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On pointwise smooth dendroids
by

Stanislaw T. Czuba (Wroclaw)

Abstract. In this paper we study properties of pointwise smooth dendroids; in particular,
we give some of their connections with the set function T and the concept of an R®-continuum..

§ 1. Introduction Investigating smooth dendroids, defined by J.J. Charatonik
and C. Eberhart in [3], we have observed that this concept is not good enough to-
characterize hereditarily contractible dendroids. In this paper some properties of
another concept, namely that of pointwise smoothness, introduced by the author
in [9] are studied. In particular, we give some characterization of pointwise smooth
dendroids and we discuss relations between this concept and some other related
notions known in the literature.

The author is very much indebted to Professor J. J. Charatonik for his advice
during the preparation of the paper.

§ 2. Definitions and preliminaries. A continuum means a compact, connected
metric space. A property of a continuum X is said to be hereditary if each subcon-
tinuum of X has that property. A continuum X is said to be arcwise connected if’
for every two points @ and b of X there exists an arc ab joining a with b and con-
tained in X. A continuum X is called unicoherent if for each two subcontinua 4 and B
of X such that X = 4 U B the intersection 4 N B is connected. A dendroid means
an arowise connected and hereditarily unicoherent continuum. A point p of an arcwise
connected space X is called a ramification point of X provided there are three
arcs, pa, pb and pe, such that p is the only common point of every two of them.
A dendroid which has only one ramification point is called a fan.

The closure of a set 4 X is denoted by 4, and we put Frd= 4 n X\A for the
boundary of 4 and Intd = X\X~A for the interior of A.

Given a sequence of subsets 4, of a topological space X, we denote by
LsA4,(LiA,) the set of all points x & X for which every neighbourhood intersects 4,
for arbitrarily large n (for infinitely many n). If Lid, = Ls4,, then we say that
a sequence A4, is convergent and we put LtAd, = Lid, = Ls4,.

We say that a continuum X is connected im kleinen at a point x € X if for each
open neighbourhood of a point x there exists a subcontinuum X of X such that
xehtKeKcU. '
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Given a set 4 contained in a continuum X, we define T4 as the set of all points x
of X such that every subcontinuum of X" which contains x in its interior must inter-
sect 4. We write simply Ta instead of T'{a}. ‘

(2.1) DEFINITION (see [3], p. 298). A dendroid X is said to be smooth if there
.exists a point pe X, called an initial point of X, such that for every sequence of
points a, of X convergent to a point @ the sequence of arcs pa, is convergent and
Ltpa, = pa.

(2.2) DEFINITION (see [9], Definition 2, p. 216). A dendroid X is said to be
_pointwise smooth if for each x € X there exists a point p(x) € X such that for each
sequence x, convergent to a point x we have Ltx,p(x) = xp(x). A point p(x) will
be called the initial point for x in X. .

It was proved in [9] that

(2.3) PROPOSITION (see [9], Proposition 1, p. 216). If a dendroid X is pointwise
_smooth, then every subdendroid of X is also pointwise smooth (the heredity of pointwise

.smoothness for dendroids). .

2.4) PROPOSITION (see [9], Theorem 1, p. 216). A fan is pointwise smooth if
.and only if it is smooth.

(2.5). CorROLLARY (see [9], Corollary 1, p. 216). 4 fan is hereditarily contractible
if and only if it is pointwise smooth.

The following theorem is an immediate consequence of Theorem 2 in [9],
p. 217: )

(2.6) TrEOREM. Let a point x, in a dendroid X be given. The following statements
.are equivalent:

1) every point of X is an initial point for x,;

" 2) for each point y e X\{x,} we have Ty<X\{x,};

3) X is connected im- kleinen at x,.

§ 3. Some characterizations of pointwise smooth dendroids. We say that a den-
droid X has property [T] if, for each y, xe X, x # y, we have Tx n xy = {x} or
Tyaxy={y}, ot TxnTy=@. )

(3.1) TuroreM. 4 dendroid X is pointwise smooth if and only if X has property [T].

