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Criteria of openness for relations

by

Marek Wilhelm (Wroctaw)

Abstract. Under some hypotheses, nearly open graph-closed felations are open. The domain
spaces considered are: Cech-complete spaces and groups, uniformly Cech-complete  spaces,
B-groups, B-complete vector spaces.

.1. Introduction. The general problem studied in the paper is this: When is a nearly
open and/or graph-closed relation open? It contains simultaneously the problems of
openness and of continuity of functions, and was considered e.g. in {97, [14], [12]
and [11]. Our main results are Theorems 1, 2 and 15, which state some criteria in
topological spaces, topological groups and uniform spaces, respectively. They imply,
among other things, some results of [1], [91, [7], (2], (3], [11] and [17]. The domain
spaces of the relations considered here are mostly assumed to be Cech-complete.
In the case of uniform spaces this topological assumption is not satisfactory; in
Section 6 the notion of uniform Cech-completeness is introduced and investigated.
B-groups [7] and B-complete vector spaces [13] are also considered, as domains.

2. Separating relations. Let Y and Y be topological spaces, and let ReXx Y.
R is said to be separating [11] if for each pair of distinct points X1, X2 in X there are
neighbourhoods U, of x; such that R[U,] A R[U,] = 0. Such a relation is injective,
i.e., x, % x, implies R[xs] 0 Rix] =0 (equivalently, R is a function), R™[¥]
is a Ty-space, and R is a closed subset of X x RIX] (because R3 (x,, ¥,) = (%1 ),
(%, ¥) € R and x; # X lead to a contradiction). The last property implies that all
images (pre-images of compact subsets of X (of R[X7) are closed in R[X] (in X,
respectively) [9; 6.A]. R is called open (closed) if all images of open (close@) subsets
of X are open (closed) in ¥; R is called Iower (upper) semicontinuous if R~ is open
(closed). If R is a closed subset of X'x ¥, we sometimes say that R is graph-closed.
The followipg is a relation version of Proposition 7 from [17] (it can be proved
similarly).

ProposITION 1. Consider the Sfollowing conditions: -

() If %, x and (x4 V) €R, then the net {9, has a cluster point.in R[?:}

(XpyxeX, y,€Y)
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(2) R is upper semicontinuous and all images of points are compact.

(3) R is graph-closed and all images of compact sets are compact.

Then (1) < (2). If Y e T,, then (1) = (3). If X is a k-space, then (3) = (2).

If X and Y are uniform spaces (i.e., Tsy-spaces with fixed uniformities %
and ¥, resp.) then R is said to be uniformly open if for every Ue % there isa Ve ¥”
such that R[U[x]]> V[R[x]] for all xe X; R is said to be uniformly lower semi-
continuous if R~ is uniformly open.

PROPOSITION 2. Suppose that R is injective and X € T,. Each of the following
conditions implies that R is separating:
(4) R is open.
(5) YeT, and R is a continuous 1-1 function.
(6) YeT, and 1 (or (2)) holds.
() X is a k-space, YeT, and (3) holds.
8) YeTy, Ris upper‘ semicontinuous and all images of points are closed.
9) X is locally compact and R is graph-closed.
(10) Y is compact and R is graph-closed.
(11) X and Y are uniform spaces, R is uniformly lower semicontinuous and all
images of points are compact.
(12) X and Y are (T,) topological groups and R is a closed subgroup of X'x Y.

Proof. Assertions (4), (6), and (8) are mentioned in [11]; (9) is equally easy.
By Propesition 1, condition (7) implies (6); (5) and (10) also imply (6).

(11) We will prove that (1) holds. Given V' e?", there is a Ue% such that
R™YV[y,ll= Ulx,] for all o; there are indices o(¥), Ve ¥", such that for oo (V)
we have z/ € R[x] n V[y,]. The net {z‘,’, Ve and 62¢(V)} has a cluster point
in R[x]. It follows that y is a cluster point of {y,}.

