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The Axiom of Determinateness and canonical measures

by

James M. Henle * (Northampton, Mass.)

Abstract. In the mid-1960’s R. M. Solovay proved that under the Axiom of Determinatenesss
N: was a measurable cardinal. The method involved a map from 2% to §; and an infinite game using
this map.

In Section 1, this method is generalized to show under AD that every cardinal a<§ of un-
«countable cofinality has an ¥,-additive, uniform ultrafilter, where 6 is the least cardinal onto which
the continuum cannot be mapped. An ultrafilter formed in this way depends on the choice of
a map from 2% to g, but by defining a prewellordering on such maps, a canonical ultrafilter is found. -

In Section 2, these results are used to show that either 8 is regular, or else it carries an Ny -ad-
ditive, uniform ultrafilter,

In Section 3, we show that the length of the prewellordering in Section 1 has length at least §;.

The first major set-theoretic consequence of the Axiom of Determinateness
was that proved by Solovay, that &, is a measurable cardinal [12]. His technique
consisted of playing the following game: given 4 <k,, players I and II each play
integers forming real numbers r and 5. These are broken up into w-many reals each,
{ry}n<w 30d {S,}p<e, €ach coding an ordinal less than &;. Player I wins iff the su-
premum of all these ordinals lies in 4. Solovay defined 4 to be measure one if player I
bhad a strategy for the associated game. Solovay showed that this was an &, -additive,
normal measure. In fact, he showed more: that every measurc one set contained
a closed, unbounded subset. Much of the power of this method is derived from the
coding which has certain convenient definability properties.

In Section 1, we will extend Solovay’s method to produce measures on larger
card inals. Since in general we will know next to nothing about our coding maps,
we will have less success. Instead of showing cardinals measurable, for example, we
will only be able to show their measures to be %, -additive. Wewill, however, be able
to si ngle out “canonical” measures on these cardinals. Looking at the situation‘under
the st ronger assumption, ADyg, we will see that given a map from the con.tmuufn
to a cardinal a, we get a measure y, on «. With ADg, this measure is unique 1

* Most of the results in this paper first.appeared in the author’s Doctoral thesis, [S].
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that it does not depend on the choice of the map f. Under just AD, however,
the corresponding measure, 4/ does depend on f._ In order to geta canonical
measure, we will define a prewellordering on such maps. Then taking f from the
least equivalence class, uf will be the canonical measure.

In Section 2, the previous results will be applied to the cardinal 6. The theorem
here will be that under AD, either 6 is regular, or else it possesses an , -additive,
uniform measure. )

In Section 3, we consider the prewellordering of Section 1 and derive a few
results concerning its length. In the case of »,, we will show that the length is at
least ;.

§ 0. Definitions and facts. The Axiom of Determinateness states that winning
strategies exist for certain kinds of infinite two-person games.

Given 4=“2, the game G, is defined by: Two players, I and II alternate playing
©0’s and 1’s, creating an infinite sequence, r. I wins G, if r e 4.

A strategy is a function from the set of finite sequences of 0’s and 1’s to {0, 1}.
A winning strategy F for player I (II) is one which always guarantees a win for
player I (I) whenever he uses it to determine his every move by applying it to his
opponent’s previous moves. A game is determined if one of the two players has
a4 winning strategy.

The Aziom of Determinateness (AD) states that for all 452, G '+ is determined.
. AD has a rich history in modern set theory. In addition to the results mentioned
above, AD has many detailed consequences about the 8,, and higher cardinals.
Early theorems were directed at analysis and include the startling fact that all sets
of reals are Lebesgue-measurable.

Working with AD is complicated by its inconsistency with the full Axiom of
Choice, but some limited choice is available. AD in fact implies countable -choice
for sets of reals. Also, as far as is known, AD is not inconsistent with DC.
Throughout this paper, we will assume in addition to AD, DC.

Reference for the first definitions and results concerning the Axiom of Deter-
‘minateness include: [4], [6], [10] and [11]. For later results see [8], [9] and [12].

ADy, a more powerful version of AD involves games in which players play real
numbers:

DerNiTiON. For any A<®(“2) let G, be the game defined by:

‘Two players, I and II alternate playing elements of “2, creating a sequence S.

I wins G, iff the sequence is in A, ADp is the assertion that for all 4<%("2),

G, is determined. :

Clearly, ADy implies AD. That ADy is strictly stronger than AD ‘was proved
by A. Blass [1]. .

