

228

References

- [1] S. Banach, Théorie des Opérations Linéares, Warszawa 1932.
- [2] L. G. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), pp. 593-600.
- [3] T. Byczkowski and R. Pol, On the closed graph and open mapping theorems, Bull. Acad. Polon. Sci. 24 (1976), pp. 723-726.
- [4] R. Engelking, General Topology, Warszawa 1977.
- [5] Z. Frolik, Generalization of the G_δ-property of complete metric spaces, Czech. Math. Journ. 10 (1960), pp. 359-379.
- [6] On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. 8 (1960), pp. 747-750.
- [7] T. Husain, Introduction to Topological Groups, Philadelphia 1966.
- [8] On a closed graph theorem for topological groups, Proc. Japan Acad. 44 (1968), pp. 446-448.
- [9] J. L. Kelley, General Topology, Princeton 1955.
- [10] V. L. Levin and D. A. Rajkov, Closed graph theorems for uniform spaces (in Russian), Dokl. Akad. Nauk SSSR 150 (1963), pp. 981-983.
- [11] P. Mah and S.A. Naimpally, Open and uniformly open relations, Proc. Amer. Math. Soc. 66 (1977), pp. 159-166.
- [12] B. J. Pettis, Some topological questions related to Open Mapping and Closed Graph Theorems, Studies in Topology, New York 1975, pp. 451-456.
- [13] V. Pták, On complete topological linear spaces (in Russian), Czech. Math. Journ. 78 (1953), pp. 301-360.
- [14] On the closed graph theorem, Czech. Math. Journ. 9 (1959), pp. 69-72.
- [15] H. H. Schaefer, Topological Vector Spaces, New York 1966.
- [16] L. J. Sulley, A note on B- and B_r-complete topological Abelian groups, Proc. Camb. Phil. Soc. 66 (1969), pp. 275-279.
- [17] M. Wilhelm, Relations among some closed graph and open mapping theorems, Colloq. Math. 42 (1979), pp. 387-394.
- [18] On a question of B. J. Pettis, Bull. Acad. Polon. Sci. 27 (1979), pp. 591-592.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCŁAW

Accepté par la Rédaction le 31. 12. 1979

A rest point free dynamical system on \mathbb{R}^3 with uniformly bounded trajectories

bs

Krystyna Kuperberg and Coke Reed (Auburn)

Abstract. In this paper, we show that if $\varepsilon > 0$, then there exists a C^∞ transformation G from R^a into R^a such that the unique solution Φ to the differential equation y' = G(y) is a dynamical system (a continuous transformation from $R \times R^a$ into R^a such that $\Phi(0, p) = p$, $\Phi(t_1, \Phi(t_2, p)) = \Phi(t_1 + t_2, p)$ and $\partial/\partial i\Phi(0, p) = G(p)$) with the following two properties: (1) For each point p in R^a and each number $t, \Phi(t, p)$ is in the ε -neighborhood for p; and (2) for each integer $n \neq 0$, $\Phi(n, p) \neq p$. Notice that Scottish Book problem number 110 of Ulam follows as a corollary where $f(p) = \Phi(1, p)$ and the manifold is R^a .

Introduction. In 1935 S. Ulam raised the following question [7], Problem 110: "Let M be a given manifold. Does there exist a numerical constant K such that every continuous mapping f of the manifold M into part of itself which satisfies the condition $|f^n(x)-x|< K$ for n=1,2,... (where $f^n(x)$ denotes the nth iteration of the image f(x)) possesses a fixed point: $f(x_0)=x_0$? The same under more general assumptions about M (general continuum?)." In this paper, we solve this problem in the negative, where $M=R^3$, f is a homeomorphism onto, f is C^∞ , and for each $x \in R^3$ and each positive integer $n, f^n(x) \neq x$. Moreover, $f(x) = \Phi(1, x)$, where Φ is a C^∞ dynamical system on R^3 with uniformly bounded trajectories.

