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Homogeneously wild curves and infinite knot products

by
H. G. Bothe (Berlin)

Abstract: An oriented simple closed curve C in euclidian 3-space E® is called homogeneously
embedded if for each pair p, g of points in C there is an orientation preserving homeomorphism
h: E®— E? such that #(C) = C respecting the orientation of C and A(p) = ¢. Since. all tame
simple closed curves are homogeneously embedded we are mainly interested in the case where C
is wildly embedded, i.e. where there is no homeomorphism of E® onto itself mapping C onto a closed
polygon. The main result is a classification of all possible positions of homogsneously embzddad
simple closed curves in E® which pierce a disk by associating to each of these curves a possibly
infinite product of tame knots. As a corollary we see that for each homogeneously embedded simple
closed curve C in E? which pierces a disk either each orientation preserving homeomorphism
hy: C— C can be extended to an orientation preserving homeomorphism A: E? — E* or for each
pair p, g € C there is exactly one orientation preserving homeomorphism /,: C — Cwith /i (p) = ¢
which can be extended to E3, Moreover, it turns out that being homogeneously embedded is a local
property of C.

1. Introduction. In this section we introduce some concepts which are used in
this paper and state the main results. The following conventions will be convenient:
E® and S® denote the euclidian 3-space and the 3-sphere respectively which are
assumed to have a fixed orientation and to carry the usual PL (i.e. piecewise linear)
structure. ‘All simple closed curves which appear are tacitly assumed to be oriented.
Moreover, we say that a homeomorphism % maps a simple closed curve C onto
a simple closed curve C’ only if h respects the orientations on C and C’. By
a polyhedron we mean the underlying space of a locally finite simplicial complex
in E? or in S3. A disk is a closed 2-cell and a ball a closed 3-cell. By Int M and Bd M
we denote the interior and the boundary of a manifold M, and CLX is the point set
closure of X.

We shall consider knots, i.e. equivalence classes of simple closed curves (oriented
by our conventions) in E® or S* under orientation preserving homeomorphisms
of E® or §2 onto itself. The knot which is represented by a simple closed curve C
will be denoted by x%(C). Since E? is S* minus a point, our theorems will hold in E?

" as well as in 3, and it is sufficient to formulate and to prove them in the case which

is most convenient.
There are two main classes of knots: the fame knots which can be represented
by finite polygons or, equivalently, by smooth simple closed curves and the wild
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knots which have no such representation. In general the theory of tame knots (the
classical knot theory) and the theory of wild knots are two separate parts of geo-
metric topology. It is the aim of this paper to show how for a special class of wild
knots a complete description and classification by formal infinite products of tame
knots (as defined below) is possible. This class consists of all homogeneous knots
which pierce a disk. Here a knot is called homogeneous, if its representants C are
homogeneously embedded in S?, i.e., if for P, q&C there is an orientation pre-
serving homeomorphism 4: $3 — $2 such that h(C) = Cand h(p) = ¢ (respecting
the orientation of C by our assumptions). A knot pierces a disk if for a rep-
resentant C of x (and therefore for all representants) we can find a disk D such that
C n D consists of an interior point of D and the boundary Bd.D of D is linked
with C in the sense that the natural map H, (BA D) — H,(S3\C) is an isomorphism.

By the way we shall prove that a locally homogeneous knot which pierces
a disk is homogeneous. Here a knot is called locally homogeneous if for each re-
presenting curve C and each pair p, g & C there are subarcs L, L, of C and an
orjentation preserving homeomorphism 4: S3 — §% such that pelntLy, g e IntL,,
h(p) =¢, and A(L) =1L, respecting the orientations on these arcs which are
induced by the orientation of C. Another result (Theorem 4) determines for a homo-
geneously embedded simple closed curve C in S3 which pierces a disk the group
&(C) of all those orientation preserving homeomorphisms g: € — C which can
be extended to orientation preserving homeomorphisms i: §3 — §3.

For the definition of infinite knot products we repeat some facts from classical
knot theory (see [4]). Let C,, C, be simple closed polygons in S® which represent

" the knots %, %, respectively. We assume that there is a polyhedral ball B in §3

such that, if 2 denotes its boundary, we have CicB, C,c(S*™\B)uU 52, and
L=CynS8%*=C,nS?is an arc on which €y, C, define opposite orientations.
Then C = (C; U C)\IntL represents a knot % = %(C) which depends only on »x,
and x%,. This knot » is called the product %%, of %, and x%,. A fundamental fact
concerning this product is that the set of all tame knots with this multiplication is
a semigroup isomorphic to the semigroup of all positive integers with the ordinary
multiplication. This implies the existence of prime knots (corresponding to prime
numbers) and the fact that each tame knot is a unique product of prime knots:
% =] 72" where x ranges over all prime knots and only a finite number of
exponents e(n) are different from zero, A possibly infinite knot product (p.i. knot
product) is a formal product % = Hn‘(") where the exponents are arbitrary non
negative integers or the symbol co. :

The product of tame knots can be represented in various ways. It is clear how
a polyhedral solid torus 7 in S in whose fundamental group a generator is dis-
tinguished (we shall speak about a directed solid torus in this case) represents a tame
knot »(T). Now let Tp, T; be directed solid tori in §% where T, lies normally in
IntTy, in the sense that there is a latitudinal disk of Ty (i.e. a disk D in T, for which
D n BdT, = BAD is not contractible on BdT,) whose intersection with Ty is
a latitudinal disk of 7 and that Ty, Ty are coherently directed. Then, if h: Ty - §*
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is an orientation preserving polyhedral reimbedding for which A(7y) is unknottf:d,
we have %(Ty) = %(To) %(h(Ty)). Therefore, for a directed solid torus 7’ T«vh_ufh
lies normally in a directed solid torus T the knot %(T) is a divisor of »(T”) (i.e. in
%(T) = [[ 7™, %(T) = []n"™ the inequalities e(m)<e'(n) hold). . .
Another way to represent tame knots uses tunnels in balls. A tunnelin an oriented
ball B is a ball B’ in B such that for a suitable PL structure of B the ball B’ is a sub-
polyhedron of B for which B’ n BdB = BdB’' n Bd B is the union of two separate
disks one of which is called the entrance and the other the exit of B’. Each such
tunnel represents a tame knot: Embed B by an orientation preserving embedding
in S3 such that CI(B\B") is a polyhedron. Then (S*\IntB) U B’ is a polyhedral
solid torus 7" in whose fundamental group a generator is extinguished by a curve
which runs in B’ from entrance to exit and then outside B back to the entranc?.
The knot »(T) does not depend on the embedding of B in S3 but .only on the pair
(B, B') and will be denoted by (B, B'). In our applications of this representatlo?
of tame knots B will be already embedded in §3 (or £7) in such a way that CI(B\B’)
is a subpolyhedron of §3. Let a tunnel B’ in B and a tunnel B” in B’ be give?' suc,l}
that Dy > D} and D3> D3 where Dj, D are entrance and exit of B, and D, D3
are entrance and exit of B”. Then %(B, B"”) = »#(B, B')-»(B’, B'") holds. )
Now we show how a simple closed curve C in S 3 which pierces a disk and which
is definable by solid tori determines a p.i. knot product. (C is called definable by
solid tori, if there is a sequence Ty, Ty, ... of polyhedral solid tori in S® such that

