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A generalized area integral estimate and applications
by
8.-Y. A. CHANG* (College Park, Md.)

Abstract. We consider functions defined on the unit ball B? in C* which are
harmonic with respect to the Laplace—Beltrami operator of the Bergman metric.
‘We estimate the area integral of such functions and obtain, as applications of such
estimates: the ILP-growth of the area integral being bounded by IP-growth
of non-tangential maximal function for 0 < p < oo and other results.

§0. Introduction and notations. In this paper we introduce a method
to estimate area mtegml in terms of the LP-growth of 2 harmonie funetion.,
This method avoids the repeated use of the distribution funection in dealing
with this type of problems. As an example in Theorems 1, 2 and 3 below
we extend some classical results on boundary behavior of harmonie fune-
tions defined on upper-half space ([4], [10], [11]) to the case of the unit
ball in C*.

‘We would like to thank S. Krantz and P. Yang for inform ative dis-
cussions.

Let B™ denote the unit ball in C", i.e. B® = {z e C*, |2| < 1}. Write

n . 0 0 .0 0 ]
zeB"as (zl:""zn)azk=wk+'bf’/kya—zk=é i wes ’—_k— =3 “5@”’“

41 W) and 6(2) = 1— |2[°. The Bergman metric on B™ is
k

& 1
2 5 = .
das* = {; 94d%,d%;, Where g, %, log ( é(z))” 1

Let (g¥) be the inverse matrix of (g;), then the Laplace~Beltrami operator
on B" is defined to be

aF = 4 2 ¢ 6z‘6z,

and we call a function F harmonic if AF = 0. The gradient with respect
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to the Bergman metric is given by
[oF ©
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vr 2 g 13z 0% l
and the square norm of VI iy
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The volume element @ induced by the metric is

(1) AQ(2) = deti(gy) dw(z) = (n--1)"(8(2)) " Vdw (2),

where deo = dwy, ..., A, &Yy, ..., dY, is the Buclidean eclement of volume.
The. Pozssow—Szago Teernel P(z £y for 2 e B, £ € 0B ig given by

(1)1 (=)
P(z,{) =T o H—e

1, the Poisson. integral I of f

[ P, 0)f(0)do(2)

18l=1

For:any function f e L” (0B™) for p >

F2) =

where do(g) is the induced Euclidean rmeasure on 0B", satisfies AF = 0.
The kernel P(z, ) is a reproducing kernel in the sense that the radial limit
of I exists and is equal to f a.e. To allow a more general approach region,
Kordnyi [6] introduced the notion of admissible region: for any £ on the
boundary (|} = 1), and any aperture a > 0 let

Ao(8) = {t] <1, [L—2- I} < ad(e)}

be admissible regions at {. He proved that F converges to £ admissibly
(i.e. within some admissible region) almost everywhere. If we define the
generalized Lusin area integral of F to be

8BV =( [ IvEP@ae@)”,
o o(F)
in Section 2 below we will prove the following theorem.

TEEOREM 1. Suppose F is a harmonic function on B™; then for each
a> 0, f> 0 there exists constant C, , 5 depending on 2,0, cmd B such that

185 (F)lp < a5 1 Fally

sup |F(2)| is the non-tangential mazimal function of F.
gesl (2) ’
Theorem 1 in the classical case n =1 was proved by Marcinkiewicz
and Zygmund, and also was known for harmonie function defined on R+

where Fe(l) =
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(Stein [10], [11], Fefferman and Stein [4]). The local version of the the-
orem was proved by Stein [9], [10] (cf. also Putz [7]) for both analytic
function defined on strictly pseudoconvex domain in €™ and classical
harmonic funetion on R%*'. Our proof of the theorem depends strongly
on estirnates of [9] and [5].

The paper is organized in the following way. In Section 1, we prove
Theorem 1 for the ease 0 < p < 2, following the proof of Theorem 8 in
[4]. In Section 2, we apply the result in Section 1 to obtain the main esti-
mate on area integral, generalizing the method of [1], where the special
case # =1, p =2 was treated. In Section 3 we apply the estimate in
Section 2 to finish the proof of Theorem 1, to obtain the norm-bound of
Calderén’s commutator operator induced by a BMO function, and to
remark on some related result. A final remark is that the constants C
used. in various inequalities in the paper are universal constants, which
may be different from each other unless otherwise specified.

§ 1. The case of 0 < p < 2. In this section we will prove Theorem 1
for the special case 0 < p < 2, as in [4], we first make some additional
agsumptions that will be removed at the end of the proof. We assume:
T is the Poisson integral of an I* function; and the admisgible region de-
fining §, is strictly contained in the region deﬁmng I ie p<a We write
S(T) for 8,(F), F* for Fr,.