Proof. Let a dendroid X be pointwise smooth. Suppose there are two points x
and y in X such that Tx nxy # {x} and Ty nxy # {y}, and Tx n Ty # &. We
-conclude from the hereditary unicoherence of X that Tx n Ty n xy # @. So let
zeTx n Ty n xy. For each subcontinuum K of X with z e IntK we have {x, y}cK
by the definition of the set function T, and thus xyc K. Let z, be a sequence of
points of X converging to z. Therefore zx<Lsz,x and zy<lsz, y? It follows from
‘the pointwise smoothness of X that the sequence of arcsz,p(z) converges to the
.arczp(z). :

.~ We claim that x ezp(2). :

Indeed, for each positive integer n let U, be the open ball of radius 1/n with

«centre z. The smallest subcontinuum of X which contains U, is the closure of the
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union of all arcszt with 7 in U,. Since x is contained ‘in évery subcontinuum of X
which contains z in its interior, for each positive integer » there is a point a, of U,
such that the arc za, contains a point b, at a distance less than 1/n from x. The
sequence @, converges to z and za,<a,p(z) L zp(z). It follows from the definition
of b, that x & Liza,. Since Liza,<Lt(a,p(z)u zp (2)) = zp(2), the claim is proved.
Similarly y € zp(2), and thus xy <zp(z). We conclude from z € xy that either z = x
or z=y. We now have TxnTynxy={x} or TxnTynxy={y} Let
Tx n Ty nxy = {x}. Since x,yeTy nxy, we conclude that xycTy n xy and
Tx A (Ty 0 x)>Tx v xp # {x}. This is a contradiction.

Now, let X have property [T]. We have to prove that X is pointwise smooth.
Let xe X. If X is connected in kleinen at x, then by Theorem (2:6) we can put
p(x) = x. If X is not connected im kleinen at x, then there exists a point y & X\{x}
such that x € Ty (Theorem (2.6)). Let us observe that

(i) for each z,ye X such that xeTz n Ty we have either zexy or yexz.

Indeed, let z and p be such that x € Tz n Ty and suppose that z ¢ xy and y ¢ xz.
The union yx U xz is an arc or a triod. If yx U xz is an arc, then Tz N yz> Xz and
Ty n yz>xy, contrary to [T]. If yx U xz is a triod with a point # as its centre, then let
us observe that t¢{y,z}, Tz nyz>tz and Ty n yzoty, contrary to [T].

Therefore it follows from (i) that the set Z = {y € X: xe Ty} lies in an arc
having x as its end-point. Define p(x) as the other end-point (different from x) of
the minimal arc containing the set Z. It is easy to see that the set Z is closed and
that x € Tp(x). Let a sequence %, be convergent to a point x. Thus

xp(x)cLix,p(x)cLsx,p(x).

Now, let g € Lsx,p(x). For each subcontinuum K with property x € IntX' we have
p(x)e K and x,p(¥)<K for almost all n. Therefore Lsx,p(x)= K, whence ge K,
and we have shown that x € Tg. Thus geZcxp(x), and so we have Lsx,p(x)
<xp(x). By the double inclusion above, this leads to Ltx,p(x) = xp(x), and the
proof is complete.

Note in the proof above that if X has property [T], then for each point x € X'
we can choose the point p(x) in such a way that x € Tp(x). Hence we have the
following

(3.2) COROLLARY. A dendroid X is pointwise smooth if and only if for each x € X
there exists a point p(x) € X such that i

(1)  for cach sequence x, convergent to a point x we have fo,,p(x) = xp(x) and

@) xeTIp(). . ‘

Given two disjoint subcontinua 4 and B of X, we denote by I(4, 1?) a s.ubcon-
tinuum of X which is irreducible with respect to containing 4 U B. It is quite easy
to see that there are two points, 4o € 4 and by € B,such that I(4, B)= A U B U aghy
and aghy N 4 = {ao}, and dobo N B = {b,} (cf. e.g. 2], Theorem 21, p. 195 and
Theorem 27, p. 197). ‘
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(3.3) CoROLLARY. The following conditions are equivalent for a dendroid X:

(1) X is pointwise smooth,

2) for every two disjoint subcontinua A and B of X, either TANI(A, B) = A or
TBAI(A,B)=B or TANTB = @.

Proof. The implication (2) = (1) is immediate by Theorem (3.1). Let a den~
droid X be pointwise smooth and let disjoint subcontinua A and B of X satisfy

) [TAnIA,B)NA# & and [TBnI(4,B)NB#O.
Observe that

® TA N agby = Tayg N agb,

and

(¢9)] TB N aghy = Thy N agby .

Indeed, Tag N agbo=TA N aghy. Let z € TA N agby; this means, by the defi-
nition of set function T, that for each subcontinnum K< X such that zeIntX we
have K n A # . Thus it follows from the hereditary unicoherence of X that q, € K,
and so z€Ta,. Hence zeTa, N agbs. In the same way we can prove (i').

We claim that ’

(i) TANB=O=TBnA.

