

Medial groupoids and Mersenne numbers

hv

J. Dudek (Wrocław)

Abstract. Let (G, +) be a groupoid and let \mathfrak{M}_n $(n \ge 1)$ denote the variety of all idempotent commutative medial (i.e., (x+y)+(u+v)=(x+u)+(y+v) groupoids satisfying x+ny=x (where x+ny=(...(x+y)+y)+...+y)+y, x occurs once and y occurs n times). The main purpose of the note is to prove the following theorem: The variety \mathfrak{M}_n is equationally complete iff the Mersenne number $M_n=2^n-1$ is prime.

0. For a natural number n the number $M_n = 2^n - 1$ will be called the *n-th Mersenne number* (see [4]). It is an open problem how many prime Mersenne numbers exist (the same applies to nonprime Mersenne numbers).

In this note we exhibit a connection between prime Mersenne numbers M_n and some equationally complete verieties \mathfrak{M}_n of indempotent groupoids (see below).

In Section 1, a characterization theorem for groupoids from \mathfrak{M}_n is given which is needed to prove our main result.

The terminology and the notations are adopted from [2], [3] and [4].

By an algebra $\mathfrak{A} = (A; F)$ we shall understand an ordered pair (A; F), where A is a nonempty set and F is a set of operations on A. For a given algebra \mathfrak{A} by A(F) we denote the set of all algebraic operations over \mathfrak{A} (see [3]).

Two algebras $\mathfrak{A}_1 = (A; F_1)$ and $\mathfrak{A}_2 = (A; F_2)$ are considered equal (polynomially equivalent in [1]) if $A(F_1) = A(F_2)$.

A groupoid is an algebra $(G; \cdot)$ with a binary fundamental operation $x \cdot y$. We write xy instead of $x \cdot y$ and xy^n stands for (...(xy)...)y, where x occurs once and y occurs n times. We shall also omit the brackets in an expression $(...(x_1x_2)...)x_n$. So, e.g., we write $x_1x_2x_3$ instead of $(x_1x_2)x_3$.

A groupoid $(G; \cdot)$ is said to be *idempotent* if xx = x for every $x \in G$.

In general, an algebra (A; F) is *idempotent* if every fundamental operation of it is idempotent, i.e., if $f \in F$, then f(x, ..., x) = x for all $x \in A$. For a given algebra $\mathfrak{A} = (A; F)$ by $I(\mathfrak{A})$ we denote the algebra (A; I(F)), where I(F) is the set of all idempotent algebraic operations of \mathfrak{A} . This algebra is called the *idempotent reduct* of \mathfrak{A} .

A groupoid $(G; \cdot)$ is commutative if xy = yx for all $x, y \in G$ and it is called medial if (xy)(uv) = (xu)(yv) holds for all $x, y, u, v \in G$.

For any natural number n, the class of all idempotent commutative medial groupoids $(G; \cdot)$ which satisfy the identity $xy^n = x$ is denoted by \mathfrak{M}_n .

A variety of algebras is called the *zero-variety* if it consists only of one-element algebras. It will be denoted by O. A variety V of algebras is said to be *equationally complete* if the only proper subvariety of V is O.

In this note we are going to prove the following theorem.

THEOREM. The Mersenne number M_n is prime if and only if the variety \mathfrak{M}_n is equationally complete.

Before proving this theorem (Section 2) we need some information on groupoids from \mathfrak{M}_{\bullet} .

1. Characterization theorem for groupoids from \mathfrak{M}_n . Let $n \ge 2$ be a fixed natural number and let d > 1 be a divisor of $2^n - 1$. Now let (G; +) be an abelian group of exponent d. Denote by G(d, n) the groupoid (G; c(x+y)) where c = (d+1)/2.

LEMMA 1. The groupoids G(d, n) belong to the variety \mathfrak{M}_n .

