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Homotopies of small categories
by

Marek Golasinski (Torur)

Abstract. Applying the theory of cubical sets, the author defines the homotopy groups of
any object of the category Cat* of pointed small categories. The notion of Serre fibration is introduced
in the category of small categories Cat, this fibration induces a long exact sequence of the homotopy
groups. Moreover, it is proved that the localization of any small category withr respect to the set
of all its morphisms is a groupoid assigned to the respective cubical set (see [2]).

The constructions of this paper suggest that the category pro-@at is a model category
(see [7D). ”

0. Preliminaries. Let % be any category. A cohomotopy (see [3]) in the cat- -
egory € is a quadruple (P; Do, P1,8), where P: € — @ is a functor, whereas
Pos Dyt P = 1g, s: 1g — P are such natural transformations of functors that
PoS = py8 = lg.

Consider a sequence of functors P": ¥ — ¥, where P° =1, Pt = P(PM),
for n>0 and natural transformations

di, =p g P P s P, i= 1,y 6=0,1
and
Sy = PPt P PP i =1 mt ]

The category ¥7°" of contravariant functors' defined on the cubical category (1
(see [6]), having the values in the category ¥, is called a category of cubical objects
over the category 4.

If the category % is a category of sets Fet (a category of pointed sets. Fet®),
then the category FetD (Per*O) is called a category of cubical sets (a category
of pointed cubical sets) (see [6]).

LemMA (see [5]). A sequence of functors and natural transformations
(P"; @2, 5, )n=0 defines a cubical object in the category of endofunctors of the
category €.

In’ particular, for X, Yeob¥ (8(X, PY(Y)), Py, 5i4)n>0 is @ cubical set.

Denote by @at the category of small categories, and by @at* — the category of

pointed small categories. . .
Following G. Hoff (sce [3], [4]), we show that the category @at (¥at*) hasa


GUEST


e ©
210 M. Golasifski la“

natural structure of a category with cohomotopy. In order to do this consider the
category % defined in the following way: & = .. « =2 -1« 0—>1«2>

For any small category & the functor ¢: & — % is called finite iff there exist
Mg,y € 0b% such that o(m) = o(ing), o(m) = o(ne) and o(m — m') = 1,4,
o(n = 1) = Ly for m, m'<mg and n, n' 2n,. The above conditions will be written
briefly as o(—o0) = o(m,) and o(+ ) = o(n,). A full subcategory of the finite
functors of the category %at(Z, %) is denoted by P(%).

Remark that P; $at — %at is a functor and that for any small category % there
are functors s(%): € — P(%), po(%), p1(%): P(¥) — (¥) defined in the following
way: 5(€)(@)(k) = C, for Ceob¥, k €obZ and py(%)(0) = o(—), p,(@)(o
= ¢(+ ), for o € obP(%).

It will now be shown that the functor P: ¥ar — Fat is prorepresentable. In
order to do that consider, for all m<n, a full subcategory ,Z, of the category & such
‘that k € 0b,, %, iff m<k<n and a full embedding o,: _,41Z+1 = —4Z, such that
o, (k) = k, for —n<k<nand cc,,(i(n+1)) = +n. Then P(%) = colimbat(_,%,, %).

n

The functors s(%): € — P(%), po(®), p1(¥): P(¥) — € induce natural trans-
formations s: 1 — P, pg,p;: P — 1such that pys = pys = 1. Thus the quadruple
(P; pg, p1,5) is a cohomotopy in the category %at. By the lemma the cohomotopy
(P;po,Ps,8) in the category %at induces the functor Q: Batx Fat - Fet™™
where Q(%, 2) = (%at(%, P"(D)), din, 5i5)n 20, for €, 2 € ob%at.

For % = (x is a point category), we get the functor Q: %at — Fet""", where
Q@) = (L(P"®); &y, 5:,)n=0, while {: ¥at-» Fet is a forgetful functor,
i.e. {(#) = ob¥, for ¥ e ob¥%at; of course, any functor F: € — & induces a map
of sets £(#F): L(B) - L (D).