We let B be the closed sebt

E={edB" F' ()<}
and B its complement. So, if Ay is the distribution function of I™, then
Apa(yy = |Bl. Write
& = A({)n{z € B*, §(z) < a}
{eB

where 0 < @ is small and fixed. Let £, be an approximating family of

sub-regions of # defined as in Kerzman’s notes [5], where he modified

a classical construction (e.g., [4]) to show:

(2) 2 is the increasing union of R,;

(3) The boundary b%, has two parts b, = b, -+ D%, where b7,
is a Lipschitz hypersurface which is parametrized by

Q = g.(0) = L+ (p0)+e)n(d)

For ¢ e U, where U is an open subset of B* containing &, n({) is the
Fuclidean inward unit normal to éB™ at ¢ and ¢(¢) =0 if and only if
£ e B. b&, is an open subset of {z € D, §(r) = a—¢},

(4) dr,(Q) < 0(8(Q)) " do(0)
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where ¢ and Q are related as in (3), and dv, is the area element induced

on by(#,) by the Bergman metric on B". 0 is some universal constant.
(5) f |8"dz, < 0 < oo independent of e.
boRs

We then begin to estimate Agg in terms of Ap.. We have

(6) [ (8 (2)de () = f f IV (2)*d2(2) do(£)

<0 f J* VP (2)[dQ(2) = OlimI,

&0

where
I,= [(8())|VE(2)[*aR(2).

#e

We then apply .Green’s formula to I, and obtain I, < T,+T,-+ T, where

T, = f|51n+1]1;7l2d9,
R

7, = [ |-t (B,
bR,

is the outward unit normal in the metric

0
Ty = f‘F'Zl“arﬂ“*"

b,

dz,.

Divide the region £, into parts &, = #ZU%?, where 27 is the part
above H (i.e. € #Z, then #/|¢| € B); %7 the part above the set B. Then

(1) Ty=0y [+ [)1FPdolz) where O,= (n+1)* by (1)
WE

< Cpa [ IF* (O do(8) +Cpay® [ do(d)
B B

ke
< O’na( J 2t hpeyt+9* Ay )

The first inequality follows since by definition of %, |F(2)| <
The second one follows gince |F*(£)| < y on B.

) The estimates on T,, T; are essentially the same as in [4], where
instead of using properties of usual harmonic functions defined on R},
we use Kerzman’s estimate (2)~(5) above along with the following lemmas:

aon%
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LevmA 1. Suppose f is in LP(8B™), p > L and F its Poisson integral.
Then

1) 1P (2)l <
constont C.

(2) |VF (2)| =0 for 2 € o4(0), 2L for almost all L.

In the case F is analytie, above lemama is proved in Stein [9], p. 61.

Proof. To prove (1), it suffices to assume f is a positive real-valued
function, but in this special case we have

IVP@) =|V. [Pl Df©)dad)|<
0B,

K for z e sty implies |VF(2)} < OK for z e o and some

[ VPG, OIf(D)do(0)
8By,
=n [Pz, Of(0)do(2)

0B,

= OnF (?).

So (1) is direct.

The second statement follows from Lemma 7.2 of [7], if we can show
that f € L?(0B™), p > 1 implies that Sz(F) is bounded almost everywhere.
This latter fact follows directly from Korsnyi’s Theorem and the main
result of Putz [7].

We will now sketch the estimate on T, and Ty; split the region .%,
= RFUAL as above, we have

(f+ f)an—mran\ (fE+ L)a"mnvmdr_.-
val bk

An application of Kerzman’s estimate (3), (4) together with Lemma 1
shows that

[ &IPIVFIdn, <y [ VE[8"dr, >0 a5 s->0.

LA bty
On the boundaxry b7, for all s > 0 one has
f |F||VF| 8" dr, < O f Dt ay -
oy 2T

Tf one notices that (4) is also valid for & € boZ.,

[ 6"171|VF|dr, < Oy fczg(z_:) Oy Aoy -
oal . b92
Together we obtain
. - , _ |
(8) 1,<0(f Whpoy B+ 7 Ay) B8 o0
) 0
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Similarly one can estimate 7'; using the fact that (Stein [9], p. 66).
oo™

<0é" on b2,

and obtain the same upper bound as the estimate of T,
From (6), (7), (8) one has

e
f(S(F)VdU' < (0] (’}/2 21,1*(;,) -+ fMF.(,) df) .
B 0
Thus the same argument ag in Fefferman & Stein [4], p. 163, implies
that ||S(F), < O, [F*|, when 0 < p < 2.