By a dynamical system Φ on a metric space X we mean a continuous mapping $\Phi: R \times X \to X$ (where R is the set of real numbers) such that for each $t \in R$, $\Phi(\{t\} \times X) = X$, and such that if each of t_1 and t_2 is a number and $p \in X$ is a point, then $\Phi(t_1, \Phi(t_2, p)) = \Phi(t_1 + t_2, p)$ and $\Phi(0, p) = p$. If G is a transformation from R^3 into R^3 , then G is said to generate a dynamical system Φ provided that,

for each point
$$p \in \mathbb{R}^3$$
, $\lim_{t \to 0} \frac{\phi(t, p) - p}{t} = G(p)$.

The set of all points $\Phi(t,p)$ for a fixed p and $-\infty < t < +\infty$ is called a trajectory of the dynamical system. A point q is called an ω -limit point of a trajectory $\Phi(t,p)$ if there exists a sequence $t_1,t_2,...,t_n,...,\to +\infty$ such that $\lim \Phi(t_n,p)=q$. A point q is called an α -limit point of a trajectory $\Phi(t,p)$ if there exists a sequence $t_1,t_2,...,t_n,...\to -\infty$ such that $\lim \Phi(t_n,p)=q$.

A classical result which we will employ is the following: If G is a transformation from \mathbb{R}^3 into \mathbb{R}^3 satisfying globally a Lipschitz condition with constant L, then the differential equation y' = G(y) has a unique solution for each initial condition and

the dynamical system Φ generated by G describes this solution set. See, for instance, [6] Chapter I.

There are two examples in the literature of dynamical systems on R^3 with all trajectories bounded and no rest points. The first is due to Jones and Yorke [5]. The main idea of this example is to describe a monotonically increasing sequence of tori in R^3 , whose union is R^3 , and to define a dynamical system $\Phi(t, p)$ such that for each fixed t, $\Phi(t, p)$ restricted to the surface of any of the tori is a rotation. Therefore, it is not possible to obtain a uniform bound on the trajectories in this example. The second example was described by Brechner and Mauldin [4] and was based on the observation of Howard Cook that the acyclic Peano continuum without the fixed point property constructed by Borsuk [1], [3] can be used to define a dynamical system on R^3 , with no rest points and all trajectories bounded. In this example, there is a neighborhood of the z-axis so that outside of this neighborhood, points follow circular trajectories parallel to the xy-plane with center on the z-axis. Therefore, the trajectories are not uniformly bounded.

The second part of the question of S. Ulam [7], Problem 110, has been answered in the negative by W. Kuperberg, who gave an example of a one dimensional metric continuum, which for every $\varepsilon > 0$ admits a fixed point free ε -involution. Subsequently, W. Kuperberg and P. Minc, using Borsuk's example described in [3] and Cook's idea, proved that the Cartesian product of the Hilbert cube Q and the circle S^1 has the property: for every $\varepsilon > 0$ there exists a dynamical system Φ on $Q \times S^1$ such that for each $p \in Q \times S^1$ the trajectory $\Phi(t, p)$ is of diameter less than ε , and $\Phi(n, p) \neq p$ for each nonzero integer n.

The example. Suppose that $\varepsilon > 0$. We will construct a C^{∞} transformation G from R^3 into R^3 satisfying globally a Lipschitz condition with constant L such that the dynamical system Φ generated by G satisfies the following two properties:

(1) If t is a number and p is a point, then $\Phi(t, p)$ is in the ε -neighborhood of p;

(2) If n is an integer distinct from zero, then $\Phi(n, p) \neq p$.