- Tt is easy to observe that any element o &€ Q%) = obP¥(%) induces a functor
&: 2% & such that

G(myy ey My, 100, Myyyy ey ) = G0Ny, iy My, Elo, Mgy s ey )

for a certain n € 0b% and i = 1, ..., k, (%" denotes the kth power of the category Z)-

The elements o€ Q(%) will be identified with the appropriate functors
G 4.

Thus we have (4 a)(my, .., Myq) = 0(Myy oy myey, (=140, My, ery M)
and (5;0) (1, vy Mppy) = My, ey By, wey Mliepy).

For such functors ¢, 0" &% — & and for the natural transformation ¢: ¢ — o'
there are defined natural transformations dig: dle — dle’ and s,p: 8,0 — 8,07,
where .

B QY1 s Mymy) = @My vy My, (=1 200, 1y, ey M1 q) »
while .
(s10)(my, ..., mk+1), = @My, oy My, ooy M) -
1. Homotopy groups of the small category. Put A([1]) = [J([1]"), where

h: O—%et"™ is a Yoneda functor, and M®([1]") the smallest subset of the cubical
set [I([1]") containing the elements d,’_,,(lmn), i=1,..,n 6=0,1 and
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,i) # (e, k). A map f: X = Y of the cubical sets is called a Kan fibration if, for
every n>0, 1<k<n, 8= 0,1, any commutative square
Py — X
0 7
d
/
. o@arn —v
is diagonalizable. If * is a final object of the category etV (i.e. all the components
consist of a single point), it is said that the cubical set X satisfies a Kan extension
condition when the map f: X — x is a Kan fibration.
By applying the definition of cohomotopy (P; pos Py, s) in the category #at,
it is not difficult to prove the following lemma:
Lemua 1.1. If for the functor p: & — & the commutative diagrams
OO — 0(8)
n| o

O ([i"]”) —> 0(%)
are diagonalizable for every n>0, then a map of cubical sets Q(p): Q(8) = (&)
is a Kan fibration.
The functor p: & — & is called a Serre fibration iff for every n>0 in the

diagram

“PoPH(E))
Pn +1 ( é”)
«’:\\
N
. P"(B) x PY&)—> P*(8)
Pr*i(p) P@)

P(p)

n+ 1 ___—apl(ﬂ)
L—s prti(g) o)

the functor ¢, is a surjection on the objects. . o
It is easy to observe that the functor p: & — @ is a Serre fibration iff, for

o eobP! &), weobP " (#) such that po(—,..s ) = @(—00, =, -y —), there
exists y € obP"*1(#) such that py = @ and y(= 00, =, =)= 0(=; s ._)' .
TeeoreM 1.2. For the functor p: & — % the following conditions are equivalent:
a) the functor p: & — & is a Serre fibration, )
b; the J:nap of I;ubical sets Q(p): Q&) = 0@ is‘ a Kaf'l ﬁbrfztzon. -
Proof. In the proof of the implication b) = a), by mduc.tl'on mtt_xnnzscpec;o ‘c;d,.
the following three sequences, (1, k), 2,5, (3, k), of comtmons wi ph tha;
(1,k) — for the functors 0, € ObP*"1(&), w, & obP (&), k=1 sud

3
L ) = W0, =5 e —) there exists such a functor 7,0y, @) € obPX(&)
KLy sy ) T 3 ) 3o N — —ssey T )
 that (#) pry(ow, @) = @ and (s W) (— 00, =5 s =)= Ggl—s s )
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Remark. The functor (0, y) is not uniquely determined, and in spite of
that, it is convenient for technical reasons to denote by 7,(oy, ) any functor satis-
fying conditions (%).

