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Approximate polyhedra, resolutions of maps and shape fibrations

. by

Sibe Marde$ié (Zagreb)

Abstract. Shape fibrations between compact metric spaces were introduced by T. B. Rushing
and the author in [15]. In this paper one extends the definition so as to apply to maps p: E—+B
between arbitrary topological spaces, This is done by considering certain morphisms in pro-Top
p: E - B, called resolutions of p. In the compact case resolutions reduce to inverse limit expansions.
One requires also that the systems £ and B consist of ANR’s, polybedra or more generally of
spaces called approximete polyhedra (AP). A map p is a shape fibration provided it admits an
AP-resolution p, which has a certain approximate homotopy lifting-property. Resolutions of
spaces are characterized and compared with the. inverse limit expansions. Moreover, existence
of ANR-resolutions and polyhedral resolutions is demonstrated.

1. Introduction, Shape fibrations p: E— B between compact metric spaces
(more generally, proper shape fibrations between locally compact metric spaces)
were introduced and studied by T. B. Rushing and the author in [15], [16], [17}.
Further contributions to this theory were made by Z. Cerin, L. S. Husch, M. Jani,
J. Keesling, S. Mardesié, A. Matsumoto and T. C. McMillan. For a survey of results
on approximate fibrations and shape fibrations see [14] and [22]..

This paper originated from an attempt to extend the notion of shape fibration
from the rather special case of maps between metric compacta to the general case of
maps between arbitrary topological spaces. Results concerning this question are
contained in Sections 4 and 8 of this paper. v

The main idea consists in considering certain expansions p: E — B of the map
p: E - B, called resolutions of p. They are related to inverse limit expansions of p
and appear to be of interest on their own. For resolutions of p one defines the approxi-
mate homotopy lifting property (AHLP) as in ([15], § 9). If one allows as memibers
of E and B only “nice” spaces, then the property AHLP does not depend on the
choice of the resolution, but depends only on the map p. Maps which have thlils
property are, by definition, shape fibrations. In § 8 we give a “categorical” definition
of shape fibrations.

In § 2 we define and study “nice” spaces under the name of approximate poly-
hedra. We show that they include ANR’s (for metric-spaces), CW-complexes and
n-dimensional LC'™* paracompacta. In the compact metric case approximate
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polyhedra coincide with approximate ANR’s of M.H. Clapp [6] and with
K. Borsuk’s NE-sets [4].

In §§ 5 and 6 we first characterize resolutions of spaces. They turn out to be
closely related to P. Bacon’s complements of inverse systems [2]. Then we compate
resolutions with inverse limits. -

In § 7 we establish the existence of polyhedral resolutions and ANR -resolutions
of spaces and maps. The ANR-resolution, which we construct in § 7, is an essential

" tool in proving that the categorical definition of shape fibrations coincides with the
definition based on resolutions, * .

In § 9 we show that a resolution of a space induces in the homotopy category
an associated system in the sense of X. Morita [19]. Consequently, one can base the
development of shape theory also on ANR-resolutions. This can be considered an
outgrowth of the original Mardeié-Segal ANR-system approach to shape [18]

2. Approximate poiyhedra. Let #” be a covering of Y. We say that the maps
fi9: X —» Y are # -near, and we write (f, g)<¥", provided every x € X" admits
a Ve ¥ such that f(x), g(xye V. If # is a star-refinement of ¥~ we write ¥ <*¥".
We shall often use the fact that (f,9)<¥#, (g, H)<¥ and (h, K)<<# imply
f, <y :

An open covering ¥ of X is called normal if there is a sequence of open cover-
ings ¥, i=1,2, ..., such that ¥"; = ¥ and ¥ <*¥ 4. Normal coverings of X
coincide with open coverings 7", which admit a locally finite partition of unity
(py, Ve ¥) subordinated to ¥ (see e.g. [1], Theorem 10.10 or [13], 3, The-
orems 1, 2,3). Also recall that for paracompact spaces all open coverings are normal
(seee.g. [1], Corollary 10.14).

'DEFINITION 1. Let 2 and @ be two classes of topological spaces. We say that °

the class % approximately dominates the class &, and we write 2 <%, provided for
every X'eZ and for every normal covering% of X there exists a Ye® and there exist
maps f: X' — Y, g: ¥ - X such that gf and the identity map 1y are %-near. If
Z<,% and U<, & we say that the classes & and @ are approximately equivalent,
and we write & ~,%.

Remark 1. The relation <, is reflexive and transitive. Indeed, let &' <Y
and ¥<,%. Let Xe% and let % be a normal covering of X. Let ¥ be a normal
star-refinement of %. Then there exists a space ¥ & % and there exist maps f: X - Y,
g: Y — X such that (gf, 1y)<¥". Furthermore, there exists a space Z € % and there
exist maps f': Y > Z, g': Z— Y such that (g f", ly)<g~ ' (#). Then

. (arsag' /1)< .
Hence,”
o (tx, 9a) ()<,
which . shows that indeed ', %.

By a polyhedron we mean in this paper the carrier |K| of a simplicial complex X
endowed with the CW-topology. We denote by " the open covering of |K| formed
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by all the stars st(s, K) of the vertexes v of K. We call A" the. star-covering of K.
By an ANR we always mean an ANR for metric spaces.

TueorREM 1. The following four classes of spaces are approximately equivalent:
The elass P of polvhedra, the class S M of simplicial complexes endoiwed with the
metric topology, the cluss A AR of absolute neighborhood retracts for metric spaces
and the -class €W of CW~complexes. :

Proof. (i) #<,& 4. Let X be a polyhedron and % an open covering of X.
Choose a triangulation K of X so fine that the star-covering A~ of K refines %. Such
triangulations exist (J. H. C. Whitehead [24], Theorem 35; also see ([13] 3, Lemma 11)).
Let Y = |K| be the carrier of K endowed with the metric topology. Then the identity
map i; X — Y is continuous and admits a homotopy inverse j: ¥ — X such that ji
and Iy are contiguous with respect to K (see e.g. [7], Corollary A, 2.9 or [12], 2,
Theorem 2). Hence (ji, 1) <. '

(i) &M< o8 N R. This assertion is obyious because every simplicial complex
with the metric topelogy is an ANR ([9], III, Theorem 1.143, or [13], 2, Theorem 4).

(ii) LN AL, G Tt is well-known that for every ANRX and for every open
covering % of X there exists a polyhedron P and there exist maps f: X-2,
g: P ~ X such that gf and 1 are even % -homotopic (see e.g. [9], IV, Theorem 6.1).

(iv) €9 <,?. Let X be a CW-complex. By results of R. Cauty [5], X can be
considered a closed subset of a polyhedron P and a retract of an open neighborhood ¥
of XinP.Iff: X — Vistheinclusionmapandg: ¥ — Xis aretraction, then gf= 1x.
It thus suffices to notice that an open subset ¥ of a polyhedron is itself a polyhedron.
A proof of this fact is outlined in ([23], Bxercise 3, p. 149) for the special case of
compact polyhedra. However, the same argument is valid in the general case too
(cf. [7], footnote on p. 353). '

Remark 2. We have actually shown that the classes 2, &M, LA R and €#~
are equivalent in the stronger sense that the maps gf and 1y are %-homotopic and
not just %-near. .

DEFINITION 2. A space X is called an approximate polyhedron provided X is
approximately dominated by the class 2 of all polyhedra. We denote the class of
approximate polyhedra by &/2. : )

An immediate consequence of Theorem 1 is this corollary.

COROLLARY 1. Polyhedra, simplicial complexes with the metric topology, ANR’s
Jor metric spaces and CW-complexes dre approximate polyhedra.