Set $\delta=\epsilon/400$. G will first be defined on the closed solid cylinder C consisting of those points (x,y,z) satisfying $\sqrt{x^2+y^2}\leqslant 4\delta$ and $0\leqslant z\leqslant 6\delta$. Now, set $T=\{(x,y,z):\delta\leqslant\sqrt{x^2+y^2}\leqslant 2\delta\}$ and for each number b set $T_b=\{(x,y,z)\in T:z=b\}$. G will satisfy the following eight conditions: (1) for each point $p\in C$ in the δ -neighborhood of the boundary of C, G(p)=(0,0,1); (2) if $p\in C$ and $\Phi(t,p)\in C$, then p and $\Phi(t,p)$ are equidistant from the z-axis; (3) each of the annuli $T_{2\delta}$ and $T_{4\delta}$ is invariant under Φ , and Φ is a rotation on $T_{2\delta}$ and on $T_{4\delta}$ such that for each integer n distinct from zero $\Phi(n,p)\neq p$; (4) if $0< b< 2\delta$ and $p\in T_b$, then there is a negative number t such that $\Phi(t,p)\in T_0$ and each ω -limit point of the trajectory $\Phi(t,p)$ is on $T_{2\delta}$; (5) if $2\delta < b < 4\delta$ and $p\in T_b$, then each α -limit point of the trajectory $\Phi(t,p)$ is on $T_{4\delta}$; (6) if $4\delta < b < 6\delta$ and $p\in T_b$, then each α -limit point of the trajectory $\Phi(t,p)$ is on $T_{4\delta}$; (6) if $4\delta < b < 6\delta$ and $p\in T_b$, then each α -limit point of the trajectory $\Phi(t,p)$ is on $T_{4\delta}$; (6) if $4\delta < b < 6\delta$ and $p\in T_b$, then each α -limit point of the trajectory $\Phi(t,p)$ is on $T_{4\delta}$; (6) if $4\delta < b < 6\delta$ and $4\delta < 2\delta$ an

and z = 0, then there is a t > 0 such that if $\Phi(t, (x, y, z)) = (u, v, w)$ then u = x, v = y, and $w = 6\delta$.

The construction of a dynamical system with the above eight properties in C, will be made possible by rotating $T_{2\delta}$ and $T_{4\delta}$ in opposite directions. Property (8) is accomplished by making sure that points in $C \setminus T$ are trajectories that "unwind" in the top half of C by the same amount that they "wound up" in the bottom half of C. See Figure 1. The fact that this can be accomplished in a C^{∞} fashion will now be demonstrated.

Fig. 1

Let h denote a strictly increasing C^{∞} function on $[0, \delta]$ such that h(0) = 0, $h(\delta) = 1$, and all of the derivatives of h at zero and one are zero. Now define the five real valued functions f, g, α , β , and γ as follows.

$$f(r) = \begin{cases} 1 & \text{if } 0 \leqslant r \leqslant 2\delta, \\ h(3\delta - r) & \text{if } 2\delta \leqslant r \leqslant 3\delta, \\ 0 & \text{if } 3\delta \leqslant r \leqslant 4\delta, \end{cases}$$

$$g(z) = \begin{cases} 0 & \text{if } 0 \leqslant z \leqslant \delta, \\ h(z - \delta) & \text{if } \delta \leqslant z \leqslant 2\delta, \\ h(3\delta - z) & \text{if } 2\delta \leqslant z \leqslant 3\delta, \\ -y(6\delta - z) & \text{if } 3\delta \leqslant z \leqslant 6\delta, \end{cases}$$

$$\alpha(r) = \begin{cases} h(\delta - r) & \text{if } 0 \leqslant r \leqslant \delta, \\ 0 & \text{if } \delta \leqslant r \leqslant \delta, \end{cases}$$

$$\alpha(r) = \begin{cases} h(\delta - r) & \text{if } 0 \leqslant r \leqslant \delta, \\ h(r - 2\delta) & \text{if } 2\delta \leqslant r \leqslant 3\delta, \\ 1 & \text{if } 3\delta \leqslant r \leqslant 4\delta, \end{cases}$$

$$\beta(r) = 1 - \alpha(r),$$

$$\gamma(r) = \begin{cases} -g(z) & \text{if } 0 \leqslant z \leqslant 3\delta, \\ g(z) & \text{if } 3\delta \leqslant z \leqslant 6\delta. \end{cases}$$

$$(0,1)$$

$$(0,0)$$

$$(0,0)$$

$$(3\delta,1)$$

$$(4\delta,0)$$

Now for each point $p = (r\cos(\theta), r\sin(\theta), z)$ of C, set

$$G(p) = \left(-f(r)g(z)r\sin(\theta), f(r)g(z)r\cos(\theta), \alpha(r) + \beta(r)\gamma(z)\right).$$