(2, k) — for natural transformations of the functors ¢;: o, — o}, ¥y: @, - o]
satisfying the condition ¥ (—c0, —, ..., =) = pgi(—, ..., —) there exist functors
(0%, 0p), (0%, ;) satisfying conditions (1, k) and there exists a natural transform-
ation of these functors Ty(y, Y}t 0k, 0)) = T4(a}, @) such that pr (o, ) = Vs
Tk(q)k» l/lk)(—OO, ey _) = qu(— 3 ey "')~

Remark. The transformations 7,(¢, ¥,) are not determined uniquely either.

(3, k) — for commutative .squares of natural transformations

Pk , Vi ,
Oy —> 0 Wy > Wy
o T IE;‘ Ve T IE{‘
[ Ve
b —> & O = &

satisfying conditions (2, k) there exists a commutative square of pairs (¢, ¥,
(‘pl’n II'J)’:): (“ﬁk? ‘pk) and ((l_’},u 17,’,)
Tl Prerac)
Tk(a'k > wk) Tk(”l’c H (O;I‘)
h(@x W) 1 (@)
w(Froic)

TGy, DY) —> 74(8%,, D)

Remark. The transformations (P> Vi Tl 0x> W)s wlrs ¥i) and (G, 78]
are not determined uniquely.

In the proof of the implication a) = b), also by induction with respect to k,
auxiliary constructions are carried out. Applying Lemma 1.1, in order to show that
the map of cubical sets O(p): Q(&) —+ O(%) is a Kan fibration, it is enough to prove
the diagonalizability of the following commutative square:

b
OOy — 0(6)
n
) ow  for k=1.
D
oOY——— 0@

The following three sequences, (1", k), (2, k), (3, k), of conditions will be
proved:

(', k) — the functors 6?: #* 1 - & determined by the map
Ze = {of}: OUP - 0(8)
induce a certain functor (ZY): Z* 1 - &, the natural transformation

&= {o}: I = {o}} > S = (o'} '
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(i.e., a natural transformation ¢f: of — oi’.such that ¢’ = a1, 43, for i<},
©6,1), (,0) # (0, 1)) induces the natural transformation t,(&,): (2D = (TR
and the functor o: %* — & induces certain functors o0): Z* &, v(o): g,
whereas the natural transformation ¢: o — ¢’ induces natural transformations
od@): ax(0) ~ a0, vi(@): Vo) » w(e’) in such a way that the following-
conditions are satisfied:
(i) if the diagram

[

Zy > Xy
'@‘l Ta;‘
D

5 I3
k Sk
is commutative, (i.e., the diagrams
o?

o} —>a}
1 s
91 5 9

i
8} —— 87

are commutative, for (d, i) # (0, 1)), then the diagram

(D) ,
T Zy) > 1 Zx)

T (Pk) (D)
7e(Bx) ,
Tk(zk) - Tk(fk)
is also commutative; - . -
(i) if the map Zyo): M1 — Q(#) is determined by the elements:
o} = d’o, while the natural transformation Z(@): Zi(o) — Zi(¢”) by the matural
transformations df ¢: dlo - d}o’, for (3,i) # (0, 1), then

dioyo) = Tk(zk(ﬂ))v diafo) = dio
and
doye) = wE0), dale) =de;
(iif) for any o: &%~ & we have v(o)(+00, My, ooy 1) = O(=1ys My, iy My 1)
and v(o)(—, ..., —00) = 0.
(iv) if the diagram
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is commutative, then the diagrams

ex(e) , vilo) ,
odo) ~> o{o”) Vo) > (o)
ol @) ax(#") Vi@ we{o’)
(@) ie(®)
a(8) —> e(8") V() > (&)

are also commutative.