For coding purposes, we will require - the following ' notation: For neo
let p, be the nth prime number. If re ®2 is the sequence: ny,n,,n,, .. and

k .
ke @, thgn rtis the sequence: Tlp s Tpds Mp2, oo
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§ 1. Canonical measures,

DEFINITION. @ is defined to be the least ordinal number onto which ®2 cannot
be mapped. ,

Under the assumption of the Axiom of Determinateness, § has been shown to
be very large. Moschovakis and Friedman [9] have proved that if <8, then a* <8
and so 0 is a limit cardinal. In addition, it is easy to se¢ that cf (§)> o, since if we can
map “2 onto

Uy <ty <dy<..,
then DC or countable choice would enable us to choose such maps and then glue

them together to compose a map of “2 onto | ,. Limitation of choice prevents us
<o

from proving as well that 0 is regular, although some partial results have been
obtained :

(1) 0>x,, (H. Friedman),

(2) AD + Collection F 0 is regular. (Moschovakis) (Collection is a choice-like
axiom),

(3) 0 is regular in L[R] (Solovay). )

The starting point of Solovay’s theorem that &, is measurable is a map from "2
to ;. Given any a<6, however, we have a map f: “2 — «, and from this, we can
derive a measure on o:

THEOREM 1.1. ZF+ADyg F “for all <8, of (2)>w, « has an 8, -additive measure,
1y such that for all f<a, p(f)=0". ‘

Proof Let f: ®2 -« be any onto map. For any 4 <a, we play the following
game G4: '
" player I plays sequences ry ry rs
while player II plays sequences. sy Sa
I wins 6% iff Uf(r)v Uf)ed.

<o

n<ow
In the course of this section, we will introduce many games of this sort. It
should be clear that they are all of the kind covered in the definitions of AD and ADg.

For example, if we let BS®(“2) be defined by:
B = {roryrars .1 Uf(r) ed}
n<o
then the game just described in Gp. By ADy, there exists a winni.ng strategy f?r one
of the two players, and so we may define g, on « by: p,(A) = 1iff II has a winning

for G4. . .
strat(ﬁztet:flat ff Us(A) = 0, then U(A°) = 1, for if F is a winning strategy forXin G4,
(]

) R
then the following is a winning strategy for IIin Gi:
while I plays: ry rz Is
I plays: F@) F(r) - Fly,ra)
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Conversely, if ug(d) = 1, then p(4°) = 0, for if F is a winning strategy for Ik
for G, then the following is a winning strategy for I for Ge:

Iplays: ¢t F(sy)  Flsy, )

while II plays.: 54 Sy S3

— where ¢ is some real number such that f(r) = 0.

CLAIM. i, is 8, -additive.

Proof of the claim. Suppose {4,},<o, is & collection of measure 1 sets. Using

countable choice, let F, be a strategy for G,{n. We will weld these strategies together
to form a strategy for G/ 4.
n<ow

Imagine w-many players playing reals. Player 0 is the actual player I, while
the other players n for n>0 are all parts of player II. Each player n uses strategy
F,_, against all the rest of the players, so that in the end, the supremum of all the
plays will be in each 4,.. Specifically, if I plays ry, 75, 75, ..., then Il plays sy, 85, 53, ...,
where )

ryz  if 7 is even,
Sy = A Fyoy(81, s 8),  Hn=pp,
0, - otherwise.
‘We first have:

"&Jf(i'n) Unwa(sn = Ufs).

But we also have:

US(s) e 4y

n<o

for all k,
since the sequence: Syt 5o Sa s e is a correct play of strategy F) against
S1s 83, . Thus, this describes a strategy for II in G7, Ane

n<o

To complete the proof of this theorem, let B<ua, and let r€2? be such that
S (r)>p. Then the strategy F which is constantly equal to r is a winning strategy
for I in G4, hence g,(B) = 0. Note that if « is regular, this then implies that u, is
uniform. B

LeMMA 1.2. The measures p, defined in the previous theorem do not depend on the
choice of a function f: ®2 - o,

Proof. Let f: “2— a and g: “2 — a be onto maps, and let p, and u’, be the
measures on « defined as in Theorem 1.1 from f and g respectively. Suppose that
Ha(4) = 1, for some 4 =a. We will show that uj(4) = 1, proving the lemma. Consider
two games: In Gy, I and II each play only a single real number:

It r
1I: s

- and I wins iff  (s) = g(r). Clearly, I cannot have a winning strategy, and so II must.