TpyycIntT; and a T; = C). Since C pierces a disk D (which by [1] can be chosen
i=1

so that D\C is a polyhedron) it is not hard to find a defining sequence T.I , TZ,.
for C in which T}, lies normally in T; where each T} is directed by the orlentat‘lon
of C. Then the knots (T = [ 7% satisfy e, (M) < e ()< .. and_ for each prime
knot 7 the sequence (e;(n)) converges to a limit e(z) which is an integer or co. It
is clear that e(n) depends only on C (indeed on %(C)), and we deﬁneNthe p.i. knot
product [] n% which we shall denote by #(C). If C is tame, tljlen #(C) = %(C),
but simple examples show that in general #(C) does not determine the knot %(C)
(see Fig. 1).

(:9‘_/(}7_29¢_... f\\j__}\\j/’blm_ :

Fig. 1
Now we can state the main results:

TreOREM 1. Each locally homogeneous knot x which pierces a disk is definable
by solid tori and determines therefore a p.i. knot product %.
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THEOREM 2. A locally homogeneous knot s which pierces a disk is uniquely deter-
mined by the corresponding p.i. knot product &%, and x is tame if and only if % is finite.

THEOREM 3. A p.i. knot product % = [ n*™ corresponds to a locally homogeneous
knot which pierces a disk if and only if for each integer e there are only finitely many
prime knots m for which 0<e(r)<e holds.

TueoreM 4. Let C be an oriented simple closed curve in S® which represents

a locally homogeneous knot % which pierces a disk, and let 5% = [T 7 be the cor-

responding p.i. knot product. If &(C) denotes the group of all orientation preserving
homeomorphisms g: C— C which can be extended to orientation preserving homeo-
morphisms h: S3 — S3, then we can say: if 0<e(n)< oo holds only for a Jfinite number
of prime knots =, then &(C) is the ful group of all orientation preserving homeomor-
phisms of C; if 0<e(r)<co holds for infinitely many prime knots w, then &(C) is
a full rotation group of C, i.e., there is a homeomorphism ¢@: C— S onto the unit
circle S* such that g belongs to & (C) if and only if pg o1 8Y— S s o (euclidian)
rotation of the circle S*.

Remark. Theorem 4 implies that cach locally homogeneous knot which pierces
a disk is homogeneous.

2. Proof of Theorem 1. In the first part of this section we give a proof of

Theorem 1. The second part is devoted to a strengthened version of this theorem

. (see Proposition. (2.1) below) which will be needed later. For its formulation some
definitions are necessary. (In this section the ambient space will be E3.)

Let Cbe a simple closed curve in E2. By a normal disk D of C we mean a disk D
in E? intersecting C in exactly one point p at which C pierces D. Moreover we assume
that D\{p} is a polyhedron. By a normal neighborhood of a point p e C we mean
a ball Bin E® containing p in its interior whose boundary § intersects C in exactly
two points gy, g, at which C pierces S. Moreover we assume that SN\{4:. ¢} is
a polyhedron. By a tubular neighborhood of C we mean a polyhedral solid torus T
in E® containing C in its interior whose fundamental group is generated by C.
It is clear that each polyhedral solid torus in E3 containing C in its interior which is
sufficiently close to C must be a tubular neighborhood of C. By a normal cell de-
composition of a tubular neighborhood 7" of C we mean 2 cyclically ordered collec-
tion € = {Z,, ..., Z,} of balls (indices are counted modulo r) such that 1) each
Z;is a normal neighborhood of a point p;eC, 2) Z nZ, =@ if k #Jj—1,
LItL3) Z Z;44 is a normal disk of C, 4) r=4, and 5) the cyclic order of €
corresponds to the orientation of C.

Let € = {Z,, ..., Z,} and € = {Z], ..., Z.} be normal subdivisions of tubular
neighb(?rhoods T, T" respectively of C. We write &' <& if for each Z; the inter-
section Z; N T is a tunnel in Z; and if each ball Zj is contained in a ball Z; such
that Z; A BdZ, is empty or one of the disks Z;nZ;y or Z; N\ Z}py. If we have
a defining sequence Ty, T,,... of tubular neighborhoods for C and normal sub-
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divisions €,,'€,, ... of these tubular neighborhoods, we call €, €,, ... a defining
sequence of normally subdivided tubular (abbreviated: n.s.t.) neighborhoods of C
provided we have €, >€,>..., and the maximal diameter of balls in &; tends to O
if i— co. If we write €; = {Z, , ..., Z; ,}, we assume moreover that

Zittmer N 2141123, 0 Zy 4 -

We shall prove in the second part of this section the following stronger version
of Theorem 1:

ProrosiTioN (2.1). Each locally homogeneously embedded simple closed curve
in E® which pierces a disk has a defining sequence of n.s.t. neighborhoods.

We begin the proofs with some remarks about simplicial complexes in E3.

By an ordered complex we mean a finite simplicial complex whose vertices are
given in a fixed order vy, ..., v,. For two ordered complexes &, & with the same
number of vertices there is a natural one-to-one mapping of the set a vertices of
K onto the set of vertices of &'. If this mapping and its inverse map simplexes onto
simplexes, then & and &’ are called isomorphic. If § is an ordered complex in E® with
vertices vy, ..., v,, we can find neighborhoods Uy, ..., U, of vy, ..., v, respectively
such that for each sequence vy, ..., v, of points where v € U, (i = 1, ..., ) there is
a unique ordered complex & in E? with vertices vy, ..., v, which is isomorphic to K.
If £>0 is given, then we can choose these neighborhoods so small that for any two
complexes &', &' which are obtained in this manner there is a PL e-homeomorphism
of E* onto E® which is the identity outside the s-neighborhood of & and which
maps each simplex of & linearly onto the corresponding simplex of &'’. To each
ordered complex & in E® with vertices vy, ..., v, there corresponds the point
(&) = (vy,...,v) in E®™ = E%x..xE% and to choose points v},..,v; in
neighborhoods Uy, ..., U, of vy, ..., v, respectively is the same as to choose a point
in a certain neighborhood U of p(R). Therefore we have:

Lemma (2.2). If & is an ordered complex in E® and ¢ is a positive number, then
there is a neighborhood U of p(R) in E®" for which-the following assertions are true:

(1) For each p’ € U there is excctly one ordered complex R in E® which is iso-
morphic to & and for which p(]') = p’.