(2, k) —if a functor y: Z**' —» & satisfies the condition that for some
functor o Z*— & py = prau0)s V(= 00, My, e, ) = dive@(0)(my, ..., my)
= 0}~y My, ooy y—y), then y induces functors ¥, 5: 2¥** — &; any natural
transformation ¢: y =y’ of the functors satisfying the above conditions induces

natural transformations @: 5 — 9, $: 5 — 3 in such a way that:

® dk1+1')7 = 0u(0), dko+177 = dk1+1§ and dk0+1§ = dt?ﬂ'}’;

(i) for any meob_, %, we have §(ng,..,m) = Flug, oy m) = ©(Z),
Di(,m) = py(.., m) = polo) and ~for each morphism m — m’ of the category
o, We have pF(..,m = m) = pj(...,m = m) = Ly n;

(iii) if the diagram

e ’
Y >y
A _
m| »
a ’
§—>9
is commutative, then the diagrams
A Bz
P —>7 Y —>7
I t I kS
w O ¥ e &
P > 9 p—>9

.are also commutative.

Applying (', k) we see that the map Z: T1OV([1]%) - Q(&) determines the
functor ©(Z): Z*¥ ! > &, while the functor w: &* — 8, corresponding to the
map 2 O([11Y — 0(#), induces the functor g w): Z* — A. '

From the commutativity of the diagram (*) and from the naturalness of the
-construction of the functor 7,(Z;) it follows that df o) = T(Zy(@)) = pru(Zp)-

The functor p: & - # is a Serre fibration, and so there exists a functor
y: Z* > & such that py = gi(w) and d}y = 7,(Z;). Observe that if & = *, then the
functor y = 54(7,(Z,)) satisfies conditions (2', k).

(3", k) — the functor y: Z* — & satisfying the condition py = g(w), di y = T(Z)
<determines the functor Fy(y): 2* — & and the natural transformation @: y — 9’
«determines the natural transformation A(@): () = A(y’) in such a way that:

icm
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if = po, for certain functors o: 2* — ¢ and y = gy(o), then ) =03
the map of cubical sets Iy: CI([1F) — Q(8) determined by the functor
7i7): Z* — & diagonalizes the diagram (x);
if the diagram
Y
d
§

’

Y
v

?/

[
——
3
—

is commutative, then the diagram

- ol
) — By

) e
al®)
P — p(¥)
is also commutative, &

Observe that for any category € € ob%at the functor ¢ — = is a Serre fibration;
by the above theorem it follows that the map Q(%) — Q(%) = * is a Kan fibration.

COROLLARY 1.3. For any small category % c-ob%at the cubical set Q(%) satisfies
the Kan extension condition.

Thus we obtain the functor m: %at — %r, which is defined by the formula
w(®) = c(Q(%)), where c: Fet™ — @at denotes the functor defined in paper [2],
while 9r is the category of groupoids.

On the other hand, for any small category ¥ € ob%at the localization of € with
respect to any set of morphisms X< Ar# (see [11, ch. T) is defined as a colimit (in Fat)
of the diagram:

ael

11— 110k
, il
¢ ——>gr1,

where [1], = [1], whereas [1]; = [1]' denotes the groupoid with two objects 0,1
and two nonidentity morphisms, 0 =1, 1 =0, mutually inverse.
Tuaeorpm 1.4. For any € eob%at there exists an equivalence. of groupoids
r
%(%) Z CIArE "],
G
Proof. Observe that obn(%) = ob%[Ar%~!] = ob¥ and we define F(C)
= G(C) = C for every Ceob¥. n .
In order to define the functor G: €[Ar@ '] —» € itis enough to ~deﬁne th§ pair
of functors G,: € —»=n (%), Gi: II (1L.—¢% satisfying the appropriate conditions
aeAr¥ oo ,
of consistence. In order to define Gy, Gy let us consider any morphism «: C— C
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of the category % and the functor g,: &'~ % defined in the following \Way:
6.0 = 1) = @, 0(— ) = 6,0) = C and o,(+20) = o,(1) = C".

The morphism of the groupoid (%) determined by this functor is denoted
by [a]~.

We then put Go(@) = G4((0 - 1),) = [o,]., (the morphism [o,].. is inversible
in =(%)).

