

Let p, g be maps of a compact space X in ¥ and let p be a Vietoris map. Suppose
also that dim Hy (Y)<oo (as a vector space over @). The number of a coincidence
L(p, q) of the mappings p and q is defined as follows

L(p, ) = L(~D'trgupa’ -
Here trgupy is the trace of the homomorphism GwiPeits 71
LemMA 1.6 (The proof of Theorem 1, p. 542, [2]). Let aeCov(X) and
B =p""e). Let
e = {"(y): y € Cov(1)}

be a Vietoris cycle. Then the chain ¢"(B) is homologous to the chain

P, )T B (R, H))
on V(¥, f). ‘
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Therefore, for every y € Cov(Y), y>R(a, f) the chain ¢"(y) is homologous
to the chain p(8, ®)T(x, f)(c'®)) on V(Y, p) and also

sy - @it = T i (M

for 0<i<n.

Lemma 1.7 (2.2, [12]). For any p & Cov(Y) there exists a covering y (f) e Cov(Y)
such that B<»y(p) and if 6 e Cov(Y), 8>y(P) then any augmentation preserving
chain map o of V(Y, ) into V(X, ) which is subordinate to y(B) is a chain homo-
topic to m(5, f).

Let us recall that the chain map o is subordinate to y(B) if for every simplex
e V(Y,v(8)

(1.6) sup (e (a®) =St(sup(c*), B) .

3. O-simplicial spaces, [12]. The compact, Hausdorff space ¥ is called a Q-sim-
plicial space if for any B e Cov(Y) there exists a covering f(¥) e Cov(Y) such
‘that: a) B(¥Y)>p, and b) for every y € Cov(Y) there is an augmentation preserving
chain map

w: V(Y, B(Y))— V(Y1)

which is subordinate to the covering .

Consider the homomorphisms @, 7(f)4 and 7 (y) (they are the homomorphisms
induced by chain maps w, n(f) and =(y), respectively). In general, the homomor-
phism w,n(B)y is different from the homomorphism 7(y)s. But if S(Y)>y(f)
(see Lemma 1.7) and y>y(f) then

(1~7) ‘ ”(7’ ﬁ)*w* = n(ﬁ(]’), ﬁ)* .

LemMA 1.8. Suppose that Y is.a compact Hausdorff space. Then Y is a Q-sim-
plicial space if either:
1. Y is a convex set in a locally convex linear topological space, [12].

2. Y is a neighborhood extensor for the class of compact spaces. In particular,
Y is ANR for normal spaces, [12].

3. Y is a compact topological group, [13].

4, Y is a product of Q-simplicial spaces, [12].

5. Y is a weak semicomplex, [19].

6. Y is a compact generalized manifold (n-gm), [21, 19].

7. Y is a snace-like continuum, [6, 19].

8. Y is a hyperspace of a snake-like continuum, [15, 19].

4. Approxifnation of compact spaces in I. By I* we shall denote the product of T

intervals 7= [0, 1] and by U(I") the family of all symmetric neighbourhoods of
the diagonal of the product I°x I%, [11], Ch. 6, 29.
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For the space Y there exists an embedding in I (for some 7). We suppose that
YerI~

LeMMA 1.9. Let Y<I and Wy € W(I"). There exists a covering f e Cov(Y) and
an embedding i N(B)— I" such that (iv(@)(y), y) € U, for every ye Y.

This lemma is also well known, see for example [17].

For a set A<l the set Wi(4) is defined as follows:

UGT(A) = U(Uh(4)
and

Uy(4) = {zeI": there exists a y € 4 such that (z, Nelp}.

Let feCov(Y) and Wel (). We shall write f<U if UxUcU for every
Ue f. Supposing dim Y = n<oo, let Cov(Y, n) be the set of all finite open cover~
ings a, such that dimN(x)<n. The set Cov(Y,n) is confinal in thé set of all
coverings Cov(Y).

II. Proof of the theorem

Recall that X, Y and p, ¢: X— Y satisfy the following conditions

1. p is a Vietoris map,

2. Y is a Q-simplicial space,

3. dimH (Y, Q)< oo,

4, n = dim ¥Y<o0,

5. X and Y are compact, Hausdorff spaces.

The theorem is a consequence of the following

LemMa 2.1. If for every x € X we have p(x) # q(x) then L(p,q) = 0.

The condition p(x) # g(x) is equivalent to y ¢ g(p~*(»)) for every ye Y.

Suppose that y ¢ ¢(p~*(p)) for all y e Y. Provided the space Y is a closed
subset in I® and y ¢ g(p~(3)) for every y € ¥, then there exists a U, € U(I) such
that

@ y ¢ Udlg(p~*(»)). for every ye Y.

The space X is compact and ¢: X — ¥ is continuous. For W, e U(I") there
exists an g & Cov(X) such that for every Uea, we have q(U)xg(U)=Uo.