() If &, & are ordered complexes which are isomorphic to K and for which
p(K') and p(R"”) are in U, then there is a PL e-homeomorphism of E3 onto E¥ which
is the identity outside the g-neighborhood of &' and which maps each simplex of K’
linearly onto the corresponding simplex of K'.

We assume now that C is a fixed simple closed curve in E* which pierces in
each of its points a disk. If C is a locally homogeneously embedded simple closed
curve which pierces a disk (in at least one of its points), then this condition is satisfied.

For each p € C let D, be a disk which is pierced by C in p. By Bing’s approxi-
‘mation theorem (see [1]) we may assume that D\{p} is a polyhedron, and we clioose
a fixed triangulation @, of D,\{p}. Now we select subdisks D, , of D, (n =1, 2,...)
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such that

(l) Dp.O = DP’

@ pelntD,,,

(3) Dp,n+1 CIntDp,na

(4) diam(D, y<n"?,

(5) each annulus 4, = D\IntD, ., is covered by a subcomplex sty of B,
n=1,2,..).

For the vertices of 9, we choose an arbitrary order so that each &, becomes
an ordered complex.

LemMA (2.3). If L is a subarc of C we can find a sequence S8o>8,>8,>... of
Dbositive numbers and a sequence Po> Py =P, >... of uncountable subsets of L such
that the. following conditions are satisfied:

(1) If p e Py, then dist(p, BdD,)> 4.

@ Ifn=1,peP,, and D is a subdisk of D, whose boundary lies in the &, -neigh-
borhood of p, then D is contained in the n™*-neighborhood of p.

() Ifn=1and p € P,, then the intersection of D, with the 6,-neighborhood of C
is contained in a subdisk of D, with diameter less than n™*. )

) Ifn=1andp, geP,, then there is a PL n™*-homeomorphism of E* onto E3
which is the identity on C and which maps Ay, onto dg .

Proof. We shall use the following simple fact:

QA IfMisa set with more than countably many elements and if 1 M— E"
is any mapping, then there is an element Xo € M such that for each neighborhood U
of f(xo) there are more than countably many elements x e M for which f'(x) lies
in U.

As an immediate consequence of (2.4) we have:

(25) If Misasin (2.4) and if f: M — Risa mapping with positive values, then
there are positive numbers &, # and more than countably many elements x e M
for which §<f(x)<n holds.

(2.6) If M is an uncountable subset of an arc L, then there is a point p in IntL
such that for each subarc L' of L which contains p in its interior both components
of L'\{p} contain uncountably many points of M.

We define (84, Py), (5, Py), ... successively. For the definition of by, Py we
use (2.5) with M =L and f(p) = dist(p, Bd D,). Now assume that 4, P, are
already fixed. We define §,,,, P’ satisfying (2) and (3) where P'e=P, is uncountable
b.y (2.5) with M = P, and f(p)>0 such that each subdisk of D, whose boundary
lies in the f'(p)-neighborhood of p is contained in the n~*-neighborhood of p and
that the intersection of D, with the f'(p)-neighborhood of C is contained in a subdisk
of D, with diameter less than n™*, To get P,y we consider for each p e P’ the
complex &, 1. Once more using (2.5) we can find an uncountable subset P* of P’
and a number m such that for each p € P” the complex &, , .4 has exactly m vertices.
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Since there are only finitely many types of ordered complexes with m vertices, we
may assume that for all p e P the complexes oA, w+1 are isomorphic. Now we use
(2.4) and Lemma (2.2) to find an uncountable subset P,., of P" for which @) is
satisfied.

The following lemma is an easy consequence of (2.6) and the proof of
Lemma (2.3).

LemMma (2.7). We can find two sequences (p,), (g,) of points in L both con-
verging to a point p in IntL such that p,,q,cP,, and p lies between p,, and g,
m,n=1,2,..).

Let (p,), (g,) be chosen according to this lemma.

LemmA (2.8). The point p has arbitrarily small normal neighborhoods.

Proof. For a given positive ¢ let n be so large that D, , and D, , lie in the
}e-neighborhood of p and that there is a {e-homeomorphism A: E3 — E® which
is the identity on C and which maps 4,,,,, onto 4, ,. Then the set S’ = "D, Jv
U Dy, s a singular sphere in the ¢-neighborhood of p for which the following holds:
80 C = {p,, q,}, and C pierces S’ in p, and in g,. Morcover, S {2, 4.} s
a polyhedron. On the boundary curve K= S’ n Ay,.n of 4, 4 there are no singulari-
ties of S’. Atter a simple modification of S’ we may assume that there is an annular
neighborhood N of K in S’ which contains no singularities of S’, and that the two
disks D', D" of S'\IntN are in general position. Then the singularities of S’ are
simple closed curves in which D’ intersects D", and we can remove these singularities
by standard techniques. So we get the boundary sphere S of an &-small normal
neighborhood of p.

PROPOSITION (2.9). If a simple closed curve C in E® pierces in each of its points p
a disk D, where D,\{p} is a polyhedron, then the set Q of all g € C for which the disk D,
is tame must be dense in C.

COROLLARY (2.10). If a simple closed curve C in E® pierces in each of its points
a disk, then there is a dense subset Q of C in whose points C-pierces a tame disk.

COROLLARY (2.11). If C is a locally homogeneously embedded simple closed
curve in E® which pierces a disk, then C pierces in each of its points a tame disk.

Proof of Proposition (2.9). Let L be a subarc of C. We show L n Q # &.
By Lemma (2.8) we can find a point p eIntL and an arbitrarily small 2-spere S
containing p in its interior for which S~ C consists of two points in which C
pierces .S. Moreover, S can be chosen to be a polyhedron outside S A C. By easy
modifications of the spheres S we may assume that each § intersects D, in a simple
closed polygon. Then by a result of O. G. Harrold, Jr. [3] D, is tame.

Proof of Theorem 1. We shall use the following simple facts which can be
proved by elementary cutting and pasting techniques. Let B(p), B(g) be normal
neighborhoods of p, g e C. We denote by S(p), S(g) their boundary spheres and
by L(p), L(g) the arcs of C in B(p), B(g) respectively.

2 - Fundametha Mathematicae CXIII/2
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(2.12) We assume L(p) nL(g) = & and denote by 4 an annulus on S(p)
which separates on-S(p) the end points of L(p) and which contains B(g) n S(p).
Then for each neighborhood N of 4 in E® we can find a normal neighborhood B'(q)
of g with boundary S’(¢) such that (1) B'(g) n C = L(q), (2) B'(g) n B(p) = &,
and (3) S'(g)=S(g) v N.