Remark 3. One could define approximate ANR’s and approximate CW-com-
plexes in the same way as we defined AP’s in Definition 2. However, by Tl_1eorem 1,
these classes of spaces would coincide with the class &/Z. One coulfi also introduce
a class of homotopy approximate polyhedra using the stronger notion of #-homo-
topy instead of % -nearness. However, notice that all these spaces would have the
homotopy type of polyhedra. . o : IR
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" Another class of examples of approximate polyhedra is given by the following
theorem. ‘

THEOREM 2. A paracompact space X, which is LC"™' and has covering dimen-
sion dimX'<n<co, is an approximate polyhedron. )

Proof. Let % be an open covering of X. We choose a star-refinement %’ of %
and a refinement ¥ of %’ such that for any simplicial complex K with dimK<n
every partial realization go: |L| — X of K relative to %" cxtends to a full realization
g: |K| - X relative to %'. Such a ¥ exists by ([9], V, Theorem 4.1 and Remark 4.4).
Let #” be a star-refinement of ¥". Since dimX'<n one can assume that the nerve
N(#') has dimension <n. Let f: X — |N(#")| be a canonical map for ¢, i.e. a map
such that f~*(st(W, #))SW for every We# . For K = N(#) and for LcK
the 0-skeleton of K we define g,: |L| — X be choosing for each We % a point
go(W)e W. If the vertexes W,,..,W, of K span a simplex in K, then
Won..n W, #0 and thus go(Wy), ..., go(W,) e Wy U ... U W, Sst(W,, WSV
for some Ve This shows that g, is a partial realization of K relative to ¥.
Consequently, g, extends to_a full realization g: |N(#)| — X relative to %'.

We claim that (gf, 1y)<%. Indeed, if x€ X and (W, ..., W,) e N(#) is the
carrier of f(x), then x e Wy 0 ... n W, W, U’ for some U’ e%'. Furthermore,
af x)egWy, ..., W)= U" for some U” e, Since %' =* % and

g(Woye Wy ng(Wy, ..., W)U A U,
we conclude that there is Ue% such that x,gf(x)e U’ v U""gU.

In order to gain further insight in the class &2, we shall now consider compact
metric approximate polyhedra. b

In [6] M. H. Clapp has defined a class of metric compacta, called approxi-
mative absolute neighborhood retracts (AANR). A metric compactum X is an
AANR provided it has the following property:

(O) If X'is embedded in a metric space Y, then for every £>0 there exist a neigh-
borhood U of X' in Y and a map r: U — X such that the distance d(r(x), x)<e
for all xe X. }

In [4] K. Borsuk has studied a class of metric compacta X, called NE-sets,
and characterized by the following property:

(B) There exists a compact AR M, which contains X as a subspace and is such
that every £>0 admits a neighborhood U of X in M and a map p: U~ X with
d(p(»), y)<e for all yeU.

TrEOREM 3. Compact metric approximate polyhedra, Borsul’s WE-sets and
Clapp’s. AANR’s coincide.

Proof. (i) Let X be a compact metric approximate polyhedron. We can assume
that X is embedded in the Hilbert cube M = Q. By Definition 2, for any &> 0 there
exists @ polyhedron P and there exist maps f: X— P, g: P —» X such that
d(gf, 1x)<s. Since X is compact, one can assume that P is a compact polyhedron
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and thus an ANR. Therefore, f can be extended to a map f: U — P of a neighbor-
hood U of X in Q. If we choose U small enough, we will still have d(gf (3, y)<e
for y e U. Hence, p = gf: U= X satisfies condition (B).

(i) Now let X be an NE-set and let X< ¥, where Y is a metric space. Let M
be an AR containing X and satisfying (B). For any >0 there exist a neighborhood ¥
of X in M and a map p: ¥V — X such that d(p(¥), y)<s, y € V. Since M is an AR,
the identity map 1x: X — X< M extends to a map /> U — M, where U is a neigh-
borhood of X in Y. One can assume that £ (U)< V. Then we define r: U — X by
r = pf. Cleasly, d(r(x), ¥) = d(p(%), x)<e for any x € X. We have thus established
property (C). :

(iif) Now let X be an AANR. One can assume that X is embedded in the Hilbert

o
cube Q@ =] 1;, I; = [0, 1]. For a given >0 let r: U — X be a map of a neigh-
i=1 .

borhood U of X in Q such that d(r(x), x)<}e for x € X. There is no loss of generality
in assuming that d(r(y), y)<%e for ye U. One can also assume that UiS of the form
U= Px ] I;, where P is a compact polyhedron in []7; and that

i>n i€n
d((s, 1), (s, 1) <3s
for any seP and t,#' €[] I,. Consider the projection U =Px [] I, ~ P and
i>n i>n
let f: X — P be its restriction to X. Let g: P — X be the composition of the em-
bedding s+ (5,0 ePx [[ 1, = U, seP, with the map r: U— X. Clearly, if

i>n

Cx=0s, e X, then gf (x) = r(s, 05 so that

d(gf (%), x)<d(r(s, 0), &5, 0)+d(Gs, 0), (s, 1)) <.

This shows that X is an approximate polyhedron.

Now we shall describe some simple examples.

ExampLe 1. Every locally connected continuum in R? is an approxi‘mate
polyhedron ([4], Theorem 5.1). In particular, the compact infinite bouquet of circles
is an approximate polyhedron, which does not have the homotopy type of a poly-
hedron.

ExameLE 2. Let Sy, S,<R?* be circles with center 0 and with radii 1 and 2
respectively. Let 4 be the annulus determined by Sy, S, and let LcInt4 bea homec?-
morphic copy of R, which spirals to both Sy and S,. Then X =8 uS, UL is
a continuum in R? which fails to be an approximate polyhedron.

Indeed, assume that X € AP and choose 0<e<1. Then there is a ptl)lyhedron P
and there are maps f: X — P, g: P — X such that d(gf, 1x)<e. Notice that

af (SPSXN\S; and  gf (SSX\S; -

Let Q;, i =1, 2, be a compact connected polyhedral neighborhood of £(Sy) in P so

small that

g(@)=X\S, and g(Q) s X\S; -
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Since’ ¥ = Q, U Q, u f(X) is a pathwise connected continuum and since Sy, S,, L
are the path components of X, it follows that g(¥) must be enti;ely contained in-L.
Consequently, gf (X)Sg(Y) is anarc. However, gf: X — gf (X) is an 2e-mapping.
Since & was arbitrary, we Would have the false conclusion that X is an arc—like con-
tinuum. :

A similar argument shows ﬂl‘lt the Wamaw circle is not an approximate poly—
hedron. :
 “ExawmpLE 3. The cone over the continunm X from Example 2is a contmcuble
continuum, which fails to-be an approximate polyhedron. This is an immediate
consequence of the fact that a compact metric space is an approximate polyhedron
if and only if its cone is an approximate polyhedron ([3], Lemma 3). '

3. Resolutions of spaces and maps. We shall consider inverse syé'tems in the
category TOP of topological spaces and contintious maps E = (E,, g,/ A) indexed
by directed sets (4, <). ) . k

A map of systems p = (p,, n): E= B=(B,, r,, M) consists of an increasing
function n: M — A and of a collection (p,, M) of maps p,: E,,, — B, such that
for uxy’ the following diagram commutes

In(p) nln)
) < By

o lp,‘ lpp,
Fuw

B, “-— B,

If E = Eis a rudimentary system, i.e. 4 consists of a single element, then a map
of systems p: E - B is a collection (p,, M) of maps p,: E— B,, pe M, such
that

@ FayDu = Ppy  USH' .

Maps of systems p’ and p compose by composing = with n’ and py,, with p,.

DeriNitioN 3. Let E be a space and E = (E), q;,., 4) an inverse system of
spaces. A resolution of E is a map of systems q = (g1, A): E—E, which satisfies
the following two conditions:

(R1) Let P be an approximate polyhedron, ¥ a normal covering of P and
J: E— P a map. Then there exist an index e 4 and a map f;: E, — P such that

(frg ISV

(R2) Let P be an approximate polyhedron ard ¥ a normal covering of P.
Then there exists a normal covering ¥ of P with the following property:

If led and f,f": E; — P arc maps such that (fg,,/'q)<¥", then there
exists a A'>1 such that (fg,,., f'q,,)<¥".

An AP-resolution (polyhedral resolution, ANR.- -resolution) of E is a resol-

ution q: E - E = (E;, g3y, A) such that all E, are approx1mate polyhedra
(E, € ?,E,cANR).
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PROPOSITION 1. A map of systems q: E — E is a resolution if and only if the
conditions (R1) and (R2) are fulfilled for all polyhedra P, or equivalently for all
ANR’s P.