To complete the proof of the theorem one has to remove the restrie-
tions on F and the size of admissible region, These could again be done
similarly as in [4]. The restriction on F could be removed by the following
lemma.

LevMA 2. If F is harmowic, and F* e L for some 0 <p < 2, then
the function F, defined by F,(2) = F(gz) for || <1, 0 < 0 <1 satisfies
sup. Jn |7, (r2)|"do(2) < oo.
>

Proof of Lemma 2. It suffices to show that if F* e Z? for some
0< p<2, then |[F(z)| < Cd(z)™™? for all zeB". This latter fact is an
immediate consequence.of the following sublemma when one takes the
radius r of gkew ball defined below to be d(z).

SuBLEMMA. Suppose F is harmonic on B", 8,(2) ¢s any skew ball center-
ed at z of radius v << 8(2) (recall S,(2) = {¢' e B", [L—2'-Z| < 7}), .then

¢
F2)) < —— B f ?
TOF <TG, | FOPE©
Sp(2)

for all 2 e B*, 0 < p < oo where C,, is some constant 'mdepmdent of T

The sublemma above and the restriction on the size of admissible
region could all be proved by method very similar to the corresponding
result for harmonic function defined on RY™ (upper-half space) with
respect to usual potential theory ([11], [4]). We will omit the proof.

§2. An area integral estimate. For each {, & 8B, let B(L?, o) be
the skew ball centered at ¢, of radius ¢ defined by B({9, o) = {[¢] =1,
[1—£-&| < ¢}. The maximal function defined with respect to this family
of balls is given by

2 (g)(8) = sup flgldtr,

where the supremum is taken over all skew balls B containing ¢, for {
€ 8B" and |B| = f do.
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M is a weak type 1-1 operator, (cf. e.g. Stein [9], p. 10) and from which
it follows that the strong maximal function 4,(g) defined by 4.(g)(Z)
= (M{gl"(@))l” satisties ||4,(g)ll, < C,,lgl, for all ge LP(0B™) and a&ll
1< #<p, where G, , is a constant depending on 7, p.

Fix g € L?(0B"), p > 1, B > 0 and some point 2z, € B". Let

B = Bzo =B (z(,/lz(,],(ﬂ.—{—l) 5(%))

e the skew ball associated with 2y, and let B be the skew ball B (zD HEAR
ed(zo)) where ¢ > (f--1) is some fixed constant which will be chosen later.
Suppose % = u, is a function satisfying the following property

() ( [ 260 Dl (OFdo (D))" < €,y
1£1=1
and hence
1Ur
(10) (& Jweioraa )<

for all r > 1 and f01 some constant G, ,, depending on 7 and
Now let f = u, g and let I be the Poisson integral of f For each B,

ho> 0let Sp,(F) = ( |VF*dQ)" be the truncated area fune-
.vtﬁ(t)n{seB" S(2)<h}
tion. The area integral estimate we claim is the following:

(11) [ (Satey (21 8(2) < O IBICE, (it A(9) (D)
B (=)

where g, s are any number with 1<qg<2, s> 1. Oy is a constant
which depends only on O,,, for some r which is a function of ¢, s

We now proceed to prove (11). Let f; = ygf,fo =f—f, and let
F,, T, be Poisson integral of fi, f,, resp. It suffices to prove (11) for both
F, and F,.

To obtain (11) for ¥, we use the result that Theorem 1 holds for
0 < p < 2 (proved in Section 1). Thus for 1 < ¢ < 2, one has

12) [ (St @) < Oy [ \fueae

B oB"
1 1 1/s
- qrd 1fr — s q )
< OpalBI 5 [ 1" (- [ 191 o
b B
by (10) < 0p,q1BI O (08 4es(9)"

where 7, § is any number > 1 with 1 jr 4+ 1/s = 1. Thus (11) is established
With Guy, = Gy ‘
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To prove (11) for F',, we shall use a pointwise estimate of the gradient
of I,. First observe that if we put d(f, %) = [1—¢-7" for £, 7€ aB»,
then d is a distance on oB". Using this fact one can easily verify that if
the size of the ball B is suitably chosen, (i.e. choose ¢ to depend on the
aperture f), then for all points z € «£4({y) with {, € B, §(2) < (z,), and
for all £ € 8B\ B one has
-2

f:zrf >0

Thus for such zeB",

(13) for some congtant C.