icm
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Let F, be a winning strategy for II. Similarly, we define G, in almost the same way,
but so.that II wins iff g(s) = f(r). Again, Il must have the winning strategy, and
let F, be such a strategy. Now, let F be a winning strategy for II in G%. Then the
winning strategy for Il in GY is described by:

while I plays: 7y ry ry
Fz(F(F1<’1))) FZ(F(Fl(r1)9 F1("2))) N |

We will now attempt to follow the same path under the weaker assumption
of AD. The analog of Theorem 1.1 will not be difficult. The analog of Lemma 1.2,
however is another story. It is, in fact, false, and circumventing it will not be easy.
Since the proofs of many theorems here will be technical, we will often preface them
with an outline of the main ideas. In general, the principles can be stated simply,
and the details which show combinatorially that the appropriate coding can be
carried out do not contribute to understanding the proof.

THEOREM 1.3. ZF+ AD V “For all a<8, cf(x)>w, o has a 8-additive measure p,
such that for all f<a, pg(B) = 0”. ‘

Proof. Given ¢<#, let 2 “2 - «, such that f""“2 is unbounded in o and such:
that .f(0,0,0,0,0,..) is least in f“2. For any d<w, we define the following:
game Gy 4:

II plays:

I plays: ny ny ny
II plays: my my my

— where n;, m; = 0 or 1, for all . At the conclusion of the game, I has formed:
the real » while II has formed s. Il wins Gy, iff

UfMouls6ed.

Note that for both players, the kth move is irrelevant for k not a prime power. As
before, this is a game of the sort covered in the definition of AD, and hence one
player has a winning strategy. We define a measure uf on a by: pl(4) = 1iff M has
a winning strategy for G, 4.

As in the proof of Theorem 1.1, I has a winning strategy for Gy, 4 iff 1T has:
a winning strategy for G, 4c. Suppose, for example, F is a winning stfategy for II
in Gy 4c. Mimicing the proof from ADg, I plays “0” at all places which fo@ the
first real r* of his play, that is, if his plays are ng, 713, M2, «.-» then n, is automat_xcally 0
if k is a power of 2. For the rest of his moves, he plays F against II, i.e, I’s
strategy F* is:

F(ngy o M), 1 =p: ifk=pb,,, a>1,
F(mg, e 1) = {0 otherwise.

Playing in this manner, I wins Gy,4- The other way is easier: if I has a winning
strategy F for Gy 4, then the following is a strategy for II for

G4 FH(g, ey ) = F(#ys oy mamy) and F*() = F(@).
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CLAIM. pf is 8, -additive.

Proof of the claim. Let {4,},<, be a collection of measure one sets and
1et F, be a winning strategy for I for Gy 4, for n<o. Fundamentally, our proof will
be the same as the one with ADj, except that we must code quite a bit more carefully.
Essentially, II pretends to be w-many players, each player » using F, against everyone
.else. These are the combinatorial details:

Against I’s plays ny, 1y, 13, ... 11 plays my, m,, ... where

nl,l=p:s 1fk=pg")
nmy = n—](mlx-"aml)v 1‘—'17.» ifk:p;‘::' n>0,
0, otherwise. .

Note that since k is always greater than /, this strategy is well-defined.
Let r and s be the sequences created by I and II respectively. Since r* = 5@
for all a, it follows as before that

UremoUfeD =Ure".

Furthermore, suppose for some n, the strategy F, wete used by some player against s to
produce £, so

UFGHuUrfeded,.
But
t*= s where k =p%,, so Uf(Ded,.

Thus we have described a winning strategy for player II in G, q 4,.

To complete the proof of the theorem, suppose f<c. Let &2 l;e such that
_f()>B, then for I to win G, he merely plays a sequence s such that s% = ¢ for
all k. B

As we warned, the measures g are not independent of f

TaeoreM 1.4 (AD). For any a<0, there exist functions f, g: “2 — « such that
f"®2 and g"'®2 are unbounded in «, such that uh # pl.

Proof. Let h = “2 — o be any onto map. Let h* be the map: A*(r) = h(r*)
where r* is the subsequence of r obtained as follows:

r*(0) = the first digit following the Ist “1” in r, and if r*(n) = r(m) has been
-defined, ‘

r*(n+1) = the first digit following the 1st “1” following r(m) in r. If r* is a finite
sequence, let A*(r) = 0.