(12) Assume R is not separating. There are points x, v, xy, vy in X and Yy, 24
in Y such that x#v, x & xU n R™*[yp], vy € oU o R™*[z}] and yh(zh)~* e V for
all neighbourhoods U, ¥V of 1y, ly, resp. The mnet {(xp(wh)™* yh(zl)™Y).
(U, V)3 (1x, 1,)} =R converges to (xv™!, 1y). Hence the last point is in R, so that
xv~! = 1y; a contradiction.

Remark 1. Let Xe T, and R = g~*, where g is a function on ¥ to X. If g has
a 4-closed graph in the sense of [17], then R is separating (proof a contrario as
in (12)). .

3. Criteria in topological spaces. Let us start with a characterization of openness
in terms of nets (proof omitted).

PROPOSITION 3. Suppose R[X]=Y. Then R is open iff y, ~ y e R[x] implies
there is a subnet {y,} and points x, € R™1[y,] with x, — x.

A relation R is called nearly open [13, 14] (or almost open) if for each open sub-

set U of X, R[U] is nearly open in ¥, i.e., R[U]=IntR[U]. In case R is injective
with R™! = f, R is (nearly) open iff f is (nearly) continuous.
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TueOREM 1. Let X and Y be topological spaces, X being Cech-complete. Let R be
a separating relation in X' x Y. If R is nearly open, then R is open as a relation fromX
to RIX]

Proof. ReXxR[X] is also separating and nearly open; we may suppose
that R[X] = Y. Assume, to ﬂ a contradiction, that R is not open. There exists an
open set G in X such that R[G] n R[X\G] # 0 (otherwise R[G]=R[G] for all G,
and near-openness of R and regularity of X imply openness of R). Put V5 = G
and W, = X\G. Let {%;} be a complete sequence of open covers of X (see
the beginning of Section 6). Let yei[—fo—] n R[w] for a certain we W, and let
W, be an open neighbourhood of w with diameter less than %, and W, < W,.

" Since R[W,] is a neighbourhood of y, there is a ze€ R[W;] n R[v] for a certain

ve Vo Let ¥; be an open neighbourhood of v with diameter less than %, and
V,<V,. Then Eﬁfj is a neighbourhood of z, so that R[Vy] A R[Wy] # 0. In-
ductively, there are open sets ¥, W,cX such that Vi cV;, Wi W, Vi, W
are of diameter less than %; and R[V,] n R[W] #0fori=1,2,..Put C= ﬂ V;

1
and X = () W;; they are non-empty compact sets with open bases {V,}, {W}}, resp.

: i

{Up to this moment we have followed the proof of Theorem in [3].) Let us say that ¥,
W separate 4, B if V, W are open subsets of X containing 4, B, 1esp.,
Eﬁ'jn R[W] = 0. Fix ve C. There are V,,, W, that separate {v}, {w} weK).

n
Let Wy, ..., W, € K be such that Ke Wy = |J W,,,. Put Vy =‘ﬂ V.- Then, as can
i=1 =1
casily be seen, Vy, Wy separate {v}, K (ve.C). Let vy, ..., o, € C be such that
m m .
CcV =) Vy,. Put W= () Wy, Then, as can easily be checked, ¥V, W sepa-
i=1

=1 .
rate C, K. There is an index i, such that ¥,V and W, cW. Vy, W, separate C, K;

a contradiction.

Remark 2. R need not be open to ¥ (take X dense and co-dense in 'Y, R = 4y).
Theorem 1 contains the theorem of [3] (by Proposition 2 (7)) and Theorem 5of [11]
(X complete metric); in fact, it was inspired by [11] and its proof modifies that of [3].
Theorem 1 contains also the theorem of [17] (by Remark 1), and is closely related
to the Theorem (X the Rudin-complete Moore space) and the Conjecture (X eTs
strongly countably complete), both from [11; Added in revision]. Proposition 2
yields, directly or indirectly, many more consequences of Theorem 1; mo_st of them
can be found in [3], [17] and references therefrom.  What is most important,
Theorem 1 induces strong results in the case of groups (Section 4).