(2.13) We assume that L(p) n L(g) is a proper subarc of L(p) and of L(q) and
denote by D a subdisk of S(p)\(C\L(g)) which contains S(p) n B(g). Then for each
neighborhood N of D in E® we can find a normal neighborhood B'(g) of ¢ with
boundary S'(g) such that (1) B'(g9) nC=L(qg), (2) S'(@=Nuvu S(g), and
(3) S(p) n S’(q) is a simple closed. curve. (By (3) B(p) n B'(g) is a ball.)

To prove Theorem 1 it is sufficient to find in a given neighborhood U of C a solid
torus which contains C in its interior. By Lemma (2.8) and the local homogeneity
of C we can choose for each point p of C a normal neighborhood B(p) in U. Let
S(p), L(p) denote the boundary of B(p) and the arc B(p) n C respectively. We
select a minimal set py, ..., p, of points in C for which IntL(p,), ..., IntL(p,) co-
ver C. Then we can find a cyclic order of these points such that

IntL(p) ~ IntL(p) % &

if and only if j = i—1, i, or i+1 (here indices are counted modulo r). To avoid
technical complications we assume r3>4. It if happens that arcs L(p;—y), L(p;4y)
have a common end point, we can easily replace B(p;,) %y a normal neighborhood
of p;+y which is a little bit smaller, so that L(p;,—;) N L(p;+,) = @& holds. This
allows us to assume that L(p,) N L(p;) # @ if and only if j = i~1, i, i+1.

Now it is our aim to find new normal neighborhoods of p,, ..., p, in U which
will-also be denoted by B(p,), ..., B(p,) such that

(1) B(py) n Cis the old arc L(p,),
(2) B(p) n B(p;) # B if and only if j=1i-1, i, i+]1,
(3) B(p) N B(pi+y) is a ball

r
Then 7' = ) B(p,) is a torus in U containing C in its interior.
i=1

To find the new normal neighborhoods B(p;) we make the following con-
structions.

(a) Applying (2.12) we may replace B( P3)5 »oy B(p,—1) by normal neighborhoods
B'(p3), ..., B'(p,q) Of Py, ..., po—y respectively in U such that B'(p) n C = L(p)
and B(p;) nB'(p) =@ for i =3, ...,r—1. Denote B'(p)) by B(p;) and forget
the old B(p;)’s.

(b) Applying (2.12), (2.13), and some further simple surgery we may replace
B(p,) and B(p,) by normal neighborhoods B'(p,), B'(p,) of p,, p, respectively in U
such that B'(p;) n C = L(py), B'(p;) n B'(p,) = @, and B'(p,) n B(p;) is a ball
for i = 1, r. Denote B'(p,), B'(p,) by B(p,), B(p,) respectively and forget the old
B(Pz): B(pr)

icm

Homogeneously wild curves and infinite knot products 99

If we repeat (a) and (b) in an obvious manner, we get new normal neighborhoods
which satisfy (1), (2), and (3).

Proof of Proposition (2.1). It is sufficient to prove the following two
assertions:

(2.14). C has a tubular neighborhood with a normal cell decomposition.

(2.15) If T is tubular neighborhood of C with a normal cell decomposition €
and if £>0, then there is a tubular neighborhood 7' with a normal cell decom-
position &’ such that €’<® and the balls of €& have diameters less then e.

The proof of (2.14) is a simple consequence of the proof for Theorem 1. (Define
€={Z,..,Z} by Z, = B(p)), Z; = CI(B(p)\B(p;-y)) if 2<j<r—1, and
Z, = CI{B(pINB(p,-1) v B(p1))))

For the proof of (2.15) we use the following simple fact.

(2.16) Let L be a subarc of C with end points p;, p, and let D,, D, be normal
disks of C which are pierced by C in p,, p, respectively. Then there is a positive
number § such that for each tubular neighborhood T of C which is contained in
the §-neighborhood of C the component of T\(D; U D,) whose closure contains L
has diameter less than 2-diamL.

" Now let € = {Z, ..., Z,} be the normal cell decomposition given in (2.15).

" Since C pierces in each of its points a normal disk, we can find a collection of normal

disks Dy, ..., D, such that the points p; = D; n C are by their indices cyclically .
ordered in accordance with the orientation of C and such that the arcs L; with end
points p,, p;+ have diameters less than 4. Using (2.16) we choose a tubular ne:'ighf
borhood Ty of C with BdT in general position to Dy, ..., D, such that Ty n D;
is contained in a subdisk D} of IntD,, and each component of T;\(D; U ... U D)
whose closure contains an arc L; lies together with D}, D}, in a ball with diameter
less than &. If T, is sufficiently close to C, each component of BdT; n D; is a simple
closed curve which bounds a disk on BdT, or bounds a disk in Ty. By simple
surgery we can modify 77 so that each intersection Ty n Dj is a disk containing p; in
its interior. Then for each L; the closure of the component of T;\(Dj U ... u.D.}
which contains L, is a ball Zj. If we choose the disks D, , ..., D, so that each disk
Z; N Z;,, appears among them, the cell decomposition €' = {Z7,...,2Z.} of
T’ = Ty has all properties required in (2.15).

3. First part of the proof of Theorem 3. Here we prove:

(3.1) Let C be a locally homogeneous simple closed curve in S which pierces
a disk, and let %(C) = ] 7°™ be the corresponding p.i. knot product. Then the sets
{r; O<e(m)<n} are finite (n=1,2,3,..). .

We say that two p.i. knot products %# = [][7°®, # = [[=“™ are almost
equdl if e(m) = ¢'(x) for almost all prime knots = and if e(r) = oo if and only if
€'(m) = oo (“almost all” means “all with a finite number of exceptions™). We say
that % divides &' if e(n)<e'(x) for all = and that % almost divides &' if % is almost
equal to a divisor of #'..

o0
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Let C be a simple closed curve in S which is definable by solid tori and let B be
a normal neighborhood of a point in C. Then the atc L = B-n C defines in B
a p.i. knot product #(B,L): We can easily find a defining sequence Ty, Ty, ... of
solid tori for C such that each intersection T; n B is a tunnel in B (dlstmctlon of
entrance and exit is given by the orientation of C). If %(B, T; n B) = Hne‘(")
it is clear that e,(r)<e,(m)<... for each 7, and we define %(B, L) = [] 7™ where
e(®) = lim e(n). It is easily scen that #(B, L) divides the p.i. knot product #(C)

i

of C.If B, , B, are normal neighborhoods as above where B; N C = Ly, B, n C=L,
and B, < B,, then %(By, L) divides a’é(Bz,Lz). This simple remark leads easily to
the following assertion:

LevMa (3.2). Let C be a simple closed curve in S* which is definable by solid tori,
and let By, B, be normal neighborhoods of points in C. Then B, n C<Int(B, n C)
implies that %(By, B; 0 C) almost divides %(B,, B, n C).