Proof. Let Pes/% and let " be a normal covering of P. Choose a star-re-
finement ¥ of #". There exist a polyhedron P’ (an ANRP’) and maps h: P — P/,
Wi P'— P such that ('h, 1,)<97.

In order to establish (R1) consider for a given map f: E ~ P the map hif: £ — P
and the covering &'~ H(¥"). By assumption, there exist a A€ A and a map g: £, — P’
such that (gq;, Af) <A ~Y¥") and therefore (W'gq,, W'hf)<¥". Since WhE, LISV,
we conclude that (h'gq,, /)<Y and the map f; = h'g: E; » P has the desired
property.

Now we establish (R2). Consider P’ and its covering &'~ *(¥"). The assumption
yields a covering #” of P’. We claim that the covering ¥ = 2~ *(#") of P has the
desired property. Indeed, let Aed and let f,f': E, > P be maps such that
(fq., /' 4)<¥". Then (hfq,, hf’ q;)<# . By the choice of % we conclude that there
is a A=A such that (' hfg,u, W hf'q:)<¥". Since also (W' hfgsy, f:,) <Y,
it follows that indeed (fq,5,f qu)<?".

DEFINITION 4. A resolution of a map p: E— B consists of a resolution
q: E— E of E, of a resolution r: B~ B of Band of a map of systems p: E - B
such that

) pa=1p.

(g.r,p) is an AP-resolutjon (P-resolution, ANR-resolution) of p provided it is
a resolution of p and ¢ and r are AP-resolutions (P resolutions, ANR-resolutions)
of E and B respectively.

Notice that (3) is equivalent to

@ Pulagny = TuP>
Remark 4. If B is a completely regular space and (g, r, p) is a resolution for
both maps p,p’: E— B, then p =p'.
Indeed, assume that p(xo) # p'(x,) for some point xo e E. Let f* B— 1T be
a map such that
(%) o) =0, Jfp'(xo)=1.
By (R1) there exist a g M and a map f,: B, — I such that d(f,r,,f)<1. Con-~
sequently, we would have
(6) Surup (xo) <1,
U Surup'(x0)>1.

However, this is impossible, because by (4), r,p = Pullatwy = Tub'

Remark 5. In dealing with resolutions one can always assume that the index
sets A and M are cofinite, i.e. every element has a finite number of predecessors. This
is a consequence of the next proposition.

ueM.
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PROPOSITION 2. Let (g, t, p) be a resolution of p: E — B. Then there exists
a resolution (q', ', p') of p such that every B, (E}) is a B(E), ‘every ruAqia) is
an ¥, {qs0)s every pu(qi) is a p,(q;) and the index sets A', M " are cofinite.

Proof. We define B' = (B, Fyun, M) and 1’ = (ry, M’) as in the proof of
Theorem 7.1 of [11], i.e. we take for M’ the set of all finite subsets i’ = {uy, ..., 4t,}
of M and we order M’ by inclusion. We define an increasing function m: M'— M
such that m({u}) = p for pe M. For p' = {ty, ..., p} We put Bj, = B, and for
WK We DUt Tiyr = Fyguymoen- Finally, we put ry = rugn and ¢’ = (rp, M').
Conditions (R1) and (R2) are readily verified.

Let (4’, <) be the set of all finite subsets A’ of 4, ordered by inclusion. For the
index set of E’ we take the ordered product (M'xA’, <). We then define an in-
creasing function n: M'x A’ - A by putting n(y', ') = nm(u’). We also define
Ewany = Eyeinys Qi = Gtwimnten,zys Qi = Gy It s readily scen
that g: E — E’ is also a resolution.

Now we define an increasing function 7': M’ = M’ x A’ by n'(i) = (', n(u)).
We also put Py = Prgey’ Ermuy = By~ This'Is a well-defined map py: Epry — By
since n'(p) = (4, 1)), Enwy = Bugwintwyy = Enmeuy 304 By = B,un. The maps
P, define a map of systems p’: E' — B, which satisfies p'q’ = r'p.

4. Shape fibrations of topological spaces. Let p = (p,, n): E — B be a map of
systems. We call a pair of indexes (1, u) e Ax M admissible provided Azz7(w).
For every admissible pair we define a map p,;: E; - B, by

¢y’ Pus = Pulrt)a -
Notice that for admissible pairs (A, p)<(4', &') one has
(2) Puﬂu' = fpm'Pu'A’ .

DEFINITION 5. A map of systems p = (p,,n): E — B has the homotopy lifting
property (HLP) with respect to a class of topological spaces & provided the following
holds:

Every admissible pair of indexes (4, p) e AxM admits an admissible pair
of indexes (A, #)=(4, y) (called lifting indexes) such that for an arbitrary space
Xe% and for arbitrary maps h: X — E;, H: XxI— B, satisfying

3 Purh = Hy,
there exists a homotopy H: X'xI - E; such that
@ ‘ Hy = Dk,
o) pH =r, H.

Remark 6. If B consists of a single space B, then p: E — B is given by a single
map p: E;, » B, where Ay € A is a fixed index. p has the HLP with respect to all
spaces if and only if the maps p; = Pg;,1, 4240, form an s-fibration in the sense
of [10}.
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DEFIN["[‘I(l)N 6. A map of systems p = (Pu>7): E— B has the approximate
homotopy lifting property (AHLP) with Tespect to a class of spaces & provided the
following holds:

For every admissible map (4, u) € 4 x M and for arbitrary normal coverings Y
of B, and %, of E, there exist an admissible pair of indexes W, 1)Y=, p) (called
lifting indexes) and a normal covering ¥ w Of B, (called Jifting mesh) such that for
an arbitrary space X'e® and for arbitrary maps h: X — E,,, H: XxI — B,

_ with
O] (Purh, H)< Ve,
there exists a homotopy H: X'x I — E, such that
O] @k, o)<,
(8) (puf, S LS

Definitions 5 and 6 are Definitions 8 and 9 of [15].

Remark 7. Let p, p's E — B be maps of systems which determine the same
morphism E — B in pro-TOP, ie. let every pe M admit a led such that .
Azn(u), n'(w) and p,, = pp,. It is readily seen that if p has the property HLP
(AHLP), then so does p’. Consequently, these properties are actually properties of
morphisms in pro~TOP.

We now define shape fibrations.

Derpinrion 7. A map p: E — B between topological spaces is a shape fibration
provided there exists an AP-resolution (g, r, p) of p such that p: E — B has the
AHLP with respect to all topological spaces.

To assess fully this definition one must bear in mind these two facts:

(i) Every map admits an AP-resolution (see Theorems 11 and 13 of Section 7).

(i) In order to decide whether a map p is a shape fibration, one can use any
AP-resolution of p. More precisely, one has this result. .

THEOREM 4. Let (g, r, p) and (¢', 1, p’) be two AP-resolutions of the same map
p: E— B If p: E ~ B has the AHLP for all spaces X, then so does p': E' —~ B'.

The proof of this theorem is a straightforward translation of the proof of
Theorem 1 of [15] into the present more general setting. Notice that Lemma 1 of [15]
is here replaced by Definition 3. The conditions from [15] of the form e e A(f, §)
for £>0, §>0, are now replaced by requirements on normal coverings % and ¥~
that % = £ 1 (¥"). One also often uses the fact that a normal covering % has a normal
star-refinement ¥ 3 *, : '

CorOLLARY 2. Let E and B be metric compacta. A map p: E — B is a shape
fibration in the sense of Definition 7 if and only if p is a shape fibration in the sense
of [15] (or equivalently, in the sense of [17]). :

Proof. Let p: E = B be a level map of inverse sequences of compact ANR’s
with limp = p. Then E = limE, B=1imB and the projections g;: £ — E,,
;0 B - B, form maps of systems g: E—~E, r: B—B. It follows from Theorem 8

\
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of Section 6 that ¢ and r are ANR -resolutions of E and B respectively. Since pq = rp,
it follows that (g,r, p) is an ANR-resolution of p.

If p is a shape fibration in the sense of [15], then by Theorem I of [15], p has
the AHLP for all spaces and thus p is a shape fibration in the sense of Definition 7.

Conversely, if p is a shape fibration in the sense of Definition 7, then by
Theorem 4, p must have the property AHLP for all spaces. Consequently, p is a shape
fibration in the sense of [15].