In the strategy below, I will want to copy some of I's moves. I will produce
‘these moves too slowly for II to copy, but the introduction of A* allows II to delay.

We now define:

f=Unr¢H+1 and g = U1 +o.
»
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Let A = {all limit ordinals <«}. Clearly pi(4) = 1, since for all r, g (r) is a limit
ordinal. On the other hand, pf(d) = 0 as follows: II can win G, ¢ by playing the
sequence r to I's s so that each r" is identical, and the subsequences {(r*)""}, include
all the subsequences {(s%)**}, ;. This is done quite mechanically — the use of A*
allows II to delay if he gets ahead of I. The result is that

k;Jf YU UL = U@ +1eda. B

‘We wish now to construct for each <8 a “canonical” measure. In our present
situation, for each a<0, we have many different measures p. We will proceed by
defining an equivalence relation on functions f: “2 — «, unbounded and an ordering
on the equivalence classes, and prove:

(1) that the ordering is a well-ordering, and

(2) that if £ and g are equivalent, then w, = pj.

This will yield us our canonical measures, for we then can choose f from the least
equivalence class, and the measure u?, will be independent of that choice.

DerNiTIoN. For any f, g: ®2 — {the ordinals}, the game G, is defined as
follows: I plays the sequence r while II plays integers forming a real 5. 1L wins ‘G JRiid

Urem<Ug6n.

The game G, is defined similarly so that II wins iff
UrM<Ug6D.
n n

DEFINITION. Given f,g: “2 — {the ordinals}, we define
f<g iff II has a winning strategy for Gy, and

f<g iff 1T has a winning strategy for e/

LevvA 1.5. For all f,g: ®2 ~ {the ordinals},

f<g i 94f
Proof. Suppose f<g. Let F be a winning strategy for T for Gy As in earlier
proofs, player I can fashion a winning strategy for G, ; from F by playing a re.a.l rsuch
that r! is entirely arbitrary, and so that the rest of his plays are according to F
' .

against IL . ) )
Conversely, if g £/, a winning strategy for I for Gy, is easily converted into

a winning strategy for II for G, B
DernitioN. For any f,g: 92 — {the ordinals}, f~g iff f>¢ and g=r
LEMMA 1.6. The relations >, > and ~ are all transitive. '
Proof. In view of Lemma 1.5, it is sufficient to show the transitivity of <.
Suppose f<g<h. Let F, G be winning strategies for II for Gy,g and G respectively.
11 can then win by comparing these strategies. Essentially, II plays the strategy G
2 — Fundamenta Mathematicae CXIV/3
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against an imaginary player who is using F against 1. If I plays ny, n,, ..., then on
his kth move, II plays G(F(ny), F(rtys 1), oo, Fny, ..oy 1)) B

Levma 1.7 (DC). The relation > is a well-ordering on the equivalence classes
of ~.

Proof. The Axiom of Determinateness guarantees that < is a total ordering,
‘We need only prove well-foundedness. Suppose < is not well-founded. Let us use DC
to pick a descending chain of functions:

fo>f1>fa>f>.

Using choice again, but only countable choice, choose for each k<w, a winning
strategy F for I for G,, 1, ,,. Using these strategies, we set w-many players to work
manufacturing infinitely many reals {ri},<, as follows:

re is any sequence,

4 1S the result of applying strategy Fy to rx.

It follows that

USolre)> U f1(rD >

an infinite descending chain of ordinals, an impossibility, therefore > is well-
founded. W

Lemma 1.8. If f, g: “2 — a, of (@) > o, are both onto maps and f~g, then pf = 8.

Proof. Let X Sa be any set such that u/(X) = 1. By symmetry, it will be enough
to show that uf(X) = 1. Let F be a winning strategy for II for Gy, and let F,
and F, be winning strategies respectively for II for G 1.9 and G, .. We will construct
a winning strategy for II for G,y as follows:

11 pretends there are two auxiliary players 4 and B. Let the sequences formed
by 1, 4, B, and II be respectively, r, s, ¢ and u, with

ot=L39(r"), B=UsE), v=Uf@), and §=Ug®).