Now, let us restate two negative results (they answer some questions from [12.]):

1° [3] There exists a continuous nearly open function f on X onto Y whlc.h
in not open, where X is a certain separable complete metric spaceé and Y is the unit
interval [0, 1].

2° [18] There exists a nearly continuous nearly open graph-closed one-to-one
4 — Fundamenta Mathematicae CXIV/3
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function f on X onto Y which is neither continuous nor open, where X and Y are
certain separable metric spaces, X —— complete.

4. Criteria in topological groups. All groups (and vector spaces) considered in
the paper are Ty-spaces (hence Tj,-spaces).

_ TueoreM 2. Let G and H be topological groups, G being Cech-complete. Let R be
a closed subgroup of Gx H. If R is nearly open, then R is open.

Proof. It is sufficient to prove the theorem under the additional assumption
that R™I[H] is dense in G (then consider R in R™I[H]x H). The assumption
guarantees that the closed subgroup K = R™l4] of G is invariant. The quotient
group G, = G/K is Cech-complete and complete in its two-sided uniformity [2].
Consider the induced injective relation R; in Gyx H((%,»)e Ry iff (x, )€ R);
R, is a subgroup of Gy x H. To prove that R, is closed in G, x H, we will prove
that R, (x%,7) = (%,y) implies (X, ) € Ry. Since the quotient homomorphism
of G onto G, is open, there is a subnet {x%} and points x,. € G with %, = xL and
X, — x (Proposition 3). Now R> (x,, ) = (%,), so that (x,y)e R. By Prop-
osition 2 (12), R, is separating. Evidently R, is nearly open. By Theorem 1, R, is
open as a relation from G, to H; = Ry[G,] = R[G]. Hence R is open as a relation
from G to H,. It now remains to prove that H, is open in H. We will prove that H,
is closed in H; then it is open, being nearly open. Let H, 3 y! -y e H. Sinceg = R;'*
is 4 continuous homomorphism of H; to Gy, the net {g(»2)} is two-sided Cauchy
in Gy, and so converges to a point x, in G;. Since Ry is a closed subset of Gy x H,
(x4,7) € R;. Hence y € Hy, and the proof is complete.

Theorem 2 contains Theorem 6.R of [9] (additional hypotheses: G-locally
compact or metrizable left-complete, R — a function on G or R™! — a function
on H), Theorem 31.3 of [7] ( é‘—metrizable, R — a continuous function on G onto H),
Theorem 4 of [2] (R — a continuous function on G). Corollaries 4 and 7 of [17]
(R — a function on G or R™! — a function on H).

G is called a B-group [7] if each continuous neatly open homomorphism of G
onto another group is open (such are all Cech-complete groups).

THEOREM 3. Let G and H be topological groups, G being an Abelian B-group.
Let R be a closed subgroup of G x H. If R is nearly open, then R is open as a relation
Jrom G to R[G].

Proof (notation as in Theorem 2). G, is a B-group as well; g is a nearly con-
tinuous graph-closed homomorphism of Hy to G;. By Theorem 2 of [8], g is con-
tinuous. This 'yields the assertion.

Remark 3. In [16] there is an example of an Abelian B-group G which is not
complete (in its canonical uniformity). The embedding of G in its completion G is
continnous and nearly open but not open.

THEOREM 4. Let G be a separable or Lindeléf group, and let H be a second category
group. Let R be a closed subgroup of G x H with RG] = H. If G is a Cech-complete
group or an Abelian. B-group, then R is open. :
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 Proof. In view of Theorems 2 and 3, it suffices to verify near-openness of R
In the Lindeldf case the proof proceeds just as in [9; 6.R]. The separable case needs‘
slightly more care. Let D be a countable dense subset of G. Let U be a symmetric
neighbourhood of 15, Put D, = {deD: dUn R7YH] %0}, and choose
(x4, ¥)) € R with x;€dU for de D,. Then

R '[H]e | dUc | x,U?.
deDy deDy
Hence

deDy

H= U R[x,U% = || 5,R[U?].
deDy

Since H is second category, IntR[U?] # 0. It follows that 1, € IntR[U%], which
proves the near-openness of R.

