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' Medial groupoids and Mersenne numbers
by

J. Dudek (Wroclaw)

Abstract. Let (G, +) be a groupoid and let I, (n > 1) denote the variety of all idempotent
commutative medial (i.e., (x+»)+@+v) = (x+u)+(p+2) groupoids satisfying x+ny = x
(where x+ny = (...(x+ DD+ ... +y)+y, x occurs once and y occurs » times), The main purpose
of the note is to prove the following theorem: The variety M, is equationally complete iff the
Mersenne number My = 2"—1 is prime.

0. For a natural number » the number M, = 2"—1 will be called the n-th
Mersenne number (see [4]). It is an open problem how many prime Mersenne
numbers exist (the same applies to nonprime Mersenne numbers).

In this note we exhibit a connection between prime Mersenne numbers M,
and some equationally complete verieties 9%, of indempotent groupoids (see below).

In Section 1, a characterization theorem for groupoids from I, is given which
is needed to prove our main result. i

The terminology and the notations are adopted from [2], [3] and [4].

By an algebra 2% = (4; F) we shall understand an ordered pair (4; F), where 4
is a nonempty set and F is a set of operations on 4. For a given algebra % by 4 (F)
we denote the set of all algebraic operations over U (see [3]).

Two algebras A, = (4; F;) and A, = (4; F,) are considered equal (poly-
nomially equivalent in [1]) if A(F)) = A(F,).

A groupoid is an algebra (G; ) with a binary fundamental operation x-y.
We write xy instead of x-y and xp" stands for (... (x) ...}y, where x occurs once
and y occurs # times. We shall also omit the brackets in an expression (... (x; x3) ...) %,
So, e.g., we write x;x,x; instead of (x;x,)xs.

A groupoid (G; -) is said to be idempotent if xx = x for every xe G.

In general, an algebra (4; F) is idempotent if every fundamental operation of
it is idempotent, i.e., if f& F, then f (x, ..., x) = x for all x € 4. For a given algebra
A = (4; F) by I(A) we denote the algebra (4; I(F)), where I(F) is the set of all
idempotent algebraic operations of 2. This algebra is called the idempotent reduct
of U. -
A groupoid (G; -) is commutative if xy = yx for all x,ye G and it is called
medial if (xy)(uv) = (xu)(yv) holds for all x;y,u,veG.
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For any natural number n, the class of all idempotent commutative medial
groupoids (G; -) which satisfy the identity xy” = x is denoted by M,.

A variety of algebras is called the zero-variety if it consists only of one-element
algebras. It will be denoted by O. A variety ¥ of algebras is said to be equationally
complete if the only proper subvariety of ¥ is O.

In this note we are going to prove the following theorem.

TueoREM. The Mersenne number M, is prime if and only if the variety I, is
equationally complete.

Before proving this theorem (Section 2) we need some information on groupoids
from M,.

1. Characterization theorem for groupeids from M. Let n>2 be a fixed natural
number and let d>1 be a divisor of 2"—1. Now let (G; +) be an abelian group of
exponent 4. Denote by G(d,n) the groupoid (G;c(x+y)) where ¢ = (d-+1)/2.

LemMA 1. The groupoids G(d, n) belong to the variety I,.

Proof. We have xx = (d+1)x = x. The commutativity of xp follows from
the fact that (G; -+) is an abelian group. To prove the medial law, let us observe
that the binary operation ox+ By is medial in every module over a commutative
ring. Since any abelian group of éxponent d can be regarded as a £,-module, where

8, = ({o, .., d—1}; +(modd); (modd)),

we infer that G(d, n) is medial.
Now let us check the identity xp" = x. We have x;x,%; = c2(xy+x,)+cxs
and in general

Xy e X = xR xg oy
Hence we have
(C"—l)
"= c"x+(ct+... My = "x+ I
Since (c—1,¢) =1 and (c—1,d) =1 and d|2"—1, we infer that ¢" = 1(modd)

nt1

and = o(modd). Thus we conclude that G(d, n) e M,.

Levma 2. If (G; +) € M, then there exists an abelian group (G; +) of exponent d,
d|2"—1, such that xy = c(x+y) for all x,ye G with ¢ = (d+1)/2.

Proof. If cardG =1 then d =1 and xy = x+y. Now let cardG>2 and
x+y = xpo"~! for some o € G. We prove that (G; +) is the required group. Indeed,
observe that x+y = y+x and x+0 = x00""! = x0" = x. Using the mediality and
distributivity (which follows from the mediality and idempotency of x)), we have

1,n~1

(x+y)+z = xp0" 20"t = xy0" " 200" * = ((xy0"~0)(z0))0" 2
= ((xp0")(z0))0" % = ((xy)(z0))0"~*
= (y+2)+x =x+(y+2).

‘We have thus proved that (G; -+) is a commutative semigroup with the zero-element o.
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Observe that any equation x+a = b has a solution in G for a, b € G. Indeed,
X+4a = xao" ! = b and hence xa = xao" 1o = bo and x = oba® ! is the required
solution. One can easily check that the solution is unique, and so (G; +) is a group.

Observe that 2x = x0" ! and 2%x = x0" 2. By induction it follows that
2%x = x0" % Putting k = n—1 we get 2" 1x = xo and hence 2"x = ((x0) (x0)) 0”1
= xo" = x. Since we are in the group (G; +), therefore (2"—1)x = o for all x e G.
Thus the exponent d of G divides 2°—1 and d>1.

