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' A rest point free dynamical system
on R* with uniformly bounded trajectories

by
Krystyna Kuperberg and Coke Reed (Auburn)

Abstract. In this paper, we show that if &2> 0, then there exists a C* transformation G from R
into R such that the unique solution ® (o the differential equation y" = G(y) is a dynamical
system (a continuous transformation from Rx R into R® such that $(0, p) = p, B(t,, B(t:, 1))
= B (t,+ 15, p) and /AP0, p) = G(p)) with the following two properties: (1) For each point p
in RY and each number #,P(¢, p) is in the g-neighborhood for p; and (2) for each integer n # 0,
®(n, p) # p. Notice that Scottish Book problem number 110 of Ulam follows as a corollary
where f(p) = ®(1, p) and the manifold is R

Introduction. In 1935 S. Ulam raised the following question [7], Problem 110:
“Let M be a given manifold. Does there exist a numerical constant X such that every
continuous mapping / of the manifold M into part of itself which satisfies the con-
dition | f*(x)—x|<K for n = 1,2, ... (where f"(x) denotes the nth iteration of the
image f(x)) possesses a fixed point: f(xo) = %o? The same under more general
assumptions about M (general continuum 9).” In this paper, we solve this problem
in the negative, where M = R3, fis a homeomorphism onto, fis C*, and for each
x € R® and each positive integer n, f"(x) # x. Moreover, f(x) = &(1, x), where & is
a C® dynamical system on R® with uniformly bounded trajectories.. .

By a dynamical system @ on a metric space X we mean a continuous mapping
@: RxX — X (where R is the set of real numbers) such that for each fe R,
({1} x X) = X, and such that if each of #; and t, is a number and p € X is a point,
then ®(iy, @ (15, p)) = ®(ty-+12,p) and #(0,p) =p. If G is a transformation
from R? into R®, then G is said to generate a dynamical system @ provided that,

Gt
for each point p e R?, lim —-- ;T = G(P)}
=0

The set of all points @ (¢, p) for a fixed p and — oo <<+ oo is called a trajectory
of the dynamical system. A point ¢ is called an o-limit point of a trajectory ®(t, p)
it therc exists & SEQUENCE 2y, Yy, .., fnser > + 0 such that lim&(t,,p) = 4.
A point g is called an a-limit point of a trajectory (¢, p) if there exists 2 sequence
P1sbyy wevs Bys o = — 00 SUCH that im®(¢,,7) = 4.

A classica) result which we will employ is the following: If G is a transformation
from R® into R® satisfying globally a Lipschitz condition with constant L, then the

differential equation ' = G(y) has a unique solution for each initial condition and
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the dynamical system & generated by G describes this solution set. See, for instance,
[6] Chapter 1.

There are two examples in the literature of dynamical systems on R® with all
trajectories bounded and no rest points. The first is due to Jones and Yorke [5].
The main idea of this example is to describe a monotonically increasing sequence
of tori in R®, whose union is R?, and to define a dynamical system (¢, p) such that
for each fixed ¢, ®(¢, p) restricted to the surface of any of the tori is a rotation.
Therefore, it is not possible to obtain a uniform bound on the trajectories in this
example. The second example was described by Brechner and Mauldin [4] and was
based on the observation of Howard Cook that the acyclic Peano continuum without
the fixed point property constructed by Borsuk [1], [3] can be used to define a dynami-
cal system on R, with no rest points and all trajectories bounded. In this example,
there is a neighborhood of the z-axis so that outside of this neighborhood, points
follow circular trajectories parallel to the xy-plane with center on the z-axis.
Therefore, the trajectories are not uniformly bounded.

The second part of the question of S. Ulam [7], Problem 110, has been answered
in the negative by W. Kuperberg, who gave an example of a one dimensional metric
continuum, which for every £¢>0 admits a fixed point free e-involution. Sub-
sequently, W. Kuperberg and P. Minc, using Borsuk’s example described in [3] and
Cook’s idea, proved that the Cartesian product of the Hilbert cube Q and the circle $*
has the property: for every >0 there exists a dynamical system & on QxS* such
that for each pe QxS* the trajectory &(¢,p) is of dlameter less than e, and
&(n, p) # p for each nonzero integer n.