CoROLLARY 3. Let E and B be approximate polyhedra and let p: I — B be
a Hurewicz fibration. Then p is a shape fibration. In particular, this is true if E and B
are ANR’s, CW-zomplexes or paracompact LC*™* spaces of dimension <p<co
(sce Corollary 1 and Theorem 2).

More generally, we have this result.

CoROLLARY 4. Let E and B be approximate polyhedra. A map p: E— B is
a shape fibration if it has this property:

For arbitrary normal coverings ¥ of B and % of E there exists a normal covering ¥
of B such that for an arbitrary space X and for arbitrary maps h: X — E, H: Xx '~ B
with (ph, H)<V", there exists a homotopy H: XxI— E such that (h, A<
and (pH, H)<v". :

Proof. p: E — Bcan be viewed as a rudimentary AP-resolution of p. For this
resolution the property (AHLP) coincides with the above property of p.

Exampie 4. Let E=S; U S, ulL be the plane continuum described in
Example 2. Let B = S, and let p: E — B be the radial projection. The map p is
a fibre bundle and thus a Hurewicz fibration. Nevertheless, p fails to be a shape
fibration (see [22]).

The simplest way to see this is to consider the pro-homotopy exact sequence
of a shape fibration [16]:

pro-m(F, ) — pro-m(E, 4) - pro-m (B, &) .
In ourcase the fibre Fis a totally disconnected compactum, so that pro-=,(F, ,) = 0.
Since B is a circle, pro-n,(B, y) = n,(B, 4) = Z. Finally, E decomposes the plane

in three regions and thus has the shape of the figure 8. Therefore, pro-n,(E, x)
= my(E, 4) = Z % Z. Consequently, the exact sequence assumes the form

02ZxZ—~2Z,

which is obviously a contradiction. )
The explanation for the existence of such an example lies in the fact that £ fails
to be an approximate polyhedron, as it was shown directly in Example 2.

5. Characterizing resolutions of spaces. In this section we shall first give sufficient
conditions for a map of systems g: E — E to be a resolution of the space E.

THEOREM 5. A map’ of systems q: E — E is a resolution of E if it satisfies the
Sollowing two conditions: :

1
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" (B1) For every normal covering % of E there exist a L e A an
of Ey such that g3 *(U,) refines %.
(B2) For every Ae A and for every open set U in E;
exists a X'22 such that q,,(E, )< U.

d a normal covering %,

s which contains g,(E), there

Proof. According to Proposition 1, it suffices to
and (R2) hold for polyhedra P,

Proof of (R1). Consider a polyhedron P, an open covering ¥ of P and a mzip
fi E - P. Let K be a triangulation of P such that the star-covering %" of K refines ¥~
Notice that f~*(#") is a normal covering of E. Therefore, by (B1), there exists
a A € A and there exists a normal covering %, of E, such that g5 *(;) refines £ (o),

Now consider the pair of spaces (E,, E), where E; = g,(E), and consider the
coverings %, of E; and %), = %,|E} of E}. Let N and N be the nerves of %, and %,
respectively. For each U e %,, for which U’ = U n q.(E) # @, identify the vertex U’
of N’ with the vertex U of N. Then N’ becomes a subcomplex of N.

Now choose for each vertex U’ of N' a vertex A(U") of K such that

) 7 ' (O)sf " st(h(UY, K)).

h: N ’ - K'is a simplicial map. Indeed, if the vertexes Uy 540 Uy of N’ span a sim-
plex in N', then q,(E) n Uy ... n U, # @ and therefore, by (1),,

(2) STHst(h(UR), K)) A o 0 f A (st(R(UD), K)) # B,

ie. the vertexes £(Ug), ..., h(U;) span a simplex in K.
' Since %, is a normal covering, there exists a canonical map g: E;, - |¥|,
i.e. a map g such that

prove that conditions R

@ g7 st(U, N)SU, Uew,.

Notice that

@ gEPSIN'Y.

Indeed, if x € E and if Uy, .., U,) is the simplex of N, which carries gq,(x), then
4 G(x) € g™ (st (U, N) Ao A st Uy, N)EUp A oo 0 Ty

Consequently, ecach U, meets Ej and is therefore a Uy, and the vertexes Up, ..., U,
span a simplex in N'. Since h: N'— K- is a simplicial map, the vertexes
h(Ug), ..., h(Uy) of K span a simplex in K, which contains Agg,(x) in its interior.
Therefore,

(6) hgq,(x) e st(h(U3), K) -
On the other hand, ¢5) and (1) imply
M xeq; (U)S/Hst(h(Us), K))» -

so that both points #gq,(x) and £ (x) belong to st(k(Ug), K) € £ and thus also to
some Ve ¥". This shows that the maps sigq, and f are ¥ -near.
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Now notice that |N'| is a neighborhood retract of [N | (see e.g. [9], Lemma 10.1,
p. 101). Therefore, there is an open neighborhood G of [N'| in IN| and there is
a retraction #: G — |N'|. This enables us to extend the map-h: [N'| = |K| to a map
h: G - |K| by putting ko= hr.

Since || is closed in [N} and g~}(G)=g ™ '(IN')=2 £} we find by (B2) an index
A=A such that
® e anl=1 ).

We claim that A’ has all the desired properties required by (R1). Indeed, let
fu: Ep — P be defined by
©® T = hrgdu -

This is a well-defined map because of (8). Furthermore,

(10) vy = hragq, = hgq,,

because gg;(E) = g(EDSIN'| and r||N'| = Ijy,. Since we have already proved
that hgq, and f are ¥ -near maps, the same is true of fiq, and f. This estab-
lishes (R1).

Proof of (R2). Let A€ 4, let P be a polyhedron and let % be an open covering
of P. Let ¥ be a star-refinement of ¥". We shall show that (fg,,f'q,) <% implies
ftan> g <V for some V>4

We first prove that every y € Ej; admits a Ve ¥ such that
an Fm.fev.

Indeed, let V], ¥, € ¥ be such that f(y) € V1, f'(y) € V3. Let Ube a neighborhood
of y in E; so small that :

(12) fnevi,. f(Wsv;.

Since y e E;, there exists a point x & F such that ¢,(x) € U. Consequently,
13) - famevi, faevs.

Furthermore, by assumption, there exists a ¥’ € ¥ such that ~

14 fa), SaxeV'.

We see thus that ¥{ n ¥’ 3 @ and ¥; n V' # @. Consequently,

(15) ViU VstV 7). '

Since ¥ is a star-refinement of ¥, there exists a Ve ¥ such that st(V', #"YsV
and therefore

(16) {7O).fieviv eV,

By (11),everyy e l—'?j{ admits an open neighborhood U(y) such that f (z), /"(z)e ¥
for ze U(y). Consequently, there is an open set U2 E; such that f{U and f|U
are ¥ -near. Now we conclude, by (B2), that there is a A'>/4 such that

an gulEnsU.
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Consequently, the maps fi,,, and f’q,, are ¥ -near. This completes the proof of
Theorem 5.

In the most important cases the converse of Theorem 5 holds too: More preéisely,
we have this theorem.

THEOREM 6. Let g E — B = (E;, q,y., A) be a resolution of E. If all E, are
normal spaces, then q has properties (B1) and (B2).

Proof of (Bl). Let % be a normal covering of £. Let N be the nerve of 4 and
let f1 E— |N| be a canonical map. Then

(18) FYst(U, N)eU, Uex.
Let 4 be the star-covering of N and let ¥ be a star-refinement of #". By (R1),
there exist a A& A and a map f;: E; — |N| such that (f,q,,f)<¥". Clearly, f;1(¥)

is a normal covering of E;. We claim that ¢; * £ *(#) refines %. More precisely, we
claim that

(19) st(V, V)Sst(U, N) = q; fi(N)sU, Vev, Uedl.

Indeed, if x € g7 f;y *(V), then f,q,(x) e V. Since (f34,,/)<¥, there exists
a V'e? such that f,4,(x), f(x)e V. Hence, ¥ V' # & and

Sfx)eV'sst(V, ¥)sst(U, N) .
Now (18) implies
xef}st(U, N))sU.