5. Criteria in topological vector spaces. The next theorem is an obvious con-
sequence of Theorem 2 and well-known arguments e.g. from [9; 6.R] and [15; IV.8].
It unifies some classical open mapping and closed graph theorems of functional
analysis.

THEOREM 5. Let E and F be topological vector spaces, E being complete metric.
Let R be a closed vector subspace of Ex F. If R is nearly open, then R is open. In
particular, R is open provided R[E] = F and either (i) F is of second category, or
(i) E and F are locally convex spaces and F is barrelled.

Recall that E is complete metric iff E is Cech-complete [2]. A locally convex
space E is called B-complete [13] (or a Ptak space [15]) if each continuous nearly
open linear Tapping of E onto another locally convex space is open. Banach [1]
essentially proved that each Fréchet space (i. e., complete metric I.c.s.) is B-complete.
This is also provided by Theorem 5. Let us recall Theorem 1, based on duality
theory, from [14], slightly improved. ‘ )

THEOREM 6. The assertion of Theorem 5 remains true if E and F are locally convex
spaces, I being a Ptdk space.

Proof. By Theorem 1 of [14]. R is open as a relation from E to R[E]. E/R™1[0]
is a Ptak space, hence complete (cf. [13] or [15]). Proceeding as in Theorem 2, one
can prove that R[E] is closed, and so open in F.

6. Unifoxmly Cech-complete spaces. Let C be a collection of covers of X; C is
said to be complete [5)] if any centred family & of closed subsets of X has a non-
empty intersection, provided for each ‘% e C there is an Fe & of diameter less
than % (i.e., FeC for a certain Ce %). A Ts,-space X is Cech-complete iff there
exists a countable complete family of open covers of X (cf. [5] or [4]). Let X be
a uniform space, i.e., a T3y ~space with a uniformity 4 on X (inducing the given
topology). X is complete iff the family of all uniform covers of X is complete. X is
uniformly locally compact iff there exists a uniform cover € of X such that the one-
element family {#} is complete [9; 6.T]. In view of these facts, we think that the
following definition is quite natural.

4
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DEFINITION. A uniform space X is uniformly Cech-complete (UCC) if there
exists a countable complete family of uniform covers of X.

If X is UCC, then X is complete and (topologically) Cech-complete. If X is
uniformly locally compact, then X is UCC. In case % is metrizable, X is UCCIff X is
complete [4; 4.3.10]. If X is UCC and %' on X is finer than %, then X is UCC with
respect to 4. A closed subspace of a UCC space is UCC.

Let Uoc%; a net {x,} is said to be %,-Cauchy if for every U in %, there is
an index oy such that (x,, x,,) € U whenever 620y.

ProrosITION 4. X is UCC iff there exists a countable subfamily U, of U with
the property that each %,-Cauchy net has a cluster point.

Let d be a pseudometric on X, we say that d is perfect if the quotient mapping
of X onto the metric space X/d is perfect. This is so iff X'e T, d is continuous and
each d-convergent net has a cluster point in X (cf. Proposition 1).

THEOREM 7. Let X be a uniform space. The following statements are equivalent:

(@) X is UCC; _

(ii) X has a perfect complete uniform pseudometric d;

(ili) The family of all perfect complete pseudometrics on X gencrates the uni-
Sformity.

Proof. (i) = (iii) Given U, € %, construct %, = {U;}j24 =% so that 3U,c U,
for i =1,2, .. and %, has the property from Proposition 4. By [4; 8.1.10], there
exists a pseudometric d on X satisfying U;c Uf-1< U;_, for i = 1,2, ... The inclu-
sions imply that 4 is uniform and each d-Cauchy net has a cluster point in X. Hence d
is perfect and complete. Since U, was drbitrary, (iii) follows.

(i) = () %, = {U}2,, where U, = UL, has the property from Prop-
osition 4.

COROLLARY 1. If there exists a uniformly continuous perfect mapping of X onto
a UCC space Y, then X is UCC.