Let # = dim Y. Then as soon as the map p is a Vietoris map, it follows that p
is a n-Vietoris map, [2].

Let BeCov(Y,n) be such that B<W, and n(B)s: H(Y)> HJY(B)
be a monomorphism (Lemma 1.2).

Now for every &eCov(Y,n), 6> the homomorphxsm m(8)y: H(Y)
—*H*( Y(3))is also a monomorphism and the homomorphism 7(5, B)x: Hy(Y(5))
— H( Y(ﬁ)) is a monomorphism on the image of 11:(5)* This follows from the

equality n(f)y = n(d, Han(Os .
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Suppose f; € Cov(Y,n) and «;, @, € Cov(X) are such that:

a) ay>p  (B), 02>q 7 (B): %2> %

b) B, >y(B), B1>B(Y), B1>R(az, B
) ay>ay, a>p (B,

d) Imm(B)x>Img ey, B1)s T(®1s Bo) -

For the definitions of the coverings y(B) see Lemma 1.7; for (Y) ~— the defi-
nition of Q-simplicial space; for R(a,, f) — Lemma 1.4 (we suppose that
R(a,, p) € Cov(Y, n)).

Let us consider the coverings «; and ;. Apply Lemma 1.4, There exists a
covering R(ay, 1) € Cov(Y, n) such that:

a) R(ag, B1)> By

b) there exists a chain map T'(x,, ;) of the (n+1)-skeleton of V(Y R(ay, By))
in V(X, o) such that, for any k-simplex ¢* of V(Y, R(ocl, B1), 0<k<n+1, the
chain p(ery, ) T2y, By)o* is a barycentric subdivision, &¢%, of ¢* with

diam (supds)<p .

c) for any k-simplex o* of V(¥, R(xy, ) there exists a point y(c*) such
that
22)

@.3)

St(y(@"), Ry, B)=sup(@),
St(p~*(y(d"), oy )2 sup(T(c") .
Let us consider the augmentation preserving chain map
w: V(Y, B — V(Ya Rouy, ﬂi))

" subordinate to f§ (w exists since f,>p(¥) and Y is a Q-simplicial Aspace).
Since B;>7y(p), and R(ay, f,)>p, by Lemma 1.7

”(-R(‘Ip By), ﬂ)*w* = (B, fs

(here @y is the homomorphism induced by the chain map w).
Now consider «, € Cov(X) and B & Cav(¥, n). Since a, >p~*(8), by Lemma 1.4

24
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there exists a chain map T'(e, f) of (n+1)-skeleton of ¥ (¥, R(xy, f)) in V(X, az)-

and, by Lemma L 5, (1.4
2.5)

for 0<ign,

Since H*( Y(B)) and H,(¥) are - Q-linear spaces, and m(B)y: Hy(Y)
— Hy (Y (ﬂ)) is monomorphism, there exists a Q-linear map

re = {r}: H*(Y([}))——->H*(Y)
such that ry(B), = id (id is the identity of H( ).

m(0ty, 02)5g Ty, Bdur = Tz, ﬂ)*nﬂ(R(“h B, R, ﬂ))mi
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o
H — o pyp)
I (8. R(e2, BY).
(R 50), b
=(Rla, B, R(a, 8)), .
. BV R, 5) 20 1 (G 1)
F 3
I
T(a, B). v (a2, ).
(o). (e, ar).
HJ(X) H(X(ay)) H(X(e))
qla, By,
v ; VI
. q(a 0).
H,(Y(8D)
(B0, (81, B).
VI
H(Y) < H(¥(8)

Diagram 1
Let us consider Diagram 1. All the subdiagrams II-VII of this diagram are
commutative (this follows from (1.1), (1.4), (1.5) (1.7), (2.3), (2.4)). The diagram is
possibly noncommutative. )
Now, from Diagram 1 we obtain:
tf(‘I*iP*il) = tr("x”(ﬂ)*i‘l*zl’*z )
tf("ﬂ(“z, BT (tz, ﬁ)*;”(ﬂu R(xp, ﬂi))*"(ﬂﬂ*;)
= tr(rymw(By, Paaq @y, BdwiT(es, B)xi@x:m(B1)xr)
= tr(w(B)siri7(Brs Paiq (s BwiT(ay, ﬁx)*iw*i) .
Let us recall that on the image of the homomorphism 7(B)s; the homo-
morphism (B )xi7m(B1, B is the identity.
Also we have
Im(q(al, BT (o, pl)*iCIm(n(ﬁl)*i) .