Proof of (B2). Let Aed and let USE, be an open neighborhood of

E; = q,(E). Since E; is normal, there exists a map f: E, — I such that
(20) FIENU=0, fIE;=1.
We also consider the constant map f': E; — I such that f° ’[l—?_j = 1. Notice that

(21 fa=1=f4q,.
Consequently, (fq,,/'q,)<?¥" for any open covering ¥ of L

Now let ¥ = ([0, 1), (0, 11). By (R2), there is a A’>4 such that the maps
J4a and f'q,, = | are ¥ -near. Since f|E\U = 0 and 1¢ [0, 1), it follows that
J42:AE)<S(0, 1]. Finally, since f|EXNU = 0, we must have
(22) QuEnEU.

This completes the proof of Theorem 6.

Remark 8. In [2] P. Bacon has defined the complement of an inverse system E
as a map of systems 4: E - E, which satisfies condition (B1) and this stronger form
of eondition (B2):

(B2") For every Ae A and for every open set U in E;, which contains ¢,(E),
there exists a A'>4 such that ¢;(Ey)sU.

Consequently, a complement q: £ — E in the sense of Bacon is also a resolu-
tion in our sense. '
§ — Fundamenta Mathematicae CXIV/1

@
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6. Resolutions and inverse limits, In this section we compare resolutions ¢: £ —E
with inverse limits of E.

It is well-known that an inverse limit of topologically complete (Dieudonné
complete) spaces is topologically complete, because this property is preserved under
direct products and closed subsets. Since paracompact spaces are topologically
complete, it follows that an inverse limit of a system of polybedra is necessarily
a topologically complete space. However, every topological space £ admits a poly-
hedral resolution g: E — E (see Theorem 10 in Section 7). Hence, a space, which
fails to be topologically complete, yields a resolution, which fails to be an inverse
Timit. An example of such a space is the space of all countable ordinals,

On the other hand it is easy to find inverse systems E whose inverse limit g: £~ E
is not a resolution. One can even achieve that E and all E; be metric.

ExaMpLE 5. Let E, = {0} u[n,0)SR, neN, and let g, E,— E, be
inclusions, n<n’. Then E = imE = {0} and the inclusions ¢,: E— E, fail to
satisfy (B2). Hence, by Theorem 6, g is not a resolution. .

The next theorem was suggested by Theorem 3.3 of [21].

TueoreM 7. Lef g: E — E be a resolution. If E'is a topologically complete space
ard if all E, are normal spaces, then q is the inverse limit of E.

Proof. It suffices to prove that for.every map of systems q': E’ — E there is
a unique map h: E’ — E such that s

1) Cgh=1g¢q'.
We shall first prove that every x' & £’ admits a point x € E such that
()] () = (%),  Aed.

We begin by noticing that for every A e A and for every open set U,< E; con-
taining gj(x") one has

3) g (U) # 9. ,
Indeed, assume that for some Ae A and for some Uj blle has ¢, (U = @, li.e.
@ GE)S ENU, = EN{gi(*)} )
Then, by (B2), one can find a A'>4 such that |

&) GBS EN{gax)} -

However, this is a contradiction, because g;;.¢;(x") = gi(x"). .
Now we consider the collection % = (g3 *(U,)), where Ae A and U, ranges
over closed neighborhoods of ¢;(x") in E,. The collection % is centered. Indeed,:if
we are given Ay, ..., 4, and Uy, ..., U,,, then we can find a >4, ..., 4, anda U,
such that k B

® \ G e () @)™ (G-
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Clearly,
" n
Q)] iglq;;l(Ua,) =q; 1(101(%”)“1(Uli));>‘q;1(U;_) #9.

We claim that the centered collection % is a Cauchy collection for the fine
(maximal) uniformity of E. Indeed, this uniformity is generated by normal coverings
% of E. By (B1), there is 2 A € 4 and a normal covering %, of E; sucH that g3 }(%,)
refines %. Let U, be a closed neighborhood of ¢;(x") contained in an element of %;.
Then g3 }(U,)is an element of the centered collection % and it is contained in some
element of %. Since E is topologically complete, the fine uniformity of E is complete
and therefore, the intersection of the members of € is a single point x € E. Hence,
for every A€ A and for every closed neighborhood U, of g;(x), one has g,(x) € U,.
This proves that ¢;(x) = ¢;(x").

Now we define 4 by putting A(x) = x. Cleatly, A satisfies (1) and is unique.
1t remains to show that / is continuous. Let x’ € E’ and let ¥ be an open neighbor-
hood of A(x') = x. Then there is a normal covering % of E such that st(x, Z)<=V.
Let ' be a normal star-refinement of %. If x € U’ e %', then st(U', %) =st(x, )< V.
By the definition of /, there exist a A€ 4 and a'closed neighborhood U, of g5(x")
such that ¢7(U,) is contained in a member U’ of %'. Hence,

g W(U)est(U', %HeV.

Since ¢j: E' — E, is continuous, there is a neighborhood 7" of x' in E’ such that
qy(V")SU,. Consequently, g,k = ¢; implies rVYeq; W (U)V.

Now we shall exhibit some simple sufficient conditions for an inverse limit to
be a resolution.

TuroreM 8. Let E be an inverse system of compact Hausdorff spaces. Then the
inverse limit q: E—E is a resolution.

Proof. By Theorem 5, it suffices to verify properties (B1) and (B2"). However,
these are well-known facts (see e.g. [8], VIII, Theorem 3.7 and X, Lemma 3.7).

The next theorem is a variation of ([21], Theorem 5.1).

TusoreM 9. Let E be a subspace of a Tl—space F. Let E be an inclusion system,
whose members E; form a basis of neighborhoods of E in F, and let q,: E — E; also
be inclusions. The inverse limit q: E — E, defined by the maps q;, Is a resolution of E
if either of the following two assumptions holds:

(i) E is P-embedded in F.

(ii) The neighborhoods E, are paracompact.

Proof. By Theorem 5, it suffices to verify properties (B1) and (B2').

Proof of (Bl). Let % be a normal covering of E. We must produce a L€ 4
and a normal covering %, of E, such that ¢7'(Z)>%.

Case (i). Since E is P-embedded in F, there exists a normal covering %’ of F
such that the restriction %'|E refines %. Hence, for any LeA the covering
U, = U'|E, of E, has the desired property.

5
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Case (ii). For every U e % there exists an open set U’ € Fsuch that U’ n E = U.
Moreover, there exists a A € 4 such that E, is contained in |} U’, Ue%. Clearly,
%, = (U'nE;: Ue%) is an open covering of E, such that g, (%,) = %, |E>%.
Since E, is paracompact, %, is normal.

Proof of (B2). Let USE; be an open set containing ¢,(E) = E. Since E is
a basis of neighborhoods, there is a A'>A such that ¢,(E,) = E, < U. :

7. Existence of polyhedral and ANR-resolutions. The purpose of this section is
to establish several existence theorems for #-resolutions and &4 % -resolutions.

TreoreM 10. Every space B admits a polyhedral resolution v: B~ B.

According to Remark 8, every complement r: B — B is a resolution. There-
fore, Theorem 10 is a consequence of this result of P, Bacon ([2], Theorem 3.2).

TrEeorem 10° (P. Bacon). Every space B admits a complement r: B — B, where B
is an inverse system of polyhedra. .

TrroreM 11. Every map p: E =+ B admits a polyhedral resolition (q,r, p).

Notice that Theorem 10 is obtained from Theorem 11 by puttingp = 15: B — B.

The proof of Theorem 11, which we shall now exhibit, uses techniques that
Bacon used in his proof of Theorem 10, '

Let I' denote the set of all normal coverings y of B. For every y e I' we choose
a locally finite partition of unity (i, ¥ € y) subordinated to y. Let N(y) be the nerve
of y and let B, = [N(y)|. The partition of unity (Y, ¥ €y) determines a map
ryt B— B,, which sends the point y € B into the point r()), whose barycentric
‘coordinate with respect to the vertex Ve y equals ¥,(»). We call such a map the
canonical map of the partition (Y, Vey).