For a p.i. knot product % = []7°™ we define a new p.i. knot product
P = H n.c‘(n) by
. ) = {e(n) .1f e(n) =0, w0,

if O<e(n)<oo.

Now let C be a locally homogeneous simple closed curve in S* which pierces
a disk. By Lemma (2.8) each point of C has arbitrarily small normal neighborhoods.
. For a p.i. knot product % we say that C is locally at least #%-knotted, if for each
normal neighborhood B of a point in C the p.i. knot product % almost divides
#(B, B~ C).

Lemma (3.3). C is locally at least #*(C)-knotted.

SUBLEMMA. If 1 is an infinite divisor of %(C), then there is an infinite -divisor i
of X such that C is locally at least fi-knotted.

Proof of Lemma (3.3). Assume that C is not locally at ledst #*(C)-knotted.
Then there is a normal neighborhood B of a point in C and an infinite divisor 1
of #*(C) such that 1 = #® and 7 has a finite exponent in #(B, Bn C) or 1 is
a product of different prime knots which appear in %*(C) with exponents equal to 1
but do not appear in %(B, B C). In both cases the sublemma. leads to a con~
tradiction.

Proof of the sublemma. Let €,,E,, ... be a defining sequence of n.s.t.
neighborhoods for Cwhere €; = {Z, ;, ..., Z; ,} and T} = (J Z, ;. If we denote the

k

knot %(Z, Ty N Zy,) by %5, (F>1), we have
ri
®#(Tyyy) = ”(Tx)k[ll“i,k,tn

where » (7)) denotes the knot type of T;. Under the hypothesis of the sublemma we
can find a sequence Z;, y, DZ;, 4, >... of balls such thats; +1 contains a prime

ke Im

factor of L. Let fi be the product H %:m, Komr I +1» @0d let p be the common point of
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all balls Z;  ; . Then for each normal neighborhood B of p we see that i almost
divides #(B, B n C). This proves the sublemma.

Proof of (3.1). Let € = {Z;, ..., Z,} be an element of a defining sequence
of n.s.t. neighborhoods for C where r>n. By Lemma (3.3) almost all prime factors

of %(C) are divisors of x(Z;, Z;n C). Since H #(Z;, Z; n C) divides #(C) and r>n
i=1
the proof is finished.

4. Subarcs of locally homogeneous simple closed curves. In this section we define
an equivalence relation ~ for p.i. knot products (Definition (4.6)) and show that for
the corresponding classes [#] and positive real numbers ¢ powers [%]' can be defined
which are ~ -classes of p.i. knot product again (Definition (4.7)). If % satisfies the
hypothesis of Theorem 3 (i.e. if for each positive natural number »-there are only

finitely many prime knots whose exponents in % are equal to »), then we have

@ [ = [
where products of classes are defined by multiplication of representants. Later we
show how

(4.2) each subarc L of a locally homogeneous simple closed curve C in S* which
pierces a disk determines a ~ -class [#1(L) of p.i. knot products, where this class
depends only on the embedding of L in S i.e. on the topological type of the pair (S°, L)
in which both S® and L are oriented.

Then we assume that in #(C) = Hrc”(") infinitely many positive finite ex-
ponents appear and show that )

(4.3) for each subarc L of C there is exactly one positive real number g such
that [#](L) = [#(C)°.

If we denote by L, the subarc of C with end points p, ¢ which runs in positive
direction from p to g, then each pair p, ge C defines a real number ¢(p, q) by
1L,y = [#(C)I" P if p # g and g(p,p) = 0. Let o be an arbitrarily chosen
point on C. Then by ¢(p) = P a map ¢: C— S* is defined. We shall prove
that

4.4) o: C— S is a homeomorphism.

As an immediate consequence of these facts we get

4.5) If h: §®— 83 is an orientation preserving homeomorphism such that
h(C) = C respecting the orientation of C, then ohlcp™*: S*— S is a rotation of
the unit circle S, i.e. ohlcp™1(e*™) = e*™**P where B depends only on hlc.

DEFINITION (4.6). Two p.i. knot products % = []#°® and # = [[ =™ are
called equivalent if for each >0

(I-gem<e(@<+a)e(x)
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holds for almost all prime knots 7, and e(n) = co if and only if ¢'(n) = co. The
. class of % will be denoted by [#].

DEFINITION (A7) If % = [ x*™ and 1 is a positive real number, then [#]' is
defined by [#]' = [[z"®] where d(n) = oo if e(r) = o and d(x) is the largest
integer <e(7r) if e(m) is finite. ] R

This definition is independent of the representant &% of [#]. If % satisfies the
hypothesis of Theorem 3, then the equation (4.1) is an immediate consequence of
this definition.

To prove (4.2) we take a defining sequence €, €,, ... of n.s.t. neighborhoods
for C such that there are balls Z, 4, ..., Zy,, in € for which L = Z n C where
Z=2Z,40..UZ,. Then we define [#](L) = [#(Z, L)]. To make this definition
correct, we have to prove the following

Lemma (4.8). The class [%(Z, L)] depends only on the oriented arc L and not on C
or Z.

Proof. We consider two sequences €,, €,, ... and €}, €, ... with the properties
mentioned in the definition of [#](L), where €;= {Z, , ..., Z; .}, €= {Z 1, ... Z] 1},
Z=Z 40V Ziy Z'=Z11V.VZiy, Z0nC=2Z nC =L P01 each
index i we consider balls By, B, B, each of which is a union of balls in €; such
that one end point of L lies in IntB; and the other in IntB;", B u Bf U LcB;
and By, B; , B, are minimal with respect to these properties. If J is sufficiently large,
then B n B} =@ and B} = Cl(B,\(Bi U B)) is also a ball. We define the
following p.i. knot products

#(B;, B, 0 C) =[[n"™, %(B!, B}~ C)=[]a"™.
The proof of the following assertion is an easy consequence of the local homogeneity
of C: For each >0 there is an index i, such that for each i, and every = we have
& m<dm<+e)d(m .

Now [#(Z, L)] = [#(Z', L)] can easily be proved by the following fact which is a con- '

sequence of Lemma (3.2): For each i which is sufficiently large 5(BY, Bf n C)
almost divides %(Z, L), #(Z', L), and #(Z, L), %(Z', L) almost divide %(B;, B, n C).
This proves that [%](C) is independent of Z. That [#](C) does not depend on C
becomes clear by the fact that it is determined by the sequence %(B}, Bf n C)
= %(BY, Bf n L) (i = iy, fp+1,...).