COROLLARY 2. The Cartesian product of countably many UCC spaces is UCC.

Proof. The key argument is that a countable (in fact, arbitrary) product of
perfect mappings is perfect (cf. [6] or [4]).

THEOREM 8. Let X be a Tsy-space. The following conditions are equivalent:

() X is UCC with respect to some uniformity % on X

(i) X is UCC with respect to the finest uniformity Uy on X

(i) X is Cech-complete and paracompact.

Proof.. The first two conditions are clearly equivalent. By Theorem 7 (ii) and
[4; 3.9.10 and 5.1.35], (i) implies (jii). The implication (iif) = (ii) follows from the
fact that each open cover of X is uniform with respect to %, provided X is para-
compact [4; 8.5.13(d)].

If ¥ is a UCC space containing the uniform space X as a dense subspace,
then ¥ =X, because the completion ¥ is (essentially) unique [4; 8.3.12]. There-
fore X possesses “uniform Cech-completion” iff ¥ is UCC. ’
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THEOREM 9. Let X be a uniform space, The Sollowing statements are equivalent:

() X is UCC;

(ii) There exists a countable subfamily Uy of U such that each Uy~ Cauchy net
has a % -Cauchy subnet;

(iii) There exists a uniform pseudometric d on X such that each d- Cauchy net
has a U -Cauchy subnet;

(iv) The family of all such pseudometrics d generates the uniformity.

Proof. In view of Theorem 8, it suffices to prove that (ii) implies (i). Let
Uy = {U,]y1 e as in (ii). There are U, e % with U,50, n Xx X and 0,530, ,,
for n=1,2, .. Put %, = {O,}%., and let S = {x,, 0%} be a #o-Cauchy net
in X. Choose x¥ & X with (x,, x")e ¥ for 6 € Z and V4. The net

S ={x¥, (o, V)eZxq}

is 9 ,-Cauchy, and so bas a %-Cauchy subnet. The subnet is also %-Cauchy, and
hence converges to some point x in X. It follows that x is a cluster point of S.

Now let G be a topological group. G, (G,) will denote the two-sided (left) uniform
space of G, the corresponding uniformity denoted by %, (%;). Notice that if G is
locally compact, then both G, and G, are UCC spaces. Given a pseudometric d on G,
define d*(x, y) = d(x, y)+d(x"1,p™*) for x,ye G [9; 6.Q]. The next theorems of
this section are based on the results of [2].

THEOREM 10. Let G be a topological group. The following statements are equiv-
alent:

@) G, is UCC;

(i) G is Cech-complete;

(ili) There exists a compact subgroup K of G such that GIK is completely
metrizable; )

(iv) There exists a left-invariant pseudometric d on G such that d* is perfect and
complete; ) :

(V) The family of all such pseudometrics d* generates U,.

Proof. The equivalence of (i), (iii) and (iv)-is proved in [2}; By Theorem 7,
(iv) implies (i), Let {d,}e4 be the family of all left-invariant continuous pseudo-
metrics on G. If (iv) holds, then the family {(d+4,)*},. 4 generates %, and consists
of perfect complete pseudometrics; therefore (v) holds. The implications (i) = (ii)
and (v) = (iv) arc obvious, The implication (i) = (iii) yields the following

COROLLARY. Let E be a topological vector space over a number field, with its
translation-invariant uniformity. E is UCC iff E is completely metrizable.

THEOREM 11. Let G be a topological group. The following statements are equiv-
alent:

() @, is UCC;

(i) G is Cech-complete and G, is complete;

(iii) There exists a perfect complete left-invariant pseudometric don G;

(iv) %, is generated by the family of all such pseudometrics d.
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Proof. (ii) <> (iii) is proved in [2]. By Theorem 7, (i) implies (i). Clearly
@) = (ii) and (iii) = (iv) (see the proof of Theorem 10).

TreoREM 12. Let H be a closed invariant subgroup of a topological group G.
@) If G, is UCC, then so is (G/H),. (i)) If G Is UCC, then so is (G/H),.