Now assign to every yeI the normal covering "X y) of E and put
E, = IN(p™* ()l Let (py,V & y) be the partition of unity on E given by ¢y = Wyp.
Clearly (py, ¥€7y) is a locally finite partition of unity subordinated to p~'(y)
=(p"*(¥), Ve7), and it determines a canonical map g,: E~ E,. We also define
a simplicial map p,: E, — B, by sending each vertex ¥ ey of N(p™'(y)), p~ (V) # B,
to the vertex V of N(y). It is readily seen that

ey ' P4, =rp, yel.

We denote by 4’ the set of all normal coverings of E, which are not of the form
P, vel. For every aed we choose a locally ‘finite partition of unity
(py, Uea) on E. It determines a canonical map 9.: E~ E, = |[N(0)|. Now we
put 4 = 4" UT and define n: I’ — 4 as the inclusion map.

Let M be the set of all finite subsets of I ordered by inclusion. Notice that M is
directed and cofinite. If p = {yy, ..., y,} we take for B, the nerve of the covering

Virwrtn=T 0 AV (Vy, ., V) ey x..xy,).

IE L = {910 cees Yoo oo Pk Lot Puw? By — B, be the simplicial map, which takes
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" .

the vertex (Vla ey Vm) of N('ﬁ’i /\-~-/\3’m)a ﬂ Vi # @, to the vertex (Vl’ ""‘Vﬁ)
i=1

of N(yyA..AY,). It is readily seen that '

(2) P Vg = Ty RSP

Next we define r,: B — B, for p={y,, ..., 7,} € M by using the partition of
Wity (Yrorars (Visoes Vi) €91 XX y,), Where Yy, vy = Wy, - oo Py, Tt s
readily scen that

(3) P e = T

asy .

Similarly, we define the set 4 of all finite subsets of 4 and we order it by in-
clusion. If A = {ay, .., &,} €4, we take for E, the nerve of oy A...A®, and we
define g;;.: Ep — E, in the same way as we have defined 7, :

Now we extend #n: I' = 4 to an increasing function 7: M — 4 by putting
T{P1s oves V) = {715 wes Vu)- For each g = {y;, ..., y,} we define a simplicial map
Put Exy — B, by sending the vertex (Vy, ..., ¥,), p™' (Vi 0 .. n V) # @, of the
nerve of PTIpy A AY) = p )AL ApTHy,) to the vertex (Vy,.., V) of
N@yA..Ap,). Notice that

4 Pulyy = T P>

Finally, we define for each p= {y,,...,y,} €M, n>1, a map By E-E,
using the partitions @g,..ywy = @v; "« @r, Whete @y, =Yyp, i=1,.,n
One easily checks that

(5) - Pudy = by

We have thus obtained two inverse systems of polyhedra E = (Ey, gur> 4),
B = (B, ¥y, M) and three maps of systems p: E— B, ¢: E~E, r: B— B
such that
(6) pg=1p. )

Now one can easily verify property (B1) for r and g. Indee.d, let y be a normal

covering of B. Then yeI and'r,: B~ B, = |N(y)| is a canonical map for y. Con-
sequently, il % denotes the star-covering of N(p), then ry YA refines y. Hence, r has
property (BI). The same argument shows that also g has property (Bl)..
" In order to obtain also property (B2"), we shall replace B and.E by Fertam larger
systems B’ = (B!, vy, M') and E' = (Eg, ggp» A"), Which contain beside the merm-
bers B, of B and E; of E also open neighborhoods of r,(B) in 1.3,‘ and of ¢;(E) in E;
respectively. Here is the precise description of this construction. )

Let M’ be the set of all pairs v = (i, V), where e M and Visan ope{x neigh-
borhood of r,(B) in B,. We order M' by putting v = (g, VIS, V) =v when-
sver u<u’ o (VYEV. : .
o f{fo;L: :n(ciz,’%(: ]1{ " we put B, =V and r; = r,,:lB.-—» ¥, and for v§v' we
put ruy =1V Vo> V. Clearly, B' = (B,, "'y, M") is a polyhedral inverse

system and r': B — B’ is a map of systems.

’

psp
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An analogous procedure, applied to q: E — E, yields ¢': £~ E’. Now we
define p': E' — B’ as follows. If v = (i, ¥) € M, then n'(y) = (r(w, py ' (M)e .
Cleatly, n': M’ — A" is an increasing function. For p,: Egy — B, we take
Po=pulp (V) p (V) = V. Tt is readily seen that p" = (py,m') is a map of
systems E’ — B’ and that

M pg =rp.
The following assertion will complete the proof of Theorem 11:

r': BB and ¢': E- E' are resolutions.

It suffices to verify conditions (B1) and (B2').

(B1) is fulfilled for ¢* because it is fulfilled for g and for v = (u, By e M’ we
have B, = B, and r; =r,.

Now we verify (B2"). Let v = (¢, V) e M’ and let U be an open neighborhood
of ry(B) = r(B) in B, = V=B,. Then (4, U) is an element v' of M". Clearly, v<v'
and r, = r,,|U is the inclusion map U — V. Since B, = U, we see that r,(B,)
= ry,{U) = U, which establishes (B2").

The proof that ¢': E — E’ is a resolution is analogous.

Remark 9. By a slight modification in the above construction one can achieve
that A” and M’ be cofinite. First note that A4 and M are cofinite. Instead of taking
in M all pairs (u, V), e M, V open, r,(B)SV S B,, one can associate with each 4
an indexed basis of open neighborhoods V, of ¢,(B) in B,, where ¢ ranges over
a cofinite directed set and o<o¢’ implies ¥, < V,,. An analogous procedure applies
also to A"

TrEOREM 12. Every space B admits an ANR-resolution r: B — B.

THEOREM 13. Every map p: E — B admits an ANR-resolution (q, r, p).

One possible proof consists in repeating the proof of Theorem 11 always endow-
ing nerves of coverings with the metric topology (which makes them ANR’s).

We shall give here another proof, which has some merits on its own, and will
be used essentially in Section 8. In this proof we need the following simple lemma.

Levma 1. Let E be a topological space and let f: E — Y be a map into an ANR Y.
Then there exists an ANRX, with density s(X)<s(E), and there exist maps g: E —~ X,
h: X — Y such that f = hg.

Proof. By the Kuratowski-Wojdystawski embedding theorem (see e.g. [9],
III, Theorem 2.1), one can assume that the metric space f(E) is contained in a not-
med vector space L and that /' (E) is closed in its convex hull K< L. Tt is casy to see
that s(K) = s(f(E)) and thus s(K)<s(E). Since Ye ANR, the inclusion map
f(E) - Yextends to a map si: U — Y, where U is an open neighborhood of f(£)
in K. Let g: E — U be the composition of f: E — f(E) and of the inclusion map
f(E)— U. Then hg = f, X = U is an ANR and s(U)<s(K)<s(E). N

Proof of Theorem 13. We say that two maps r: B— P, r': B— P’ are
equivalent if there is a homeomorphism /: P — P’ such that ir = r', Let I be the

’
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set of all equivalence classes of maps of B into ANR’s of density <s(B). For every
y eT let ry: B — B, bea map from the class 7. Let M be the set of all finite subsets
of I ordered by inclision. Let By, .. = B, x..xB,. If p={y,.,p}<p
= {P1s crer Tus oo Tmps We define 1,0 By — B, as the projection

By X..XB, X..xB, ~ B, X..xB, .

We also define r,: B = B, as the map r, = r, x..xr,: B— B, x..xB, . Notice
that B, € ANR, s(B,)Smax{s(B), ¥}, and (2) and (3) hold, so that B = (B, ryy, M)
is an ANR-system and r = (r,, M): B— B is a map of systems. :

For every y € I' we now apply Lemma 1 to the map r,p: E— B,. We obtain
an ANR E,, s(E))<s(E), and maps ¢,: E— E, and p,: E, > B, such that {1}
holds.

Let A’ be the set of equivalence classes of maps of E into ANR’s of density
<s(E), which do not contain any of the maps ¢,, y € I'. For each a € A’ we choose
a map ¢g,: E— E, from the class «. Now we consider 4 = A" u I and define
n: I'— A4 as the inclusion map. Next we define 4 as the set of all finite subsets
of 4 and we order it by inclusion. Weput Eq,, oy = By, X ... X E,, and we take for
Gat By~ E;, A<A, A, % € A, the corresponding projections. We also define
qa: E— El by Q(axv‘“‘zn) = oy XKoo Xqun' Since Qo dr = 9o AS}"7 _E. = (E2.> x> A)
is an ANR-system and g = (g;, 4): E— E is a map of systems.