Remark (4.9). If L is subdivided by a point p in the subarcs L, L,, then
#UL) = [#)(Ly) [#](Ly).

We assume now that in £(C) = [] 7°™ infinitely many prime knots with posi-
tive, finite exponents appear and denote these by =, n5, ...

Proof of (4.3). Let [#](L) = [[] z*™]. We have to prove that
iﬁm (g (m)e (”i)) =@

exists.
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Let 04, 03, ... and @3, 63, ... be subsequences of 7, 7, ... If H is any subarc
of C and [#(H) = [[[ "], then we denote the limits lim (i(c)/e(c)) and
- i+

lim (h (o'i)/e(o',)) — if they exist — by v(H) and v'(H) respectively. We note some
1=
properties of v(H), v'(H).

(4.10) O<SVv(H), V(H)<1.

(4.11).Xf H is divided by an interior point in two subarcs Hy, H, and if the
limits exist for two of the arcs H, Hy, H,, then they exist for the third, and we have
V(H) = v(H)+v(Ha), VEH) = V(H)+V(H,).

(4.12) If H' is the complementary arc of H in C, then the existence of v(H),
v'(H) implies the existence of v(H'), v'(H") and v(H)+v(H") = v(H)+V(H') = 1.

(4.13) If H and H, = H, <... are subarcs of C for which the limits exist and for
which H ist the closure of H; U H, U ..., then v(H)<v(H) (i = 1, 2, ...) implies
v(H)SV'(H).

(4.14) If (L, <v'(L,,), then there is a point 7 in IntL;,such that v(L,) 2v'(Ly)-
(As above, Ly, is the arc on C running in positive direction from p to g.)

The properties (4.10), (4.11), (4.12) are obvious, and (4.13).is a consequence
of the local homogeneity of C. (As in the proof of Lemma (4.8) [#](H) = [[] =*™],
[F(H) = [[] #"®], and h(xm) = suphy(n), where T] =", T] =" are obtained by
normal neighborhoods B, B; of points in C for which Bn C = H, B;n C = H;,
B,cB)

For the proof of (4.14) we need the following fact:

(4.15) Let L,,, L,, be subarcs of C. Then there is a point w € L,,\{u} or a point
ze L N\{x} such that [M](Luw) = [#](Ly,) in the first case or [Z](Ly) = [#](Ly.»)
in the second case.

This can be proved as follows: Call finite sequences u;, %5, ..., 4, in L,, and
Xi, Xz, s Xy in Ly, equivalent, if ug = u, %y = X, ey € Ly\{#}s Xiag € LopN{x;}
and [#](Lyu,,) = [#1Lyg,,) (=1,..,n—1). By the local homogeneity of C
there aré equivalent sequences for which x, = y or #, = v. Define w = u, in the
first case and z = x, in the second case. '

Now we consider L,, as in (4.14). For L, = Ly, Ly, = L,, we get by 4.15)
a point w € L, or a point z € L,. In the first case define r = w, and (4.14) is proved.
In the second case we have v(L,,)>V'(L,,) and we apply (4.15) once morefor Ly, = L,
L., =L, After a finite number of steps we get in this way a point w =r
in Ly,

Now we apply the properties (4.10)-(4.14) to prove (4.3). Let p, g be the end
points of the arc L in (4.3) such that L = L,,. Assume that lim (g (n)e(r)) does

not exist. Since 0<g(n,)/e(r;)<1 there are sequences oy, 05, ... and 61, 0%, ... sSuch
that v(L,,)<V'(L,y). We consider the union M of all subarcs L,, of L,, for which
v(L,) =V (L) holds. By (4.14) M is not empty, and by (4.14) and (4.11) M is open.
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But (4.13) implies that M is closed, and we have M = L, and therefore
v(L,p) =V (L,,) which is a contradiction.
The proof of (4.4) is easy and left to the reader.

5. Special defining sequences. In this section we introduce a special kind of
defining sequences of n.s.t. neighborhoods for simple closed curves in 53 and reduce
the proofs for Theorem 2 and the remaining part of Theorem 3 to a lemma about
the existence of such special defining sequences (Lemma (5.8)).

(5.1) Two defining sequences €, , €,, ... and €}, €, ... of n.s.t. neighborhoods
for simple closed curves C, C’ respectively will be called isomorphic, if the following
conditions are satisfied:

@) €= (Z.1 ., Zyy) and € = (Z 4, .., Z;,) consist of the same number
of cells (= 1,2,..)

(1) Z;,,=Z;, if and only if Z;,=Z],,. ,

© #(Zi,e» Zi O Tinn) = %(Zi 3> Ziw 0 Tisy), and the knots s (Ty), %(T)
represented by the tori Ty, T; are equal too.

The following lemma is trivial.

LemMA (5.2). If simple closed curves C, C’' have isomorphic defining sequences
of n.s.t. neighborhoods, then there is an orientation preserving homeomorphism
h: 83— S mapping C onto C' respecting the orientations of these curves.

For a p.i. knot product % = [ 7™ we denote by oy, 05, ... the sequence of
all prime knots for which e(s;) = co. This sequence may be empty, finite, or infinite.
If it is finite, we denote by o the product of all knots g;. If the sequence is empty, ¢ is
the trivial knot v. Now we assume that # satisfies the hypothesis of Theorem 3
concerning the exponents e(r) and define a sequence Ay, 4,, ... of finite knots as
follows: 4; is the product of all prime knots 7 for which e(r) = i and A, = A{-o
if ¢ is defined or 4; = A; -0, ... 6; if we have an infinite sequence oy, 05, ... Then
we have &% = [ Ai.

i=1

Now let C be a simple closed curve in $* which has a defining sequence of n.s.t.
neighborhoods and which represents a p.i. knot product % = [] 7™ satisfying the
hypothesis of Theorem 3. A special defining sequence for C is a defining sequence
€,, €, ... of n.s.t. neighborhoods which satisfies the following conditions where
C={Zy1srZin}, T1=2Z; ;U ... UZ;,, (for technical reasons we use indices
3,4, ... instead of 1,2, ...).

@ ry=4-5..-(G+D.

(if) Z;_;,; contains Z;,; for (k—1)(i+1)<I<k(i+1).

(i) T represents the knot x(Ty) = A,-13-13, and #(Z; , Z; 0 Tipy) s
Asyq if r;— g divides k and the trivial knot v if r;; does not divide k (i = 3,4, ...,
where r, = 1). :

(iv) If W denotes the union of all Z, ; for which (k—1)r,_,<I<kr,_;, then

lim max diamW,; = 0.
ivo 1SkSi+1

icm

Homogeneously wild curves and infinite knot products N 105

As a simple consequence of these conditions we have » (7)) = 11~).§-...-lf
and % (Wi,p, Wi N Tigy) = A4y Since for special defining sequences the numberts r;
are fixed and the knots %(Zy, Z;; 0 Tivq) are determined by %, we have the
following lemma:

Lemwma (5.3). Two special defining sequences for C, C’ respectively corresponding
to the same p.i. knot product are isomorphic.