The example. Suppose that ¢>0. We will construct a C* transformation G
from R? into R® satisfying globally a Lipschitz condition with constant L such that
the dynamical system @ generated by G satisfies the following two properties:

(1) If £ is a number and p is a point, then &(¢, p) is in the e-neighborhood of p;

(2) If n is an integer distinct from zero, then &(n, p) # p.

Set d = ¢/400. G will first be defined on the closed solid cylinder C consisting
of those points (x,y,z) satisfying N 7*<46 and 0<z<66. Now, set
T={(x,y,2): 5<\/x2 +»?<26} and for each number b set T}, = {(x,y,2)eTiz=b}.
G will satisfy the following eight conditions: (1) for each point p & C in the §-neigh-
borhood of the boundary of C, G(p) = (0,0, 1); 2)if p e C and ®(z, p) & C, then p
and ®(z, p) are equidistant from the z-axis; (3) each of the annuli Ty, and T, is
invariant under @, and dis a rotatlon on Tys and on Ty such that for each integer n
distinct from zero @(n,p) # p: (4) if 0<b<26 and p e Ty, then there is a negative
number ¢ such that @(¢, p) e T, and each w-limit point of the trajectory & (%, D)
is on Ty;; (5) if 26<b<44 and pe Ty, then each a-limit point of the trajectory
@(t, p) is on T, and each o-limit point of the trajectory ®(z, p) is on Ty; (6) if
40<b<65 and peT,, then each «-limit point of the- trajectory ®(z, p) is on Ty,
and there is a positive number # such that & (¢, p) € Tey; () if (x, y, 2) € C\(To5 U Tyy)
and @(t, (x,,2)) = (v, w) for some >0, then w>z; (8) if (x, y, z2)e C\T'
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and z = 0, then there is a >0 such that if &(z, (v, y, z))
v =y, and w = 64.

The construction of a dynamical system with the above eight properties in C,
will be made possible by rotating T,; and T, in opposite directions. Property (8) is
accomplished by making sure that points in C\T are trajectories that “unwind”
in the top half of C by the same amount that they “wound up” in the bottom half
of C. See Figure 1. The fact that this can. be accomplished in a C* fashion will now
be demonstrated.

= (u,v, w) then u = x,.

Ty

D{tp)
Fig. 1

Let h denote a strictly increasing C® function on [0, 8] such that 2(0) =0,
h(d) = 1, and all of the derivatives of 4 at zero and one are zero. Now define the
five real valued functions f, g, «, B, and y as follows. .

if 0<rg2s, (0D

1
S = {/1(36-—r) if 205 P 30,
0

(46,0)
if 30«5 r 4o,
{28,1)
0 it 020,
h(z=8)  if gz 28,
Y= hGe-n W<z, T
—g(@d—z) if 3z 685, ./
/.(o A if 0red, N o~
o) = it dergd,
4 h(r -2 it 28 ra3s,
1 if 36 re 46, @0
m
B(r) = 1~a(,
0,0 (36,1)
_[~9@ if 023,  ©D
A I if 30 2 60,

26,0) (46,0)
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Now for each point p = (rcos(d), rsin(8), z) of C,k set
G(p) = (= (g @)rsin(6), £ (r)g (2)rcos(9), a(r)+Bir)y(2) -

Notice that there is a uniform bound on ail of the partial derivatives of G
over C and therefore, G will satisfy a global Lipschitz condition over C. G will be
extended to all of R® in such a way that G will satisfy a Lipschitz condition with the
same constant everywhere and for each point p € R® of the §-neighborhood of the
boundary of C, G(p) = (0,0,1). Under these conditions, we will now observe
that G and. its generated dynamical system & have the eight desired properties out-
lined above. G is defined so that properties (1), (3), and (7) are satisfied. Property 2)
is satisfied because (rcos(0), rsin(0), 0) and (—f(r)g(=)rsind,f (r)g(z)reos(0), 0)
are orthogonal. Properties (4), (5), and (6) follow from properties (2), (3), and (7),
.and from the fact that ¥ = G(») has a unique solution. Property (8) follows from
the reversed symmetry of G in the upper and lower halves of C, and from the uni-
.queness of the solution of y' = G(y). '