We define p: E — B by taking for p,: Ey, — B, the map
B= {0y s a -
Obviously, (4) holds. Finally, (5) holds because of (1), so that we have also (7).

Now we verify that g and r satisfy condition (R1) for ANR’s. They actually
satisfy the following stronger condition for ANR’s:

(R1) If P is an'ANR and f: E— P is a map, then there exists a A e 4 and
there exists a map f;: E, — P such that

(8) ha =1

Proof. By Lemma 1 fadmitsa factorizationf = hg, whereg: E - X, h: X > P,
and X e AN R, s(X)<s(E). Hence, there exists an a € A< 4 such that ¢ is equiv-
alent with a map ¢,: E — E,. Consequently, there is a homeomorphism l?‘: E,-»X
such that g = N'q,. Now we put f, = bk’ The same argument establishes (R1')
for r.

MIn order to complete the proof, we apply to (¢, I, p) the construction descri,bed’
in the last part of the proof of Theorem 11. We obtain thus new ANR-systems E’, B
and maps' of systems ¢’, ', P’ satisfying p'q’ =1'p. ‘ . )

The map of systems r* has property (R1") because we have just extended B and r.
It has also the following property (R2'), which is stronger than property (R2):

(R2) Let P be an ANR and 7" an open covering of P: Let ve M’ and let
f.f': B, — P be maps such that (fr,f' )<Y Then there exists a ¥' v such that

(frws Sr3) SV

Py X X Pyt By X X Ey = By %X B,
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Indeed, for every x € B there is a ¥ € ¥ such that fiy(x), fri(x) € V. By conti-
nuity of f and f”, there is an open neighborhood Uy of (x) in B such that

(C) S, (NeV,
Let U= | U,.

xekE

.JIEL/X'

Then U is an open neighborhood of ry(B) in B, and

(10 (S0, 7107

Since v = (u, VY eM', B, =V, r,(B) =r(B)cV, it follows that U is an open
neighborhood of r,(B) in V. Therefore, v'= (u, U)e ¥’ and By = U. Since

r,(U)=UgV, we have v<y' and r(B,) = r,(U)= Us¥ = B,. Therefore,
(10) implies
(11 (Jry, ') S¥ .

The proof for ¢’ is analogous. »

We call the ANR -resolution (g, r, p) of p constructed in this proof the standard
ANR -resolution of p.

8. A characterization of shape fibrations. In this section we give a relatively simple
characterization of shape fibrations, which does not involve nexthei resolutions nor
inverse systems.

For a fixed map p: E — B we shall often have to consider commutative diagrams
of the form

E+E
Yo ve
B <~ B

We shall denote such a diagram simply by D' = (¢, ', p'). If E', B’ are ANR'’s,
we shall speak of an ANR-diagram D', If D" = (g", ", p"), we define a map
of diagrams D'’ — D’ as a pair (g, r) of maps ¢q: E" — E’, r: B" — B, such that

M 9 = qq"
()] ;

ro=

CIeariy, we obtain in this way a category D(p). If there exists a map D" — D',
we write for short D' D". This is a reflexive and transitive relation.
DEFINITION 8. A map p: £ — B has the property SFP (shape fibration property)
provided the following holds:
Let D" = (¢',r', p') be an ANR-diagram and lot %, ¥ be open coverings of E*
and B’ respectively. Then there exist an ANR -diagram D"’ = (¢, r'", p''), an open
covering ¥ of B and a map of diagrams (g, r): D" — D' with the following

property. If X is an arbitrary space and h: X — E”, H: XxI > B are maps such
that

©)] ) (0"h, H)<v™
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then there exists a homotopy H: XxI— E' such that
@ . (Ho. ghy<,
(5) (b H,rH)<Y .

TuroreM 4. A map p: E—B is a shape fibration if and only if it has the prop-
erty SFP,

LemMA 2. Every ANR-diagram D' admits an ANR-diagram D" such that
D' D" and s(E")<s(E), s(B")<s(B).

Proof. We first apply Lemma | to the map r': B — B’. We obtain an ANRB",
s(B")<s(B), and a factorization r' = rr’’ through B”. Now we apply Lemma 1 to
the map ¢’ xr'’p: E — E'x B". We obtain an ANRE", s(E")<s(E), and a factori-
zation ¢’ x r"'p = (g xp") q" through E”. Clearly, (", ¥", p'") is an ANR -diagram D"
and since cj’ = qq", (g, +) is a map D" — D’ so that D'<D".

LeMMA 3. Let D' = (q', ', p') be an ANR-diagram and let (q, r, p) be the standard
ANR -resolution of p (see the proof of Theorem 13). Then there exists an admissible
pair (A, @) such that D" = (q;, I'y, Pus) is an ANR-diggram and D' D".

Proof. By Lemma 2, one can assume that s(E')<s(E) and s(B)<s(B). By
the definition of I'S M (see the proof of Theorem 13), theie exista y € I and a homeo-
morphism /: B, - B’ such that

6) r'=hr,.

Similarly, there is an we A=A and a homeomorphism 4':
O q' =Hg,.

Notice that the maps ¢,: £ - E,, p,: E, - B, satisfy

E,— E’ such that

® 1P = Pydy-

Hence, if « =y, D" = (q,,7,,p,) is an ANR- diagram and (#',h): D" - D' is
a map of diagrams, which proves that D'<.D".

If o # vy, we consider A = {o, y} € 4. Since y< 4,y = n{y), (4, 7) is an admissible
pair and we have

® Pyids = Py@nds = Pydy = 14D -
This proves that D" = (g, 1y, py;) Is an ANR-diagram. We also have maps
h: B,— B’ and K'q,: E; — E'. They satisfy
(10) hr, =1,
an -’ Kuds =4,
which proves that D' D",
Proof of Theorem 14. (i) The condition SFP is necessary. Let p: E > B

be a shape fibration, let D' = (¢, *’ ,p") be an ANR -diagram and let % and ¥ be
open coverings of £’ and B’ respectively. Let (g, 7, p) be the standard ANR -resol-
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ution of p. By Lemma 3, there is an admissible pair (4, 1) and a map (g, r): D"-D’,
where D' = (g,,r,,pu) Let ¥’y be a star-refinement of ¥". Notice that
P =pq =rp=rrnp=1p,;4.
Therefore, property (R2) applied to B', ¥y, p'q and rp,, yields a A'>4 such that
(P90, "Pua s ) <Yy
This shows that there is no loss of generality in assuming that
12 (P'ds )<Yy

Now we apply the AHLP to-(2, p), r~*(¥",) and ¢~ *(%), and we obtain a pair
of lifting indexes (', )= (4, p) and a lifting mesh ¥” on B,.. We claim that the
diagram D* = (g, 7'y s Dye2r), the covering ¥ and the map (gq,., rr,,,,,)': D* - D'
have all the properties required by SFP.

Indeed, let h: X — E;, H: XxI— B, be such that

(13) Pyah, H)<¥" .

Then we obtain a homotopy H': X'xI— E, such that
(14 (@anh, Ho)<q™'(2),

(15) (ryw H, pu HYSI™ (YY)
Let B = gH': XxI— E'. Then, by (14),

(16) Ho, 4anh) <%,

and by (15)

(rryu‘Ha rP“H')<”VL v
Since (12) implies’

an - @'H, m, ISV,
we conclude that also
(18) . H, <Y,

(ii) The condition SFP is sufficient. Let p: E— B be a map with the prop-
erty SFP. Let (g, 7, p) be the standard ANR-resolution of p. Let (&, 40) be an ad-
missible pair of indexes and let % and " be open coverings of E; and B, respectively.
Let %, >*% and ¥, >*¢". Applying the property SFP to D = (g, r,, Pua)s Uy
and "//1', we obtain an ANR-diagram D' = (¢’, r,p'), amap (g,r): D' - D and
a covering ¥"' of B. By Lemma 3, there exist an admissible pair (1, u’) and a map
q”, r’t): D" - D!, where D"’ = (q,,, urs Pra). There is no loss. of generality in
assuming that '

19 Ea", VPV SF s
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where 471 2*7". One can also achieve that (4, p)<(}, &). Moreover, since

Pl = Fu = 11, and G594 = q; = gq" ¢y, one can achieve that
(20) (s ry ) ¥y,
21 (49", 2:) <%, -

We claim that (1, ¢} is a pair of lifting indexes and that r”~3(¥"}) is 2 lifting
mesh for (4, 1), %, ¥ and p. Indeed, let h: X' — E;,, H: XxI— B, be maps
satisfying

(22) (Pyah, Ho)<r""Y(¥7) .
Then

(23) (F' sy h, 1" H) V5 .
Since, by (19), also

(24) (P'q"h, r'p,  HSF .
we obtain

(25) (P'q"h, r"Hy)<v" .