COROLLARY (5.4). If C, C' have special defining sequences and if the corresponding
p.i. knot products are equal, then there is an orientation preserving homeomorphism
h: 83— §3 such that h(C) = C' respecting the orientations of these curves.

LemMa (5.5). If a p.i. knot product & satisfies the hypothesis of Theorem 3 con-
cerning the exponents, then there is a simple closed curve Cin S 3 which represents % and
has a special defining sequence.

This can easily be proved by constructing a sequence €, €y, ... which satisfies
()~(v). (In order to obtain (iv) make all balls Z; ; so small that diamZ; ,<(i+1)!"*
and that there is a polygonal arc in Z;; of length <(i+ 1)!™! which connects
Z; m1 O Ziy With Z; 0 Z, 141.) The curve C is obtained as the intersection of all
the corresponding solid tori T;.

LEMMA (5.6). Each simple closed curve in S 3 which has a special defining sequence
is homogeneously embedded. .

Proof. Let €, €, ... be a special defining sequence for C (€; = {Zi1s s Zini}s
Ty=T1 V. VZir, Wip=UZ,, where (k—1r,_<I<kr,_y) and let p be
any point on €. We prove the lemma by constructing an orientation preserving
homeomorphism k: S*— S such that A(C) = C respecting the orientation of C
and h(p) = p, where p, is the point in which C pierces Zs,,, O Z5,,. We denote
by k(i) the index for which pe Wi iy \Wixn+1 (second indices modulo i+1).
For each index i = 3,4, ... we define an orientation preserving homeomorphism
hy: BAT; — BAT; for which there is an integer m such that

.7 B{(Zyx O BATY) = Zi gm0 BAT, .
The number m is determined by the condition
h{W ey " BAT) = Wi1 0 BdT;.

Since the balls W, ; become smaller and smaller as i — © all these homeomorphisms

h, define a uniformly continuous homeomorphism #': B— B where B = U BdT;.
i=3

By the uniform continuity A" can be extended to a continuous mapping

W' BuC—BuC, and we see by (5.7) that A" is one-to-one and therefore

a homeomorphism. Now we mention that by the definition of special defining se-

quences we have %(W, y, Wix 0 Tivy) = sy Therefore we can define for each
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index i = 3,4, ... a homeomorphism g;: T\IntT;,, — T\Int7;,, which extends
byt BAT;— BAT; and for which there are integers m', m’’ such that

G, NIt T ) = Wy NIt Ty g
98Ziv 1,0 BAT 1) = Ziy g pame O BATy

Now we modify g; by a shift near BAT,,, to get a homeomorphism g;: T\Int7;,,
—» I\IntT,; which coincides on BdT; with /; and on BdT,,, with %, ,. These
homeomorphisms can be chosen so that for i— o we have g; — g;. Then by
=g; on Tn\IntT,.q, h=Hh"on C a homeomorphism h: Ty — T is defined

which can be extended over S® and which satisfies h(p) = p,.

Lemma (5.8). Each locally homogeneously embedded simple closed curve in $?
has a special defining sequence.

This lemma will be proved in the next section.

It is clear that Lemma (5.5) and Lemma (5.6) give the remaining part of
Theorem 3. Theorem 2 is ‘obtained by Corollary (5.4) and Lemma (5.8).

6. Proof of Lemma (5.8). We start with two simple remarks.

- (6.1) Let T be a tunnel in a ball Z where %(Z, T) is the product %, %, of two
knots. Then there is a tunnel 7” in Z with the same entrance and exit as T such
that T<T? and %(Z, T’y = %, (see Fig. 2).

Fig. 2

(6.2) Let Z, Z', Z" be oriented balls with tunnels T, T", T"* respectively such
that Z'cZ, Z' "' BdZ = D is a disk, Z”" N Z = BdZ" A BdZ = D, T"=TnZ,
T"nZ=T"nBdZ<IntD. Then A =D\Int(DAT) is an annulus. Let
% =[] be a (finite) knot. We assume that (Z,T) =T]a'™, %z, 1T
= [[a"®, 22", T") = [In"'®, and —f'(m<em)~fn)< (%) for all 7. Then
there is an annulus 4’ with BdA' = Bd4 and Int4’<Int(Z' U ZNT' v T
such that if Z* denotes the ball bounded by (BdZ\A)u A’ we have
#(Z* T) = » (see Fig. 3.)
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Now we prove Lemma (5.8). Let C be a locally homogeneous simple closed
curve in S3. By (3.1) and (5.5) we can find a special defining sequence 6, G, ...
fora simple closed curve C* such that %(C*) = #(C). As usual the balls in &} are
denoted by Z;':k, and T} are the corresponding toral neighborhoods of C*. Using

Fig. 3
w(Z*%, T) = #(Z, TY(Z', T) '%(Z", T

a homeomorphism ¢: C— S* which is defined by 4.4) if in #C) i'ni‘initf%y
many prime knots with positive, finite exponent appear and which is arbitrary in
the other case we define subarcs L; , of C by

Ly = {07 1&™); (k=Dr;<i<klr}

(j=3,4,.3k=12,...1 where r; = 4-5-...-(i+ 1)is the’nuinber of.balls in (E_,”-‘).
By the definition of ¢ we have [Z1(L;,0 = RO = [FI(Z7x 0 CF). - )

Now it is not difficult to find a defining sequence &3, €, ... of n.s.t. neighbor-
hoods for C such that .

(1) € consists of the same number r; of balls Z?‘ Ls e Z?_  as «©}F, and’
7<=z, if and only if ZheZ5

@ N C=L (=3,4,..;k=1,..,r) .

After applying (6.1) we may assume that €3, €%, ... has the following additional
properties:

() x(@0) = %(T}F) (i =3,4,..) where T} = Z{; U .. U 72,

(4) If 7 is a prime knot which has in #(C) the expopent oo; thet; the e};ponent
of = in M(ng,Z?,,‘n TS ;) and the exponent of 7= in #(Zi ks Zix N Tihy) are

equal.
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Possibly (6.1) must be applied infinitely often to obtain (3) and (4), and a little
bit care is necessary in order that after these modifications we have still diamZz) ,— 0,
if i— o0,

To get a special defining sequence €5, €, ... for C we shall perform an infinite
series of modifications on the sequence €3, €3, ... In this connection we use the
following notation: Let €%, G4, ... be a defining sequence of n.s.t. neighborhoods
(where = 0,1, 2, ... or u = *). Then, if G = {Zi1, .., Z1,}, we denote the balls
in €U CYu.. by Z}, 25, ... where Z! = Z34, Zi =255, ., 25 = Z4 1y ey
ice. for Zjy = Zp, Z}; = Z% we have m<n if and only if i<j ori=j and
k<l

The sequence which we get after v modifications will be denoted by €3, €, ...
It will have in addition to (1)-(4) the following properties:

(5) If n<, then %(Z), Zy N T3 = w(Z}, Z¥ A T}) for all j>i where i is deter-
mined by Z; = Z}, and Z} = Z},. :

(6) If n<v, then Z, = Z7.
DT =T (i=3,4,.;0=1,2,.).
() ZinBAT = Z) A BATY (1=3,4,.50=1,2, .;n= 1,2,..).