In I_I’s imagination, A uses strategy F, against both I and 11, so that pzo, 8; Buses F
against 4 so that f Uy € X; and II uses F, against boti 4 and B so that 6> B, y.
The result is.that a U € X, since

R 7 ﬂuv>(ocu5)uy=uu5>uu(ﬁuy)=‘3uy‘

Soaud=pPFuyeX and we have a winning strategy for G, x
To calculate 4’s moves, 1T applies the strategy F, to a sequ::nce v composed so
that o** = r* and **** = 4°. To calculate B’s moves, 1T applies F to s and to cal-
culate his own moves, II applies F; to the sequence w composed so that w?® = s*
and WA+t =17t is routine to check that II’s kth move can be computed in this way
knowing only the first & moves of I. This completes the proof. M
~ This work is. summarized by:
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TrEOREM 1.9. For each a<0, of (0)>w, there is a canonically chosen measure y,
on o with the property that if f<a, u,(B)<O0.

Proof. By the previous lemma, let f: ®2 — « be a member of the least equiv-
alence class, and let g, = pf. W

§ 2. A consequence for 0. As we have seen, under certain additional assump-
tions, 0 is regular. It seems possible that @ is provably regular under AD alone, but
that is yet to be proved. The following theorem can be thought of as evidence in this
direction.

TueoREM 2.1. ZF+AD F “Either § is regular or else there is an x,-additive,
uniform (*) measure on 0”.

We first require:

Lemma 2.2. The set of regular cardinals below 8 is unbounded.

This lemma was probably proved by Moschovakis. In any event, a stronger
result, that the set of measurable cardinals less than # is unbounded, is mentioned in
a paper of Martin [8], as having been noticed by Moschovakis. )

Proof of Theorem 2.1. For each f<6, cf(f)>o let pp be as defined in
Theorem 1.9. If cf(f) = a<0, then let f: a — § be a cofinal sequence of regular
cardinals (). We can define a non-uniform measure on # from p, by:

for all A<, p,(4) = plf714).

It is routine to check that s is #;-additive. g is not uniform, however, since
py(f"0) = 1. To get a uniform measure, we “glue together” measures on regular
cardinals below 6. We define:

for all A0,  pa(d) = pa{Bl ug(d 0 f) = 1}.

Again, it is easy to check that this measure is %, -additive, for suppose {4p}n<a
is a collection of subsets of @ such that py(d,) = 1 for all n, and let 4 = () 4,.

n<o
For cach n, let B, = {B| uyd, 0 B) = 1}. By the .additivity of py, py(B) = i,
where B = () B,. Further, by the additivity of p,, if fe B, then pd 0 p =1,
n<w )

hence py(d4) = 1. _ )

Fin:ﬂly, a is uniform, that is, if pa(d) =1, then 4 7 6. To see this, let f ;o}e
any cardinal less than 0. Let p>5 be any element of f o n{Bl pd0 = 5.
Since pp(d N f) =1, 40 B is unbounded in B and since f'is regular, Anp=p>0,

thus A>5 for all 5<fso A=0. W . N
it ial in the above proof that the measures g nical,
Note that it was crucial in the al P e o AD I i

as there is no way otherwise we can choose a measure [
consistent even with AC,,.

®) u is uniform on 6 iff u(A) = 14 =6 foral ASE.
(® Note that a>w. .
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§ 3. The length of the prewellorderings. A prewellordering of a set 4 is a map
of 4 into a well-ordered set. The length of the prewellordering is the order-type of
the range of this map, for example, a map f'from “2 onto ¢ is a prewellordering of 2 of
length . In proving Theorem 1.9, we essentially defined a prewellordering on the
set of these prewellorderings, and a very interesting problem is to find its Iength.

Let us designate by &, the set of all the equivalence classes of prewellorderings
of 2% of length B, and let T, denote its order-type under our well-ordering. By
Theorem 1.4, for all f<6, Tp>2.

TueoreM 3.1. For all f<6, cf(B)>w, Tp>p.

Proof. We use the technique introduced in the proof of 1.4. Given h: “2 - g,
unbounded, let A* be as defined in that proof, and for all u<p, let

g.r) = U R*(¢")+a  for all re®2.
n

CLaM. a<y implies g,<g,.

Proof of the claim. The following is a strategy for playerIlin the game G,
While I plays the sequence r, II plays s so that each 5" is identical and {(s”)""]r

includes {(+*)*"},;. Thus

igmg,(ri) 'Sny 9:5") = 9.(°)<g,(s°) = U g,(s) . W

For each a<f and f: “2 — « g, is n,-additive, so the ultrapower a®/uf is well-
founded.

THEOREM 3.2. For all B<8, cf(B)>w and h: “2 — B, Ty is greater than or equal
to the order-type of the ultrapower ﬂ’/y},‘.