Proof. We have xx = (d+1)x = x. The commutativity of xy follows from the fact that (G; +) is an abelian group. To prove the medial law, let us observe that the binary operation $\alpha x + \beta y$ is medial in every module over a commutative ring. Since any abelian group of exponent d can be regarded as a \mathfrak{L}_d -module, where

$$\mathfrak{Q}_d = (\{o, ..., d-1\}; + (\text{mod } d); (\text{mod } d)),$$

we infer that G(d, n) is medial.

Now let us check the identity $xy^n = x$. We have $x_1x_2x_3 = c^2(x_1+x_2)+cx_3$ and in general

$$x_1 \dots x_k = c^{k-1} x_1 + c^{k-1} x_2 + c^{k-2} x_3 + \dots + c x_k$$

Hence we have

$$xy^n = c^n x + (c + ... + c^n)y = c^n x + \frac{c(c^n - 1)}{c - 1}y$$
.

Since (c-1, c) = 1 and (c-1, d) = 1 and $d|2^n - 1$, we infer that $c^n \equiv 1 \pmod{d}$ and $\frac{c^{n+1} - c}{c-1} \equiv o \pmod{d}$. Thus we conclude that $G(d, n) \in \mathfrak{M}_n$.

LEMMA 2. If $(G; \cdot) \in \mathfrak{M}_n$ then there exists an abelian group (G; +) of exponent d, $d(2^n-1)$, such that xy = c(x+y) for all $x, y \in G$ with c = (d+1)/2.

Proof. If $\operatorname{card} G = 1$ then d = 1 and xy = x + y. Now let $\operatorname{card} G \ge 2$ and $x + y = xyo^{n-1}$ for some $o \in G$. We prove that (G; +) is the required group. Indeed, observe that x + y = y + x and $x + o = xoo^{n-1} = xo^n = x$. Using the mediality and distributivity (which follows from the mediality and idempotency of xy), we have

$$(x+y)+z = xyo^{n-1}zo^{n-1} = xyo^{n-1}zoo^{n-2} = ((xyo^{n-1}o)(zo))o^{n-2}$$

= $((xyo^n)(zo))o^{n-2} = ((xy)(zo))o^{n-2}$
= $(y+z)+x = x+(y+z)$,

We have thus proved that (G; +) is a commutative semigroup with the zero-element o.

Observe that any equation x+a=b has a solution in G for $a, b \in G$. Indeed, $x+a=xao^{n-1}=b$ and hence $xa=xao^{n-1}o=bo$ and $x=oba^{n-1}$ is the required solution. One can easily check that the solution is unique, and so (G; +) is a group.

Observe that $2x = xo^{n-1}$ and $2^2x = xo^{n-2}$. By induction it follows that $2^kx = xo^{n-k}$. Putting k = n-1 we get $2^{n-1}x = xo$ and hence $2^nx = ((xo)(xo))o^{n-1} = xo^n = x$. Since we are in the group (G; +), therefore $(2^n-1)x = o$ for all $x \in G$. Thus the exponent d of G divides 2^n-1 and d>1.

Further, observe that

$$xy = \frac{d+1}{2} (x+y) .$$

Indeed, $2^{n-1}x+2^{n-1}y=xo+yo=((xo)(yo))o^{n-1}=xyoo^{n-1}=xyo^n=xy$. To complete the proof of our lemma it is enough to prove that

$$2^{n-1} - \frac{d+1}{2} \equiv (\operatorname{mod} d).$$

We have

$$\frac{(2^n-1)-d}{2} \equiv o(\operatorname{mod} d),$$

which is a simple consequence of $d|2^n-1$ and (2, d)=1.

The proof is completed.

The following theorem results from Lemmas 1 and 2.

CHARACTERIZATION THEOREM. For a fixed natural number n, a groupoid $(G; \cdot)$ belongs to \mathfrak{M}_n if and only if there exists an abelian group (G; +) of exponent d with $d \mid 2^n - 1$ and

$$xy = \frac{d+1}{2}(x+y)$$
 for all $x, y \in G$.