By (1), (2), (6), and (7) we see that the sequence @, €,,... where

C=1{Z},, ... 2.}

for large v is a defining sequence of n.s.t. neighborhoods for C. That the diameters
of the balls Z; ; tend to zero for J— oo is implied by (6) and (7) and the fact that
Z7 . A T2 is near Zix 0 C = L, for large m. Then by (1) €5, €,, ... satisfies con-
ditions (i) and (ii) for special defining sequences (see Section 5), and (5) implies (iii).
Property (iv) can be obtained by the remark that W;,x 0 C is the union of all L;, for
which (k—1)r;.; <I<kr;_, and that this union is mapped by the homeomorphism
¢: C— S* of (4.4) onto an subarc of S'* with length 2m/(i -+ 1). Therefore, €, €, ...
is a special defining sequence.

Now we describe the construction which leads from the sequence €471, €571, ...
which is assumed to satisfy (- to €3, 65, ... (v=1,2, ...). We consider the ball
Z,7'= 77! and the annuli A= DIct A (TINIntT?, ,) where Dit=zZi Nzt
(j=1,i+1,..).By(3), (5),and (7) we can apply (6.2) in order to obtain new annuli A,’
(j=1,i+1,..) which have the following properties:

(2) Bd4} = Bdd; = 4} n (BAZ-\Int ).

(b) IntA;cIntTINT?, ,.

© %(Z;nT},Z, T = RN T Z5 N Thy) (=1, i+1,..) where
Zj denotes the ball which is bounded by (BAZ7,'\4)) U 4.

(@) 4;cIntZ~*provided n<vand A;=IntZy™t A) = 4, if there is a ball zZy
with n<v such that 4,cBdZ~1.

icm°®
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. - Lo -1 b
If j>ilet Z37', Z5ks be tlfe two ba-lls in €9 which intersect D{;*. Then by

the definition of the arcs L, , in the triplet
7, = #(CLZIRINZ5L Y, CUZER?

%, = i(Z;,ka Z:h nCH,

s = 77(251 uZ'{;il, (Zx?.;1 Y 23711) n C) »
] = RO, [#] = [H(ON%, [#]=[#(C)]” holds with 91<ez<936- 2Th15 '
im]p'lies that %, almost divides %, and %, almost divides %s. Therefore, by (6.2) we

can choose 4, in Z}’_ll V] Z;’lil provided m is sufficiently large. This remark allows
’ ! . ’
to assume tgat — for large m — the annuli A4, are mear 4, and that

N C),

© . : Vo 7Y
(BAZI3INDIRY) U QA:" is a 2-sphere which bounds a ball Z, = Z; ;.

If we replace in (Sl}’ ~1theball 2871 = Zi ! by z?, thel(i)l it may happen bth;.t chlef?
new balls do not fit together to a cell decom‘po‘smon ?f T;, and for nt;v baus Z':’-—l
may intersect Z, rather wildly. But by (d)‘ it is possible tq replace the (; s@,,
(n>v) by new balls Z; such that we obtain the new defining sequence @3, Gy, ...

-1 v
Zy'=Zn

R

Zx
%ﬂ/

22 i -
N7 T+ v
W////////MII”%
. Z 77 I AL A A 7
,:‘ ,////Aé’////////”"”/ 7
Fig. 4
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which has all properties (1)-(8) (see Fig. 4). Indeed Z) # Z»~! will happen only for
balls Z;™* which lie in the union of Z}7* and the component of (I? N Z& 'W\Zi 72!

which intersects Zy7], where Z5"! is the ball of €%Z; which contains Z731.

7. Proof of Theorem 4. The second part of this theorem is an immediate con-
sequence (4.5) and (5.6). To prove the first part we proceed as in [2]. There the
following lemma is proved:

LemMa (7.1). Let C be a simple closed curve in S® with the following property:
If a subarc L of C and a positive number & are given, then there is a homeomorphism
[ S*— 8% which is the identity outside the e-neighborhood of L such that f(C)y==cC
and d( 1 (p), q)<& where p, g are the end points of L. Then each orientation preserving
homeomorphism hy: C— C can be extended to an orientation preserving homeo-
morphism h: 83— §3. :

Consider a locally homogeneously embedded simple closed curve C in S? which
pierces a disk and for which in #(C) = H 7™ only finitely many prime knots =
have a positive finite exponent e(r). Then we can find a special defining sequence
€;,C,,.. for C and an index % such that (f €, ={Z,,,..,Z;,} and
Ty =2,V ..UZ,) the “finite part” [] 2™ of #(C) is a divisor of »(T}) where

.d(ﬂ:) = {g(n)

Let L be a subarc of C with end points p, g and let U be a neighborhood of L in S3.
We choose an arc L' in C n U with end points p’, g such that LeL’ and p e IntL".
Then we can select balls Z, (n = ..., -2, —1,0,1,2,..) in € U €, U ... such
that

(1) Z,cU (—co<n<o0).
@ Z,nZ,,, =BdZ, nBdZ,,; = D, is a disk.
BV Z,nZ,=0 if jn—m|>2

if 0<e(nr)< 0,
if e(n) = 0.

@ U Z,nC=1IntL.

n=-—co

(5) imsupZ, = p’, limsupZ, = q.

n—+—c n=-cow

Looking at the definition of the special defining sequences and at the choice
of k we can prove by the methods of [2] that for each ' there is a homeomorphism
f;|: Zn—"zn-i-l such that ./;I(le al C) = Zn+1 n C’ .f;:(Dn—l) = Dna -f;l(D") = Dnv)-li
and fi(x) = f,4,(x) for xe D,. These homeomorphisms J» can be extended to
a homeomorphism f: $* — S? which is the identity on S°\U and on C\L'. Then
for a given >0 we have d(f(p), g)<e provided / is sufficiently large. Since
fYC) = C and f! = id on S3\U, Lemma (7.1) proves the first part of Theorem 4,
(For more details of the proof in this section see [2].)
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