K. Kuperberg and C. Reed

Notice that there is a uniform bound on all of the partial derivatives of G over C and therefore, G will satisfy a global Lipschitz condition over C. G will be extended to all of R³ in such a way that G will satisfy a Lipschitz condition with the same constant everywhere and for each point $p \in \mathbb{R}^3$ of the δ -neighborhood of the boundary of C, G(p) = (0, 0, 1). Under these conditions, we will now observe that G and its generated dynamical system Φ have the eight desired properties outlined above. G is defined so that properties (1), (3), and (7) are satisfied. Property (2) is satisfied because $(r\cos(\theta), r\sin(\theta), 0)$ and $(-f(r)g(z)r\sin\theta, f(r)g(z)r\cos(\theta), 0)$ are orthogonal. Properties (4), (5), and (6) follow from properties (2), (3), and (7), and from the fact that y' = G(y) has a unique solution. Property (8) follows from the reversed symmetry of G in the upper and lower halves of C, and from the unigueness of the solution of y' = G(y).

Now extend G to the set of all points (u, v, w) such that $0 \le w \le 6\delta$ as follows. If there exists an integer pair (i,j) and a point (x, y, z) of C such that (u, v, w)= $(x+8i\delta, y+8j\delta, z)$ then set G(u, v, w) = G(x, y, z); otherwise set G(u, v, w)= (0,0,1). Now extend G to the set of all points (u, v, w) such that $0 \le w \le (6 \times 64) \delta$ as follows. Let $[a_0, a_1, ..., a_{63}]$ denote the point sequence

$$[(0,0),(0,\delta),...,(0,7\delta),(\delta,0),...,(\delta,7\delta),...,(7\delta,7\delta)]$$

Let i denote the integer such that $6i\delta < w \le 6(i+1)\delta$ and set G(u, v, w) = G(x, y, z)where $(x, y) + a_i = (u, v)$ and $z + 6i\delta = w$. Extend G to all of R^3 as follows. If (u, v, w) is a point of R^3 such that w is not in $[0, (6 \times 64)\delta]$, let i denote the integer such that

$$(6 \times 64)i\delta < w \leq (6 \times 64)(i+1)\delta$$
.

Now set

$$G(u, v, w) = G(u, v, w - (6 \times 64)i\delta).$$

This completes the description of the example.

For integers i, j, and k, $0 \le k \le 63$, put

$$A_{i,i,k} = \{(x, y) \in \mathbb{R}^2 : \delta \leq ||(x, y) - [a_k + (8i\delta, 8j\delta)]|| \leq 2\delta \}.$$

Notice that the union of all annuli $A_{i,i,k}$ is \mathbb{R}^2 . Denote by B_{λ} (where $\lambda = (i, j, k, n, m)$, i, i, k, and n are integers, $0 \le k \le 63$, and m = 2 or 4) the annulus in \mathbb{R}^3 ,

$$\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in A_{t,i,k} \text{ and } z = [(64 \times 6)n + 6k + m]\delta\}.$$

Each of B_2 is invariant under Φ , and if $p \in B_2$ then

$$||\Phi(t,p)-p|| \leq 4\delta < \varepsilon$$
.

If p is not on one of these annuli then either: (1) There are two annuli B_{λ_1} and B_{λ_2} where $\lambda_1 = (i, j, k, n, 2)$ and $\lambda_2 = (i, j, k, n, 4)$ such that the trajectory $\Phi(t, p)$ is "between" B_{λ_1} and B_{λ_2} with the α -limit points of the trajectory $\Phi(t, p)$ on B_{λ_1} , and the ω -limit points of the trajectory $\Phi(t, p)$ on B_{12} . Then

$$||\Phi(t,p)-p||<(4+2)\delta<\varepsilon$$
;