2. Proof of Theorem. In this section we shall prove the theorem stated in Section 0. Proof. Let p be a prime number greater than 2. Denote by S_p the variety

HSP
$$({0,...,p-1}; \frac{p+1}{2}(x+y))$$

where + = + (mod p), $\cdot = \cdot (\text{mod } p)$ are understood in the sense of the Galois field

$$GF(p) = ({o, ..., p-1}; + (mod p), \cdot (mod p)).$$

Using the result of [5], we infer that the groupoid

$$G_p = \left(\{o, ..., p-1\}; \frac{p+1}{2} (x+y) \right)$$

is polynomially equivalent to the idempotent reduct of the additive group of the field GF(p). This group can be regarded as a vector space over GF(p) and the groupoid G_p can be treated as an affine space over GF(p). As is shown in [1], every

affine space over GF(p) is polynomially equivalent to some medial idempotent quasigroup and the variety of all affine spaces over GF(p) is equationally complete. So, we infer that S_p is equationally complete because of the following fact: if $\mathfrak U$ is an algebra of a fixed type τ_1 and if the algebra $\mathfrak U$ can also be considered as an algebra of a type τ_2 (with same algebraic operations), then HSP($\mathfrak U$) is equationally complete with respect to τ_1 if and only if it is equationally complete with respect to τ_2 .

It follows from [1] that for different primes p and q the varieties S_p and S_q are different atoms in the lattice of subvarieties of all idempotent medial quasigroups.

Now we are in a position to complete the proof of the theorem. Suppose \mathfrak{M}_n is equationally complete and suppose that $M_n = 2^n - 1$ is not prime. Then there exist two different primes p and q such that $p \mid 2^n - 1$ and $q \mid 2^n - 1$. By Lemma 1 we infer that G(p, n) and G(q, n) belong to the variety \mathfrak{M}_n . Therefore the varieties S_p and S_q are contained as non-zero subvarieties in \mathfrak{M}_n , which contradicts the fact that \mathfrak{M}_n is equationally complete.

Assume now that M_n is prime. To prove that \mathfrak{M}_n is equationally complete it is enough to show $\mathfrak{M}_n = \mathrm{HSP}((G;\cdot))$ for every nontrivial groupoid $(G;\cdot)$ from \mathfrak{M}_n .

Let $(G; \cdot) \in \mathfrak{M}_n$. Then by Lemma 2 there exists an abelian group (G; +) of exponent $d \mid 2^n - 1$, where d > 1 and

$$G(G; xy) = \left(G; \frac{d+1}{2}(x+y)\right).$$

Since $2^{n}-1$ is prime, we have $d=2^{n}-1$ and hence

$$HSP((G;\cdot)) = HSP((G;2^{n-1}(x+y)).$$

The latter variety is equal to the variety S_2n_{-1} since the sets of identities of the groupoid $(G; 2^{n-1}(x+y))$ and $(\{o, ..., 2^n-2\}; 2^{n-1}(x+y))$ are equal (the latter groupoid is polynomially equivalent to the affine space over $GF(2^n-1)$). By Lemma 1 we find that $S_2n_{-1} \subset \mathfrak{M}_n$ and $S_2n_{-1} = HSP((G; \cdot))$ for all $(G; \cdot) \in \mathfrak{M}_n$ with card $G \geqslant 2$. Using the well-known Birkhoff theorem, we infer that $\mathfrak{M}_n = S_2n_{-1}$ and hence \mathfrak{M}_n is equationally complete.

References

- B. Csákány and L. Megyesi, Varieties of idempotent medial quasigroup, Acta Sci. Math. 37 (1975), pp. 17-24.
- [2] G. Grätzer, Universal Algebra, Van Nostrand 1968.
- [3] E. Marczewski, Independence and homomorphism in abstract algebras, Fund. Math. 50 (1961), pp. 45-61.
- [4] W. Narkiewicz, Teoria Liczb, Warszawa 1977.
- [5] J. Płonka, On the arity of idempotent reducts, Colloq. Math. 21 (1970), pp. 35-37.