Further, observe that

d+1
W= (x+y) .

Indeed, 2" !x+2""1y = xo+yo = ((x0)(y0))o" ! = xpoo" ! = xyo" = xy. To
complete the proof of our lemma it is enough to prove that
d+ 1
=i = (modd) .
‘We have
@'-1)-d
———— = o(modd),
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which is a simple consequence of d[2"—1 and (2,d) = 1.
The proof is completed.

The following theorem results from Lemmas 1 and 2.

CHARACTERIZATION THEOREM. For a fixed natural number n, a groupoid (G; +)
belongs to M, if and only if there exists an abelian group (G; +) of exponent d with
d|2"—1 and

d+
Xy = T (x+y) foral x,yeG.

2. Proof of Theorem. In this section we shall prove the theorem stated in Section 0.
Proof. Let p be a prime number greater than 2. Denote by S, the variety

HSP({o, s p—1}; I:;—I(X'H’))

where + = +(modp), - =

field

- (modp) are understood in the sense of the Galois

GF(») = ({o, ..., p—1}; +(modp), - (modp)) .
Using the result of [5], we infer that the groupoid

G, = ({0,

is polynomially equivalent to the idempotent reduct of the additive group of the
field GF(p). This group can be regarded as a vector space over GF(p) and the
groupoid G, can be treated as an affine space over GF(p). As is shown in [1], every -

1
=1} 5;— (x+y))


GUEST


112 J. Dudek
affine space over GF(p) is polynomially equivalent to some medial idempotent
quasigroup and the variety of all affine spaces over GF(p) is equationally complete.
So, we infer that S, is equationally complete because of the following fact: if 2 is
an algebra of a fixed typz 7, and if the algebra  can also be considered as an algebra
of a type 7, (with same algebraic operations), then HSP() is equationally complete
with respect to 7, if and only if it is equationally complete with respect to t,.
It follows from [1] that for different primes p and ¢ the varicties S, and S, are
different atoms in the lattice of subvaticties of all idempotent medial quasigroups.
Now we are in a position to complete the proof of the theorem. Suppose IR,
is equationally complete and suppose that M, = 2"—1 is not prime. Then there
exist two different primes p and ¢ such that p|2"—1 and ¢|2"—1. By Lemma 1 we
infer that G(p, n) and G(q, n) belong to the variety M,. Therefore the varieties .S,
and 'S; are contained as non-zero subvarieties in M, which contradicts the fact
that M, is equationally complete.
Assume now that M, is prime. To prove that 9, is equationally complete it is
enough to show 9, = HSP((G; -)) for every nontrivial groupoid (G; -) from M,.
Let (G;-) e M,. Then by Lemma 2 there exists an abelian group (G; +) of
exponent d|2"—1, where d>1 and

d+1
(G xp) = (G; 5 (x+y)) .
Since 2"—1 is prime, we have d = 2"—1 and hence
HSP((G; -)) = HSP((G; 2" *(x+)) -
The latter variety is equal to the variety S,n_, since the sets of identities of the
groupoid (G; 2" (x+)) and ({o, ..., 2"—2}; 2"~ *(x+)) are equal (the latter
groupoid is polynomially equivalent to the affine space over GF (2"~ 1)). By Lemma 1
we find that S,n_; =M, and Syn_; = HSP((G; -)) forall (G; +) € M, with card G>2.

Using the well-known Birkhoff theorem, we infer that M, = S,n_, and hence M,
is equationally .complete.
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Solution of a problem of Ulam
on countable sequences of sets

by

Andrzej Pelc (Warszawa)

Abstract. Let E be a set of cardinality 2 and {d4,: n € w} an arbitrary sequence of subsets
of E. Let 4§ denote the g-algebra of subsets of E generated by the family {4,: n € w} and g* the
o-algebra of subsets of E* generated by the family {4, X Ap: 1, m € w}. S. M. Ulam stated a problem
(see [3]), whether there exists an injection @: E — E* transforming 4§ into 48* and conversely.

We give a negative answer to this question and formulate a condition on {4,: » € 0} under
which the answer is positive.

§ 0. We use standard set theoretical notation and terminology.

By E we always denote a set of cardinality 2°. If AcE then we put 4! = 4,
A® = ENA. If of = {4,: new} is a sequence of subsets of E then the function
Qg E—2° such that ¢ (x)(n) =1 = xe 4, is called the characteristic function
of . For every fe 2 the set o (f) = o5' » {f} = () 43 is called a component

n
of & and f the index of o ( f). If e € E then S(e) denotes the component containing e.
Clearly the components are pairwise disjoint and their union is E. Conversely,
every pairwise disjoint family of cardinality 2° with union E is the set of com-
ponents of some sequence .
We define generalized Borel classes over &:

2et) = {UX: X},
5 = {U X: IXI<0, X< Y (236 I

OY(et) = {ENX: X e ZY(2)},
B(t) = U (ZN) v OUL)).

<oy
2B(sf) is the o-algebra generated by «f. If &, is a o-algebra of subsets of E; and %,
a o-algebra of subsets of E, then'a function &: E; — E, iscalled (&, , &,)-preserving
ifBe#, = &+(B)eB, and Be B, = & ' »(B)e &,. In case when E; and E,
are subsets of 2% and 4, is the family of Borel subsets of E; (i = 1, 2), we say that ¢
is Borel preserving instead of saying (%4,, #,)-preserving.


GUEST