or (2) There is a number t_0 and an integer d such that if $\Phi(t_0, p)$ is denoted by (u, v, w) then $w = 6d\delta$. The line perpendicular to the xy-plane, and passing through $\Phi(t_0, p)$ intersects two annuli B_{λ_1} (below $\Phi(t_0, p)$), and B_{λ_2} (above $\Phi(t_0, p)$) so that the α -limit points of the trajectory $\Phi(t, p)$ are on B_{λ_1} and the ω -limit points of the trajectory $\Phi(t, p)$ are on B_{λ_2} (see Figure 2). The distance between B_{λ_1} and B_{λ_2} is less than $(64 \times 6)\delta$. The projection of the trajectory $\Phi(t, p)$ on the xy-plane has diameter less than 16 δ , since the projection of $\Phi(t, p)$, for any t, on the xy-plane is in a distance less than 6δ from the projection of B_{λ_1} on the xy-plane. Therefore,

$$||\Phi(t,p)-p|| \leq \lceil (64 \times 6) + 16 \rceil \delta = 400 \delta = \varepsilon.$$

The only periodic trajectories are on the annuli B_2 . Hence, for no non-zero integer n, $\Phi(n, p) = p$.

Fig. 2

Remark. A similar dynamical system can be constructed on a closed manifold $S^1 \times S^1 \times S^1$, where S^1 denotes the one dimensional sphere.

References

- R. H. Bing, Challenging conjectures, Amer. Math. Monthly, (January 1967), Part II, pp. 56-64.
- [2] D. Blackmore, An example of a local flow on a manifold, Proc. Amer. Math. Soc. 42 (1974), pp. 208-213.
- [3] K. Borsuk, Sur un continua acyclique qui se lasse transformer topologiquement en lui memesans points invariants, Fund, Math. 24 (1935), pp. 51-58.
- [4] B. Brechner and R. D. Mauldin, Homeomorphisms of the plane, Pacific J. Math. 59, (2) (1975), pp. 375-381.
- [5] G. S. Jones and J. A. Yorke, The existence and nonexistence of critical points in bounded flows, J. Differential Equations 6 (1969), pp. 238-246.
- [6] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential equations, Princeton University Press 1960.
- [7] S. M. Ulam, The Scottish Book, L.A.S.L. Monograph LA-6832.

Accepté par la Rédaction le 21. 2. 1980

Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras *

b

Eric K. van Douwen (Athens, Ohio)

Abstract. We investigate limitations on the cardinals \varkappa which occur as the value of cardinal functions on infinite compact F-spaces (or on weakly countably complete Boolean algebras). We find limitations of the form $\kappa^o = \kappa$, or else $cf(\varkappa) = \omega$, or at least " κ is not a strong limit with $cf(\varkappa) = \omega$ ", and show that all infinite cardinals κ with $\kappa^o = \kappa$ do occur (for cardinality one needs the additional restriction $\kappa \ge 2^{no}$, as is well known).

Contents

1.	introduction	35
2.	Original monvation	36
3.	Conventions and demittions	37
4.	Cardinal functions	37
5.	Combinatorial tools	39
6.	Compact F-spaces and wcc-algebras	39
	Cardinanty	40
8.	Character	12
9.	Hereditary Lindelöf degree	43
10.	Spread	44
11.	Density and cellularity in special compact F-spaces	45
12.	Weight	47
13.	Relations between cardinal functions on extremally disconnected compacta	47
14.	Examples	48
15.	Cardinalities of closed subsets of extremally disconnected compacta	52
16.	Ouestions	53
17.	Appendix: some special spaces and Boolean algebras	54

1. Introduction. This is a paper on the behavior of cardinal functions on compact F-spaces. The Boolean algebras which occur as the algebra of clopen (= closed and open) sets of a zero-dimensional compact F-space are the weakly countably complete Boolean algebras, or WCC algebras for short, see § 6 for the definition. This class includes the class of countably complete Boolean algebras and has the pleasant property of being closed under homomorphisms. (However, it is consistent

^{*} Completed while supported by NSF-Grant MCS78-09484.