Therefore
tr(guipail) = tr(g(ay, BesT (@1, Br)ai®xr) -

Now, let us apply Lemma 1.1. There are augmentation preserving chain maps
k(By): C*(N(ﬁﬂ) —V(Y, B,
1(B)): V(Y, B) — Cx(N(B1)
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which are chain homotopies inverse to each other and which satisfy the following

conditions:
(2.6) sup(k(B;)(c)) =sup(c) ,
@7 sup(I(B)(d)) = St(sup(d), By)

for a chain ¢ on N(B,), and a chain d on ¥(B,). Therefore

tl’(?(“n BT (s 131)*1w*1) = tr("(ﬁ)*il(ﬁl)*tq(“l s Bwi T(ey, ,31)*1("*:)
L= (B )waq @1 BwiT (@15 By)wiOuik (Bxa) -

By Hopf’s trace formula
Lp,q) =}, (—1)it1'(1(ﬁ1)i‘1(0¢1n BT (g, Bk (B -
So
L(p,q) =Y. (-1)'tro,

(here oy = 1(B)ig (s> B1)iT(ey, Br)s0;k(By); is a chain map of C*(N(/}1)) in
itself, and we use dimN(f;)<n)!

Supposing L(p, g) # O, there exists an i such that tr, % 0. From this it follows
that there exists a simplex o' which belongs to the chain ¢, (¢").

Therefore
sup (¢*) < sup (oi(c") .
Let
oh e gy, B)T(xy, Br) 0k (B)) (o)
and
(PX)) o el(f)(e),  sup(c)=St(sup(oh), By),
2.9 o3 € (e, By) wk(B1) (o) ,
(2.10) o1 = gy, B1)(d3),
o3 € 0k (B)) (6",
02 € T(0y, B,)(s%),
.11) oh e k(B)(",
(212 oz ew(oh),

o}, 05, o5, of are V-simplexes. From (2.6) and (2.11) we obtain
.@213) ' sup(oh) csup(a’) .
The chain map @ is subordinate to 8. So from (1.6) and (2.12) we obtain

sup(oh) =St(sup(c}), B)
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and from (2.13) follows
.14 ' ; sup(a3) < St(sup (o, ).
From (2.3) there exists a point y(o}) such that ,
sup(T(es, B)(0h) =St (p™(y(0h), ).
Therefore from (2.9)

@15 sup(aﬁ)cSt(p'%y(eri ay))
and from (2.2)

@16 sup(o)=U(gp'(@h).
From (2.10) and (2.15) and (2.8) we obtain
@17) sup (s =2 (gp™(y (o))

From (2.14) and (2.16) follows
@.18) »(@%) e W(sup(h).

From (2.17) and (2.18) we have
y(o3) e W{gp~(y(oh)))
which contfadicts to' (2.1). Lemma 2.1 and therefore the theorem are proved.

II. Consequences from the theorem

It is well known that the theorem implies the Lefschetz fixed point theorem for
multivalued upper-semicontinuous and acyclig mappings, [8].

COROLLARY 1. Let Y be a compact, finite dimensional Q-simplicial space and
dimH(Y)<oco. Let F: Y~ Y be an upper-semicontinuous, acyclic multivalued
mapping. If the Lefschetz number L(F) of the mapping F is not zero, then there exists
a point y& Y such that y € F(y).

~ From the theorem and Lemma 1.0 follows .

COROLLARY 2. Let the compact Hausdorff’ space Y satisfy one of the conditions
a)-e), and p,q: X — Y. Let p be a Vietoris map. If L(p,q) # O then there exists
a point x € X such that p(x) = g(x).

a) Y is a finite dimensional group,

b) Y is a generalized manifold (n-gm) in the sense of R. L. Wilder, [21].

¢) Y is a finite dimensional HLC* space in the sense of S. Lefschetz, [14].

d) Y is finite dimensional, and is an extensor for the class.of all normal spaces,

e) Yisa finite dimensional weak semicomplex, [19], or a quasicomplex, [14],
or a semicomplex, [4].
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From the theorem and Lemma 1.8 we obtain
COROLLARY 3. Let the compact Hausdorff space Y satisfy one of the conditions
a),b), andp, q: X— ¥, and let p be a Vietoris map. There exists a point x € X such

that p(x) = q(x).

" a) Yis an acyclic, finite-dimensional Q-simplicial space,

"b) Y is a snake-like continuum, or @ product of a finite number of snake-like
continua. .

From Corollary 1 follows.

COROLLARY 4. Let the compact Hausdorff space Y satisfy one of the con-
ditions a) -¢) in Corollary 2, and let F: Y — Y be an acyclie, upper-semicontinuous,
multivalued mapping. If the Lefscheiz number L(F) of the mapping I is not zero,
then there exists a point y € Y such that y & F( »).

COROLLARY 5. Let the compact Hausdorff space Y satisfy one of the con-.
ditions ), b) in Corollary 3. For every acyclic, upper-semicontinuous, multivalued
mapping F: Y— Y there exists a point ye ¥ such that y € F(y).

The results of this paper were announced in [16].
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