Indeed, if (T4) N B # @ (TB) n A # @) since TA(TB) is a continwum and
X is hereditarily unicoherent, then ayby=TA (agbo=TB),and so T4 N ayb, = aybg
(TB n aghy = agby). Thereby from (i) ((i")) we have by e Ta, n Tb, % . Since (+)
implies that Ta 0 agbe # {ao} and Tby v aghy # {by}, we get a contradiction
with the pointwise smoothness of X by Theorem (3.1). So the claim is proved.

Now, by (@), (") and (ii) we have

TANI(A,B) =TAdNn (abo VAU B) = (TANnagby) U A= (Tay nagby) U 4
and
TB N I(A, B) = (Tbg N aghy) U B,
whence TA N TB n I(4, B) = Ta, 0 Thy 0 agb,. Recall that
[TA N I(4, BYINA # &

implies Ta ~ dgby % {ao} and [TB N I(4, B)\B # @ implies T, n aob, {bo}
Thus it follows from the pointwise smoothness of X by Theorem (3.1) that

Tag N Tby N agdy = TANTBNI(4,B) =& .
By the hereditary unicoberence of X this last condition implies Td ~ TB = .
The proof is complete: ‘

(3.4) DERINITION (see [8], Definition 1.3, p. 75). A non-empty subcontinﬁum
K # X of a dendroid X is called an R®-continuum in X if there exist an open set
U such that X< U, and a sequence C, of components of U such that LiC, = K.
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We say that a dendroid X has property [R] if there exist two subcontinua A4
and Y of X such that A= YcX and 4 is an R3-continuum in Y.

The following two propositions are proved in [8] and [6]:

(3.5) PrOPOSITION. If a dendroid X contains an R3-continuum, then it is not
contractible.

(3.6) PrOPOSITION. If a dendroid X has property [R], then it is not hereditarily
contractible.

(3.7) TerorReM. If a dendroid is not pointwise smooth, then it has property [R).

Proof. If a dendroid X is not pointwise smooth, then by Theorem (3.1) there
exist two different points x and y of X such that Tx n xy # {x}, Ty nxy # {y}
and Tx n Ty # @.

If x¢ Ty and y ¢ Tx, then the subcontinuum Tx m Ty contains an R3-con-
tinuum (see [7], Theorem 7, p. 305). Let xeTy. Then Ty nxy = xy. Take
ze(@\{x,y}) " Tx, and let U be an open ball with centre at z such that
{x,»} n U = @. Observe that ze Tx N Ty n xp. Let U, denote the open ball
with centre z and radius 1/n. The smallest subcontinuum of X which contains
U, is the closure of the union of all arcs zt with ¢ in U,. Since x and y are
contained in every subcontinuum of X which contains z in its interior, for each
positive integer # there are points z; and 22 of U, such that the arc zz; contains
a point 4, at a distance less than 1/n from y and the arc zz> contains a point b, at
a distance less than 1/n from x. We can choose the sequences z, and 22 in a such
way that the following conditions hold:

() the sequences z; and z} are convergent to z and
() LszlzzxcU, Lsz2znzycT. '

o
Let Y= (zuzlz)ulszizu Lsz2z. It is easy to see that Y is a sub-
n=1
continuum of X and that x ¢ Tyy, ¥ ¢ Tyx and Tyx 0 Tyy # @, and so Tyx n Tyy
contains an R3-continuum (see [7] and [8]). The proof is complete.
(3.8) THEOREM. If a dendroid X has property [R], then it is not pointwise smooth.
Proof. Let Y be a subcontinuum of X and 4 be an R*-continuum in ¥, and
let C, be a sequence of components of the open set U such that A= U in ¥ with
LiC, = 4. Let x € 4 and x, € C, where x, is convergent to a point x. If X is pointwise
smooth, then Y is also pointwise smooth by Proposition 23), and let p(x)e ¥
denote the initial point for x in Y. If p(x) belongs to the same component of Uas x,
then xp(x)< U and thus xp(x) n FrU = @, but by the definition of x, it is quite
easy to see that Lsx,p(x) n FrU # @. This contradiction shows us that p(x).does
not belong to the same component of U as x. Let ¢ denote the first point of the
arcxp (x) (ordered from x to p(x)) which is in FrU and let. B, denote the component
of x,p(x) N C, which contains x,. : i
We claim that g € LiB,.
Indeed, let g, denote the first point of the arc x,p(x) from x, to p(x) which
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isin FrU. Let ¢’ be the limit point of a subsequence gy, of the sequence ¢,. Since
xq'cLiB,, and q'e FrU, we find, by definition of ¢, that g€ xq’. Consequently
geliB,.