Proof. If G is Cech-complete, then so is G/H [2]. Taking into account
Theorems 10 and 11, we get (i) and (if), the latter — provided we know that (G/H), is
complete. This fact is a consequence of the forthcoming Theorem 16,

TrroreM 13. Let G be a topological group. The following statements are equiv-
alent:

@ G, is UCC;

(ii) There exists a closed %,-totally bounded subgroup K of G such that G/K is
metrizable;

(iii) There exists a continyous left-invariant pseudometric d on G with the property
that each d*-Cauchy net has a % Cauchy subnet;

(iv) %, is generated by the family of all such pseudometrics d*.

Note. A subgroup is %-totally bounded iff is %-totally bounded.

Proof. Theorem 10 shows that (i) implies (iv) (=> (iii)). A set Kis totally bounded
iff each net in K has a Cauchy subnet. It follows that (iii) implies (if). Finally, we must
prove that (ii) implies the Cech-completeness of the group G,. In case K is compact,
this is exactly Corollary 2 to Theorem 1 of [2]; its proof can be slightly modified
so as to cover the general case.

It would be interesting to investigate when the uniform space Gy is ucc.

7. Criteria in uniform spaces. Let X and Y be uniform spaces (with uniform-
ities % and ¥, resp.), and let R be a relation in X'x Y. R is called uniformly open
if for every Ue% there is a Ve ¥  such that for all xe X

O] RUIx]] = V[RI¥] -

If the set on the left is replaced with its closure, the notion of uniform near-
openness appears.

Notice that R is closed iff for each y € ¥ and each open set U in X with
UoR™[y] there is a neighbourhood ¥ of y such that UsR™*[V]. Thus R may
be called uniformly closed if for every U e % there is a ¥ e ¥ such that for ally e ¥

ORI ULRT ISR V]

PROPOSITION 5. R is uniformly open iff R is uniformly closed.

Proof. Notice that y &€ R[U[x]] iff xe ULR™*[»]], yeV[RIx]]iff xe R™I[V[¥]].
Therefore (*) holds for all x € X iff («x) holds for all y& Y.

R is called open at y, if for each point x € R™*[y,] and each neighbourhood U
of x, R[U] is a neighbourhood of y,. R is called graph-closed at y, if

R3 (x5, 75) = (x, o) implies (x,y0)eR.
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LemMa. Let X be UCC, and let R be uniformly nearly open. Put C = {yeY:Ris
graph-closed at y}. For every Ue% there is a V e ¥ such that (x) holds for all y e C,
i.e., R is uniformly closed at the points of C. Hence, if R is injective and R[X] = 'Y,
then for every Ued there is a VeV such that

R[UK]=VIY], x=R'y, vyecC,

i.e., R is uniformly open at the points of C.

Proof. Let.d be a perfect complete uniform pseudometric on X, >0, y e C.
There are V, € ¥ such that

VIR[x]<R[UL--Ix]], xeX, neN,

where Uj = {(xy, x2): d(x;,x,)<8}. Let (x,y)eR and (3,y)eV; in view
of Theorem 7 (iii) and the free choice of d and &, it is sufficient to prove that
x' & ULR™*[3]]. Let #(y) be the set of all neighbourhoods of y directed by inclusion;
put G, = V,[¥le#(»). Since yeV,[y|cR[U%-a[x]], there are (x§,75)eR
with d(x', x3) <8272 and y§ e G for GeB(y). Since y € V3[y5* 1= R[US-s[x31],
there are (x3, ¥$) e R with d(x$, x§)<e27? and y§ € G for G € #(y). Inductively,
there are (x¥, y§) € R with d(xSr,,x§)<e2"" and )§ e G for Ge #()), n= 2,3, ...
The net {x¥,(n, ) e NxB(y)} is, as can easily be seen, d-Cauchy, and so has
a cluster point x € X, which satisfies also d(x', x)<e2™*. The corresponding net
{y,‘f} converges to y. Since y & C, (x,¥) € R. This proves what was required.