To define the functor F: m(¥) — F[Ar®™!], let us first remark that
7(%) = Pa¥/~ (see [2]), where PaX is the category of paths determined by the diagram:
scheme X = (Q4(%), 0,(®); d, d}), whereas ~ is the smallest congruence satisfying
the conditions:

1) 5,04 ~10y, for oy € Qo(%),

2) e, dio)~ (Yo, d} 0), for 6 Q,(%).

In order to define the functor F: n(%) — €[Ar%~*] it is enough to define the
functor F: PaX — ¥[Ar# 1] preserving the congruence ~. Observe that, for any
element ¢ € Q,(¥), there exist nyob% and the morphisms o; of the category %,
for k = —ng, ..., ny such that a~(a,_,, > Ta,)-

There exists a unique functor F: PaX — @[Ar% 1] such that F(o,) = i,(a),
and for any element o € Q,(%) we h;we F(d0,dio) = F(d}o, d} o). It follows from

the definition of functors n(%) > ¢[Ar# 1] that FG = lgare-11, OF = L.
¢

Remark 1.5. The functor w: €at — Gr is left adjoint to the functor of inclusion
i: ¥r - %at.

D. M. Kan defines the nth homotopy group (X, ), for n>0 of any pointed
cubical set satisfying the Kan extension condition (see [6]);

the nth homotopy group of the category € eob@at* is called the n-th homotopy
group of the cubical set Q(%); i.e. m(%, ) = m(Q(%F), ).

The functor m,: @at — Fet is left adjoint to the functor of inclusion
dis: Fet — ¥at, assigning to every set a disctete category.

Denoting by rp the category of groups and by %at) a full subcategory of the
category at* determined by the connected categories, it is not difficult to show that
the functor ,: Fat? — @rp is left adjoint to the functor of inclusion i1 rp - aty.

1_3y applying Theorem 1.2 and referring to the appropriate considerations in
the simplicial theory (see_[1], ch. X), it is not difficult to prove that the following
theorem is true:

THEOREM 1.6. The Serre fibration p: & — & induces a long exact sequence of the
homotopy groups

w2 (8, %)~ 7y (B, %) > Wo(F %) > (&, %) > (B, %), where F = pTi().

2. Small categories and a model category. By a model category we mean a cat-
egory € together with three classes of morphisms in €: F(fibrations), C(cofibrations),
W(weak equivalence) satisfying the axioms MO-MS5 (see [7]).

Define in the category %at the above classes of morphisms:

icm°®
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1) p: & =& is a fibration iff it is a Serre fibration;

2) f:.‘é’ -+ is a weak equivalence iff ,(f, ¥): m,(%, ¥) » n(D, f(¥) is an
isomorphism for n>0, * & ob¥;

3) i: o —» R is a cofibration iff the commutative square

A > &
[
B >R
is diagonalizable, where p is a fibration and a weak equivalence;

(p: & —+ & is called a trivial (co)fibration if it is a (co)fibration and a weak
equivalence).

MO is satisfied in the category #at (see [1]); M1 is a consequence of the definition
of fibration and of the following lemma, the proof of which is an adaption of the
proof of the appropriate fact in the category of topological spaces (see [7]).

LemMA 2.1. The following conditions are equivalent for any functor i: of —~&':

(@) 1 is a trivial cofibration,
(i) # is a cofibration and a strong deformation retract,
(iif) the commutative square
A8
i 4P
B R
where p is a fibration, is diagonalizable.

By applying this lemma it is not difficult to prove axioms M3, M4, M5.

The attempt to prove axiom M2 (i.e. that any map f: € - 9 may be factored
f = pi, where i is a cofibration and a weak equivalence and p is a fibration; also
f = p'i’, where i’ is a cofibration and p’ is a fibration and a weak equivalence) and
the fact that the functor P: @at — %at is prorepresentable suggest that both factori-
zations should be found in the category pro-%at (see [0]).
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