Therefore LiB,nFrU # @, but B,=C,, and from this LiB,=LiC,
= AcXNFtU; so LiB, n FrU = @. This contradiction finishes the proof.

(3.9) COROLLARY. A dendroid X is pointwise smooth if and only if it does not
have property [R].

Hence it follows by a result from [8] that _

(3.10) COROLLARY. If a dendroid X is hereditarily contractible, then it is pointwise
smooth.

The following question seems to be natural:

(3.11) QuEsTION. Does pointwise smoothness imply hereditary contractibility,
of a dendroid X?

For fans Corollary (2.5) gives a positive answer to this question.

§ 4. Some remarks on other weaker forms of the concept of smoothness. A. den-
droid X is said to be semismooth (see [3], p. 306) provided there exists in X a point p
such that whenever a, converges to a, then Lspa, is an arc.

A dendroid X is said to be weakly smooth (see [10], p. 111, and Theorem 4,
p. 114) provided there exists in X a point p such that, whenever x, converges to x,
then Lipx, = py for a certain y from X.

In this section we discuss all relations between the concept of pointwise smooth-
ness and semismoothness, and weak smoothness.

Let xy denote a straight line segment with x and y as its end-points.

In the following three examples let (x, ) denote a point of the Euclidean plane
endowed with the ordinary rectangular coordinate system Oxy.

(4.1) ExampLE. Put

g=(0,0, k=(1,0, = 2,0, z=(~2,0),
a, = (2,1/n), b, = Q2+1/n,0), ¢, =2, —=1/n), d, = (=2, —1/n),
e, = (_2“‘1/”: 0)’ f;u = ("'23 1/’1), gn = (_'1’ 1/")-

—_ — e . R J—— P O w0

Let Ay =zt, A, =ka, v ab,ubc,ve,d,vde, Ve[, U0, X= UOA,,
(see Fig. 1). "

We can easily see that a dendroid X is not pointwise smooth and it is weakly
smooth if we take as a point p, in the definition of weak smoothness, point z or
point p only.

Let us take a map Y of X x {0} U X'x {1}, which identifies points (g, 0) and
(g;1). Put Y =y Xx{0}uXx{1).

It is easy to see that Y is semismooth but it is not weakly smooth and not
pointwise -smooth..
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(4]

(4.2) ExampLE. We define
A= {(x,y): 0<x<2,y =1},
A = {(x,y): 0€x<2,y = ~1}, B= {zap)x=1, -1<y<1},
a=(0,1),a =0,-1),a=Q21+1n), a =2, —1-1/n).

Let X=AuAd"vBuU GE,UGE; (see Fig. 2).

It is easy to see that X "J: lpointv:;s; smooth but it is not semismooth and it is

not weakly smooth.
(4.3) Bxampre. Put p = (-2,0), ¢=2,0), ¢, = (—-1,1n), b, = (1, 1jn).
N J— R o
Let An =a,pUpqyv qbn’ X= UA,,.
n=1 .

The dendroid X is semismooth, weakly smooth and pointwise smooth but it
is not smooth.

(4.4) Exampre. Let Y be a’ dendroid described in [5] (Proposition 12,
pp. 234-235) (see Fig. 3). It is quite easy to see that Y is semismooth am? v_leak]y
smooth, but ¥ contains -an R*-continuum (namely the arc ab), and so it is not
pointwise smooth.
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Fig. 3

(4.5) ExampLE. Let X denote a fan with the top a described in [4], (p. 95).

Let X; = Xx{i}, for i = 0, 1,2. Let us take a map ¥ of X; U X, U X3 which
identifies points (a,0), (2, I) and (a,2). Put ¥ =y (X, v X, U Xj).

It is easy to see that ¥ is a weakly smooth fan but it is not semismooth and not
pointwise smooth.

(4.6) THEOREM. If a dendroid X is pointwise smooth and weakly smooth, then
it is also semismooth.
. Proof. The dendroid X is weakly smooth, and so there exists a point p, such
that for each point x and each sequence of points x, converging to a point x there
exists a point y such that Lip, x, is an arc p,p. Let p(x) denote an initial point for x
in X. For each x from X we have

Pox<Lipox, = poy<Lspox, = Ls(pop(x) U p(X)%,)
= Lspop(x) U Lsp(x)x, = pop(x) U p(x)x .
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If Lspox, is an arc for each sequence x, converging to a point x, then X is
semismooth. )

If there exist a point x, and a sequence of points X, converging to a point x,,
such that Lspo X, is not an arc, then let ¢ denote the centre of the triod Pop(xy) U
L p(xo)Xo (this means that ¢ is a such point that p,p(xe) U p(xg)x, = Doty
U p(xg)t U Xt and pot N p(xe)t = pot 0 Xot = p(xp)t M Xot = {t}) and let k be
a point of [Lspex, N 1p(xe)IN{t}.