Accepté par la Rédaction le 12, 11, 1979

Solution of a problem of Ulam on countable sequences of sets

b

Andrzej Pelc (Warszawa)

Abstract. Let E be a set of cardinality 2^{ω} and $\{A_n: n \in \omega\}$ an arbitrary sequence of subsets of E. Let \mathscr{B} denote the σ -algebra of subsets of E generated by the family $\{A_n: n \in \omega\}$ and \mathscr{B}^* the σ -algebra of subsets of E^2 generated by the family $\{A_n \times A_m: n, m \in \omega\}$. S. M. Ulam stated a problem (see [3]), whether there exists an injection $\Phi: E \to E^2$ transforming \mathscr{B} into \mathscr{B}^* and conversely.

We give a negative answer to this question and formulate a condition on $\{A_n: n \in \omega\}$ under which the answer is positive.

§ 0. We use standard set theoretical notation and terminology.

By E we always denote a set of cardinality 2^{ω} . If $A \subset E$ then we put $A^1 = A$, $A^0 = E \setminus A$. If $\mathscr{A} = \{A_n \colon n \in \omega\}$ is a sequence of subsets of E then the function $\varphi_{\mathscr{A}} \colon E \to 2^{\omega}$ such that $\varphi_{\mathscr{A}}(x)(n) = 1 \equiv x \in A_n$ is called the *characteristic function* of \mathscr{A} . For every $f \in 2^{\omega}$ the set $\mathscr{A}(f) = \varphi_{\mathscr{A}}^{-1} * \{f\} = \bigcap_{i=1}^{\infty} A_n^{f(n)}$ is called a *component*

of \mathscr{A} and f the index of $\mathscr{A}(f)$. If $e \in E$ then S(e) denotes the component containing e. Clearly the components are pairwise disjoint and their union is E. Conversely, every pairwise disjoint family of cardinality 2^{ω} with union E is the set of components of some sequence \mathscr{A} .

We define generalized Borel classes over A:

$$\begin{split} & \Sigma_1^0(\mathscr{A}) = \left\{ \bigcup X \colon X \subset \mathscr{A} \right\}, \\ & \Sigma_\xi^0(\mathscr{A}) = \left\{ \bigcup X \colon |X| \leqslant \omega, X \subset \bigcup_{\eta < \xi} \left(\Sigma_\eta^0(\mathscr{A}) \cup \Pi_\eta^0(\mathscr{A}) \right) \right\}, \\ & \Pi_\xi^0(\mathscr{A}) = \left\{ E \backslash X \colon X \in \Sigma_\xi^0(\mathscr{A}) \right\}, \\ & \mathscr{B}(\mathscr{A}) = \bigcup_{\xi < \omega_1} \left(\Sigma_\xi^0(\mathscr{A}) \cup \Pi_\xi^0(\mathscr{A}) \right). \end{split}$$

 $\mathscr{B}(\mathscr{A})$ is the σ -algebra generated by \mathscr{A} . If \mathscr{B}_1 is a σ -algebra of subsets of E_1 and \mathscr{B}_2 a σ -algebra of subsets of E_2 then a function $\Phi \colon E_1 \to E_2$ is called $(\mathscr{B}_1, \mathscr{B}_2)$ -preserving iff $B \in \mathscr{B}_1 \Rightarrow \Phi * (B) \in \mathscr{B}_2$ and $B \in \mathscr{B}_2 \Rightarrow \Phi^{-1} * (B) \in \mathscr{B}_1$. In case when E_1 and E_2 are subsets of 2^ω and \mathscr{B}_i is the family of Borel subsets of E_i (i=1,2), we say that Φ is Borel preserving instead of saying $(\mathscr{B}_1, \mathscr{B}_2)$ -preserving.