Remark 4. The lemma remains true if ¥ is any topological space and ¥" is
any family of symmetric neighbourhoods of the diagonal Ay (.e., sets ¥ with
V= —V and IntVody, or if (¥,#) is a Morita uniform space (cf. [11]).

The lemma and Proposition 5 yield the following two results:

*TueoreM 14, Let X and Y be uniform spaces, X — UCQC. Let R be an injective
uniformly nearly open relation in Xx Y with R[X] =Y. If R is graph-closed at
Yos then R is open at yg.

TueoreM 15, Let X and Y be uniform spaces, X being UCC. Let R be a closed
subset of Xx Y. If R is uniformly nearly open, then R is uniformly open.

For a complete metric space X, Theorem 15 gives Kelley’s uniformly open
relation theorem [9; 6.36]. Pettis [12] asked whether Kelley’s theorem holds for
an X complete in a more general sense, while in [11] it is proved for uniformly
locally compact space X. Theorem 15 answers the question. It proves also that
each UCC space is B-complete in the sense of [10]. The next theorem, for the
metrizable case, in [9; 6.37].

Treorem 16. Let X and Y be uniform spaces, X being UCC. If there exists
a continuous uniformly nearly open mapping of X onto Y, then Y is complete.

Proof. The mapping f, considered as a map into Y, is also continuous and
uniformly nearly open. By Theorem 15 and Proposition 5, f'is close d. Hence ¥ = Y.
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' A rest point free dynamical system
on R* with uniformly bounded trajectories

by
Krystyna Kuperberg and Coke Reed (Auburn)

Abstract. In this paper, we show that if &2> 0, then there exists a C* transformation G from R
into R such that the unique solution ® (o the differential equation y" = G(y) is a dynamical
system (a continuous transformation from Rx R into R® such that $(0, p) = p, B(t,, B(t:, 1))
= B (t,+ 15, p) and /AP0, p) = G(p)) with the following two properties: (1) For each point p
in RY and each number #,P(¢, p) is in the g-neighborhood for p; and (2) for each integer n # 0,
®(n, p) # p. Notice that Scottish Book problem number 110 of Ulam follows as a corollary
where f(p) = ®(1, p) and the manifold is R

Introduction. In 1935 S. Ulam raised the following question [7], Problem 110:
“Let M be a given manifold. Does there exist a numerical constant X such that every
continuous mapping / of the manifold M into part of itself which satisfies the con-
dition | f*(x)—x|<K for n = 1,2, ... (where f"(x) denotes the nth iteration of the
image f(x)) possesses a fixed point: f(xo) = %o? The same under more general
assumptions about M (general continuum 9).” In this paper, we solve this problem
in the negative, where M = R3, fis a homeomorphism onto, fis C*, and for each
x € R® and each positive integer n, f"(x) # x. Moreover, f(x) = &(1, x), where & is
a C® dynamical system on R® with uniformly bounded trajectories.. .

By a dynamical system @ on a metric space X we mean a continuous mapping
@: RxX — X (where R is the set of real numbers) such that for each fe R,
({1} x X) = X, and such that if each of #; and t, is a number and p € X is a point,
then ®(iy, @ (15, p)) = ®(ty-+12,p) and #(0,p) =p. If G is a transformation
from R? into R®, then G is said to generate a dynamical system @ provided that,

Gt
for each point p e R?, lim —-- ;T = G(P)}
=0

The set of all points @ (¢, p) for a fixed p and — oo <<+ oo is called a trajectory
of the dynamical system. A point ¢ is called an o-limit point of a trajectory ®(t, p)
it therc exists & SEQUENCE 2y, Yy, .., fnser > + 0 such that lim&(t,,p) = 4.
A point g is called an a-limit point of a trajectory (¢, p) if there exists 2 sequence
P1sbyy wevs Bys o = — 00 SUCH that im®(¢,,7) = 4.

A classica) result which we will employ is the following: If G is a transformation
from R® into R® satisfying globally a Lipschitz condition with constant L, then the

differential equation ' = G(y) has a unique solution for each initial condition and
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