We can choose a subsequence x,, from the sequence x, such that on the arcs DoXn,
there exist points k; converging to a point k. For this subsequence we have
LipoX,,2Po%o U tk, and so Lipyx,, is not an arc. This contradicts the assumption
that X is weakly smooth with the initial point p,. So Lsp,x, is always an arc, and
thus X is semismooth. The proof is complete.

(4.7) TueoreM. If a dendroid X is pointwise smooth and semismooth, then there
exists a point p € X such that X is connected im kleinen at p and for each x and each
Sequence X, convergent to a point x the equality Lsx,p = py holds for a certain y € X..

Proof. Let a dendroid X be pointwise smooth and semismooth. It follows
from the pointwise smoothness of X that

Lsx,x<Ls(x,p(x) U p(¥)x) = Lsx,p(x) U p(x)x = xp(x) ;

so, for each x and each sequence x, converging to a point x, the set Lsx,x is an
arc with x as one of its end-points. Let p’ be an initial point of X in the definition
of the semismoothness of X. This means that Lsx,p’ is an arc for each sequence x,,
converging to a point x.

Case 1. If X is connected im kleinen at p’, then Lsx,p’ = y,p’ for each x and
each sequence x, convergent to a point x, and for a certain y,.

Indeed, otherwise we would have for a certain x and for a certain sequence x,
converging to a point x, Lsx,p’ = ab, where p'¢ {a, b} and thus p’ # x exa.
Obviously either p’ € xa or p’ € xb. If p’ € xa, then by the definition of the set func-
tion T, we would have x € Ta and thus p’'e Ta. This contradicts Theorem (2.6).
If p’ € xb, the argumentation is the same. ]

Case 2. If X is not connected im kleinen at p’, then by Theorem (2.6) there
exists a point y # p’ such that p’ € Ty. We shall now define by induction a sequence
of points p, where n is a non-negative integer. Put p, = p". By Corollary (3.2) we
can define p; = p(po) such that po € Tpy. In the same way we define p,4, = 2(Dn)-

Observe that
1¢)] Pi-1 PiOPiPiy1 = {ps.

Indeed, we can see by the definition of p, that p;—; pi=Tp; and pipi+1 TPy
Since Tp; A Tp;yy 5 @ and pypiyy 0 IPisq # {Pivs)s it follows from Theorem 3.1
that py 4Py O PiPiey TP O PiPivr = {pi}- :
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Tt follows from (1) that there exists an arc K with p, as one of its end-points
such that all points p, belong to K, and from this it is easy to see that

(0] i for each i = 0,1, 2, ... and for each sequence x, converging to a point x the
set Lsx,p, is an arc (see [10], Lemma, p. 18).

Let as now extend the definition of p, to that of p,, where o is an arbitrary
ordinal number, putting pr1 = P (P) With Pe € TPars (as before, see Corollary (3.2)),
and p, = lim{p,: a<A}, 4 being a limit ordinal.

From (1), (2) and the definition of p, we have

(") if <<l then p.py O Pe2s = {Pg};
(2’;) for each ordinal number « and each sequence x, convergent to a point x the
set Lsx,p, is an arc (see [10], Lemma p. 18).

Let now define p” as the other end-point (different from Po) of the minimal arc
containing the set P = {p,: @ is an ordinal number}. It is quite easy to see. (cf. The-
orem (2.6)) that

(3) X is connected im kleinen at p”,
and thus, by (2") we conclude that (see Case 1)

(4) for each sequence x, converging to a point x we have Lsx,p = y,p" for
a certain y;.

The proof of theorem is complete.

Note in the proof above that if X is pointwise smooth and in the sequence p,
we start from p, = X, where x € X, then, using the same arguments, we have the
following

(4.8). COROLLARY. A dendroid X is pointwise smooth if and only if for each x & X
there exists a point p(x) € X such that

(1)  for each sequence x, converging to a point x we have Ltx,p(x) = xp (x)
and ’

(@) X is connected im kleinen at p(x).
As an easy consequence of Theorem (4.7) we havc the following

(4.9) CoroLLARY. If a dendroid X is pointwise smooth and semismooth, then 1t
is also weakly smooth.
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