Now extend G to the set of all points (4, v, w) such that 0w <65 as follows.
If there exists an integer pair (i,) and a point (x, ¥, z) of C such that (u,v, w)
= (x+8id, y+8j5, z) then set G(u, v, w) = G(x,y,z); otherwise set G(u,v,w)
= (0,0, 1). Now extend G to the set of all points (11, v, w) such that 0 w< (6 x 64)
as follows. Let [ay, ay, ..., @3] denote the point sequence

[0, 0), 0, &), .., (0,78), (8,0}, ..., (8, 79), ... (76, T8)] .
Let i denote the integer such that 6/ <w<6(i+1)d and set Gu,v,w) = G(x,y,2)
‘where (x,¥)+a; = (u,v) and z+6i6 = w. Extend G to all of R® as follows. If

(4, v, w) is a point of R® such that w is not in [0, (6 x 64)§], let i denote the integer
such that
(6x64)i6<w< (6% 64)(i+1)3 .
Now set
Gu, v, w) = G(u, v, w— (6% 64)id) .
‘This completes the description of the example.
For integers 7, j, and k, 0<k<63, put

;g5 = {(x,7) € R*: 8<|i(x, »)=[a+ (815, 80)]l| <26} .
Notice that the union of alt annuli 4, ;, is R?. Denote by B, (where 1 = (i, f, k, n, m),
i, j, k, and n are integers, 0<k<63, and m = 2 or 4) the annulus in R?,

{(x,7,2)e R*: (x,¥) € 4,;; and z = [(64 % 6)n+6k-+m]d}.
Each of B, is invariant under @, and if p € B, then
18, p)—plls4d<s.

If p is not on one of these annuli then either: (1) There are two annuli B,, and By,
where A, = (i,],k,n,2) and 4, = (i,7, k,n,4) such that the trajectory &(z, p)
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is “betwoen”' B;, and B;, with the «-limit points of the trajectory &(t, p) on B
and the o-limit points of the trajectory @(z,p) on B,,. Then e
ar

[1®(t, p)—pll<(@d+2)6<e ;

or (2) There is a number #, and an integer d such that if & (%, p) is denoted by
{u, v, w) then w = 6d5. The line perpendicular to the xy-plane, and passing through
®(ty, p) intersects two annuli B,, (below & (f, p)), and B,, (above B(zy, p)) so that
the a-limit points of the trajectory ®(t, p) are on B;, and the w-limit points of the
trajectoty @ (1, p) are on B, (see Figure 2), The distance between B, and B,, is
less than (64 x 6)d. The projection of the trajectory &(z, p) on the Jéy-planeliws
diameter less than 166, since the projection of @ (¢, p), for any ¢, on the xy-plane
is in a distance less than 68 from the projection of B,, on the xy-plane. Therefore,

|l (2, p)—pl| <[(64 X 6)+16]5 = 4008 = &.

The only periodic trajectories are on the annuli B,. Hence, for no non-zero
integer n, @ (n, p) = p.

¢ o ) I
0 (—>

Fig. 2

Remark. A similar dynamical system can be constructed on a closed manifold
§'x 8% % St where S! denotes the one dimensional sphere.
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Cardinal functions on compact F-spaces and on weakly
countably complete Boolean algebras *

by

Eric K. van Douwen (Athens, Ohio)

Abstract. We investigate limitations on the cardinals % which occur as the value of cardinal
functions on infinite compact F-spaces (or on weakly countably complete Boolean algebras).
We find limitations of the form x® = %, or else cf(x) = w, or at least “» is not a strong limit
with cf () = ", and show that all infinite cardinals » with #® = % do occur (for cardinality one
needs the additional restriction » > 2%, as is well known).
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1. Introduction. This is a paper on the behavior of cardinal functions on compact
F-spaces. The Boolean algebras which occur as the algebra of clopen (= closed
and open) scts of a zero-dimensional compact F-space are the weakly countably
complete Boolean algebras, or WCC algebras for short, see § 6 for the definition.
This class includes the class of countably complete Boolean algebras and has the
pleasant property of being closed under homomorphisms. (However, it is consistent
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