By the choice of D', ¥ and (g,r), we infer that there exists ‘a homotopy
H: XxI— E, such that Py

(26) (Ho, ag"M)<%;

@n (i, " D)LV, -

Combining (26) and (27) with (21) and (20), we finally obtain
@8 (Ho, gueh)< ,

29) (p,,zﬁ, ryw )Y,

which completes the proof of the theorem.

9. Resolutions and associated systems. In this section we establish the relation-
ship between resolutions of spaces and associated systems in the sense of K.
Morita [19]. ‘

The homotopy functor [ J: TOP = HTOP converts every inverse system E
in TOP into an inverse system [E] in the homotopy category HTOP. By definition,
if E = (Ej, gy, A), then [E] = (E;, [gax], 4). Similarly, [ '] takes a map of systems
g: E '~ E into a morphism of pro-HTOP [g]: E — [E]. Recall that [E] is associated
with E via [g] provided the following conditions are satisfied: -

(M1) If P is a polyhedron and f: E — P is a map, then there exist an index
ied and a map f;! E; - P such that

) f=fidr.
(M2) If P is a polyhedron, Le4, and f, f'+ E; — P are maps such that
@ o, = f'q-
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ar

then there exists a A
(3) J@ = F'qa

TuroreM 15. Let g: E — E be a resolution of E. Then [E] is associated with E
via [g], i.e. (M1) and (M2) hold.

The proof is based on several known facts, which we state as lemmas. Their
proofs can be found, e.g., in [2].

Lemma 4. Let K be a simplicial complex and let A" be the star-covering of K.
If two maps f,f": E— |R| are A -near, then f = f".

This is Theorem 2.2 of [2].

LemMa 5. Let K be a simplicial complex and let f+ E — |K| be a map. Then for
any normal covering % of E, U =f"1(A"), there exists a simplicial map g of the nerve
N@) into K such that for any canonical map p: E — |N(#)| one has

O] (gp, FISA .
See, e.g., the proof of Theorem 2.3 of [2]. -

>4 such that

Lemma 6. Let P = |K| be a polyhedron, E a space, % a normal covering
of E, py: E— |N@)| a canonical mup and fy, fy: IN@)| — E two maps such that

() Jopa = fiPa -

Then there exists a normal covering %' of E such that %' 2% and

(6) SoPaar = fiPaw
here paygr: N@') — N(%) is any simplicial map, which sends a vertex U' €U’ into
a vertex Ued for which U'cU.

This is Theorem 2.5 of [2] (also see [13], § 3, Lemma 10).

Proof of Theorem 15. Let g: E— E be a resolution of £ We must show
that (M1) and (M2) are fulfilled. We assume that P is a polyhedron and L a simplicial
complex such that P = |L|. We denote by % the star-covering of L.

Proof of (Ml). Let f: E — P be a map. Applying property (R1) to P and &,
we obtain a A€ A and a map f;: E; — P such that (f, f,q)<.%. Then Lemma 4
implies f = f,4;. .

“Proof of (M2). Let Ae A and let f, f': E; - P be maps such that (2) holds.
Applying (R2) to P and & we obtain an open covering ¥ of P. Let K’ (K"') denote
the first (second) barycentric subdivision of K and let o (™) be the corresponding
star-covering. Notice that 2" <*A'<*#"". By Lemma 5, there exist a normal co-

vering % of F and simplicial maps g, g': N(%) — K" such that for any canonical
map py: E— [N(%)|

© . (fq, gpa) <A™,
M ("0, 9P <" .
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Lemma 4 and the assumption (2) imply

(8) gra = 0 = 0 = 0'pa - _
Therefore, by Lemma 6, there exists a normal covering %' of E, #<%’, such t‘hat
for any projection pyg: N(#') - N(%) one has

® 9Pan = §'Paar -

Let py: E =~ |N(%')) be a canonical map. Then the maps p,,;b,,,pm. and pq are
contiguous with respect to N(%). Since g: N(%) — K" is a simplicial map, the maps
gPuar Do a0d gpg, are contiguous with respect to K. Consequently,

(10) (9PwaePas JP)SH " s
which together with (6) implies

(1 ' (GPanrPars AN A .
Similarly, we obtain

(12) (0'PaaPars S GISA -

Now consider an open covering ¥~ of |[N(@')|, which refines both coverings
(gpan)™ 1) and (¢'Paay)™ (). By property (R1), there exists a A’z 2 and there
is a map h: Ep — |[N(@')| such that :

(13) : (hgy, Pa) <7

We thus obtain

14 (9PaahGy > SPaa P) S K

(15) (¢'Paarhd §'PaarPa) S A -
Now (11) and (14) imply

(16) (f4;+ 9P ha) S A

Similarly we obtain

{7 (f'42, 9'Puar N Y<K -

Since o' =%, by the choice of ¥, we conclude that there is a A=A’ such that

(18y - (St 9pam hgp)SE

and

(19) (f Q> 9 Paeer "o ) S L -

Hence, by Lemma 4,

@n Jqou = gPaa bz s

(22) S'ar = 9P M -

Finally, (2) implies the desired conclusion fgz = J ¢ -
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Remark 10. There are several known methods of assigning to a space £

a polyhedral (ANR) associated system, e.g. assigning to E its Cech system 191
(also see [13]). Theorem 15 shows that the proofs of Theorems 11 and 13 offer
alternative methods, which generalize the original Marde§i¢-Segal ANR -system
approach to shape [18].
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On the k—pseudo-symmetril:al approximate differentiability *
by

Giuseppina Russo and Santi Valenti (Palermo)

Abstract. The purpose of this paper is to establish a connection between two ways of
generalizing the notion of derivative.

1. It is well-known that a number of significant properties of differentiable
functions can be expressed in terms of some symmetrical or, generally, bilateral
differential quotients (see, for instance, [4] and [3]). On the other hand, a powerful
way of generalizing the notion of derivative is that of picking up only these values
of the differential quotient that correspond to a suitable set having positive density
at a given point: so one obtains, e.g., the approximate (or asymptotical) derivative
(see, for instance, [1] and [3]).

Within the present paper, our purpose is to establish a transparent connection
between the first and the second way to get a notion of derivative; more precisely, we
shall give a theorem who clarifies the relation between the usual approximate deriva-
tive and a new one, here called k-pseudo-symmetrical approximate (or asymptotical)
derivative.

Such a theorem shows that this new definition, based on a method introduced
elsewhere [4] by one of us (S. V.), gives place to an approximate derivative that
exists, at least almost everywhere, in any measurable set where the usual one does.

As for a complete understanding of the demonstration it will be useful the
knowledge of a deep and elegant theorem by A. Kintchine [2], we report here its
statement: let f(x) be a measurable function, assigned on a measurable set E. Then
almost all points of E do belong to one of the following sets

E, = {xeE: the approximate derivative of F(x) exists (M}

E, = {x e E: its upper (lower) approximate derivates are both + oo (— o0)}.

2. Let f(x) be 4 real function of a real variable, i.e. let AcRand f(x): 4 = R.
It is well-known that one can give the notion of approximate (or asymptotical)
derivative of f(x) at the point x€ R in the following way [1]:

* The second of the authors is partially supported by G.N. A. F.A. (Group of Mathematical
Analysis of the Italian Research Council).
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