Proof. Let 4* be as before, and for any p B, we define
g,(r) =p(U k™) for all re2.

Crav. If p<qmody then g,<g,, and if p~qmod g then g,~g,.

Proof of theclaim. = i
S Febc aim S'upposc p<q? Let4 = {a] p(@) <*q(oc)}. 'Slnce ua(A) = 1,

4 . ¢ a winning strategy for IT in the game Gy ,. Using F, we define
a strategy for II for Gy,g, as follows:

’Whl’l"e. I'plays the sequence r, II plays s in such a way that each s" is identical
and {(s"? } n%cludes representatives of all the sequences played by both players of
a game in wanch one player uses the strategy F while the other player plays o/l the
sequences (r) for all @ and b. (Again, this is the same trick used in 1.4).

The result is that for any a, n,

Oy = &J h*((r")b)s B.=U h*((s")"‘) ced
hence g,(r") = p(a,)<p(B,)<q(B,). Since the {B,} are identical,
L{ 9,0 )<P (Bo)<q(Bo) = U g,(s"

§0 gp<g,. That p~gq implies g,~g, is provéd similarly. W .

The Axiom of Determi and

ical measures 193

In the case of #;, Theorem 3.2 has interesting consequences. Kunen has shown
that for any measure u

N{!/u has order type %, for some n.
Thus, T, 8;. On the other hand, while measures have been found on 8, such that
#%'/u has order type n, for any particular n,

no such measure has been shown to be of the type uf for some I
TeeoREM 3.3. For all a<0, cf(0)>w, implies cf(T,)>a.

Proof. First note that T, cannot be a successor ordinal by the proof of The-
orem 3.1. Next, suppose that oy <a, <...1is an increasing sequence of ordinals below
T, of length w. Using choice, choose g,, an element of the «,th equivalence class.
Define g: “2 — a by:

for all re®2.

g()=Ug,n)

n<e

It is routine to show that g>g, for all n. W

The techniques of this paper can also be used to tackle the compactness of ®;.
The first move in this direction was made by B. M. Kleinberg who used exactly the
same methods to find a new proof that 8, is «-strongly compact for all <. The
procedure is simple. By a theorem of Moschovakis, if <0, then there is a map of
the continuum onto 2% Using this fact, we choose a map F: “2 - P, («), onto, and
for every A =Py («), we define the game Hy, ,: Iforms the sequence r while Il forms .
I wins iff

UFr)vUF(s)ed.
n<a n<ao

As in Section 1, we define the measure vE by vE(A) = 1iff II has a winning strat-
egy for Hy 4. Exactly as in the proof of Theorem 1.3, it can be proved that vf is
8, -additive and fine. It is not known if any of these measures are normal, however.
If we define the comparable game with ADy, the measures obtained are normal, as
Kleinberg has shown. In general, the measure vE we get with AD will depend on the
coding map F, as in Theorem 14.

Proceeding with this analysis, we can prove a result about 8 corresponding to
Theorem 2.1: ZF+ADy I “Bither 8 is regular or &, is 8-strongly compact”™. This is
proved in exactly the same manner. It can be shown that the measures ADy produces
on P, («) are independent of the coding maps, and that these measures can be glued
together by a measure on a sequence cofinal in 6. With only AD, though, we are lost.
There does not seem to be any way to pick a canonical measure on P, @ *.

() A totally different application of AD to super compactness is found in [2]. References
for the theory of compact cardinals include: [3] and [71.
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On a certain prewellordering
by

J. M. Henle (Northampton, Mass.) and W. Zwicker (Schenectady, N. Y.)

In [1], a certain prewellordering of functions from “2 of &, is defined under the
Axiom of Determinateness, and is shown to have length at least x,. We will show that
this length is in fact at least 6, the least cardinal onto which the continyum cannot be
mapped. We use throughout the notation and techniques of [1], particularly those
of Theorem 1.4.

THEOREM (AD). Ty, >0.

Proof. Given y<0, let f map “2 onto P,(y), and let f,: 2 > &,, <y, be
defined by: fi(r) = the order type of U f*(") n «. For any a<f <y, we can show

n<o

Jo<[; by describing a winning strategy for player IT in GY, ,. Such a strategy con-
sists of playing the real s to player s real r so that each s” is identical and all the
reals {(r")*},; are included in {(s)*'}, as well as a real ¢ such that « ef*(®).

This establishes the functions { f,}.<, 2s a sequence of length y in the prewellor-
dering. W
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