1) (VEEIS [ 1V.Ple, ) (0]1g(0)do(2)
oB™NB
<n [ Pl O (0)]19(0)1d0(2)
OB\ B
Wl @lle)
<0(3(2) f~md0@)
BN B
<O(o@) A= laol) ™ ([ Plao, 0)ly (P o))" x
A g0 &
xige(is [ O a0
aBINE [L—2- 1"

where 1, % are any numbers > 1 with 1/1 +1/k = 1. Thus if we apply (9)
and observe that |B| = (8(2))" (i.e. 03(8(20))" < |B] < 0(8(2,))" for suitable
constants Oy, C,), we can show that '

[V, (2)] < OOz,u(ts(z))”lBl'l;’n;f(zl‘kg(i)),

Hence for ¢ € B, by (13) applying (13) we have
Sd(so) (Fa) (L) =

o g(8)n{zeB™, 5(e)<0(2g)}

(8())™ 8 ()~ do (&))" ].ﬁ|‘1icn§/1,‘g(§)

|VF,(2) 1%11:?(51))”Z

< 0+,
A (OB, de <l
< OOy (S(e)) 02 [ 8oo(2))"* | B|~ int 4,,g(2)
o g(8)n{3(2) <A(zp)} {eB

< 0+ Ouy, inf Ayg(L).
{eB

Thus inequality (11) for F, follows if we chooge & = gs.

In the next section, we will apply inequality (11) to different s1tu-
ations by choosing suitable «, s, Satistying both (9) and (10).

icm
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§3. Applications. We will first apply inequality (11) to finish the
proof of Theorem 1 stated in the introduction. Since the case 0 < p < 2
hag been proved in Section 1, we now assume 2-< p < co. Suppose F is
a harmonie function on B", to prove Theorem 1 it suffices to show that
if f is the boundary function of F (ie. f({) = LimF(r{) for each { e 4B"),
then =1

(15) 185(F) Iy < Op,pllfllp-

To apply (11), for each 2 ¢ B* we choose %, = 1. Thus %, satisfy
(9), (10) trivially with C,, =1 for each r. Hence for g =f = u,4, (11)
holds for all 2, i.e.

(16) J S0y T2 80(8) < Ol Byl 10t (Al F)(O))*
20 0

foralll < g<2ands> 1. To establish (15), we adopt the following argu-
ment (cf. [4], p. 148). For each £ € 0B,, let k({) = sup{h >0, 80 (EF)ND)
< 0,4y ()(8)} (in particular Sy e (F) ) <6 Ay(9)(L)) then for suitable
constant ¢,, one has by (16) for each 2, e B"

= §1By |

Since z € of,(¢) implies that 2 € B, by our choice of the size of B, , if
we choose ¢, s so that gs < p, we hwe when p =2

[ [ 1VF@PraQ) do(d)

aB" afp(2)

<O, [ IVE@)P(3(2))'d2(2)
B"

7) [{¢ € 0B L eB,, h(5)> d(zo)}]

18 (B2 =

y 17 <0 |VFd2(2)) do (%)
B .xﬂﬂ(l)n{b(z)sh(C)}
<0 [(Ap(H@)2d0() < Gyl
aB™
‘When p > 2
1S, (E)ly = (8P = sup | [ (8(E) Rdo”
keBL" 'agn

where BL' is the unit ball of L*(8B™ and 1/r+2/p = 1. Thus
15, < s [ f VR AQ(2) k() do (L) |

< sup | J IVF () (3(2)" 22 (@) I,

ksBL"

<a,lf|
2 gE)N(31)<h(E))

1/2

1/2

by (17) \VF (o) 42 (2)) do (0) |
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< 0| [ (AN @)Pdoio) [
< Oﬁ”(Aqs(f)}ﬂ ;u//é = Oﬁ ”Aqa (f) ”1: < Oﬂ,p ”.f”p
‘We have finished the proof of Theorem 1.
If one chooses a more complicated function Uy, ONE can obtain other
applications of the estimate (11). For example, when b is a function in
BMO (cf. [3], [4]), i.e.

B skew

1 1
Bl = ::%II: —]-B—]JID(C)——Z)BMG< co  where by =I—§J—decr,

then for each z,, the function Uy, = b~ Dbz, satisties (9) and (10) with the
constant O, = C,|blk where C, is a constant depending only on # for
all » > 1. If we apply (11) and similar argument as the proof of Theorem.
1 above, one can obtain the norm of the following type of Calderén com-
mutant operator. (This result is also mentioned in [31)

THEOREM 2. Suppose b is an analytic function in B 0, then the oper-
ator [b, P]: I*(8B")—L*(0B™ defined by [b,P] = bP(g)—P(bg) for g
& L*(9B™) has operator norm bownded by O |[b]l,. (P is the projection from L*(8B")
to H*oB™).)

Proof. Fixed g e I*(B"), let f = [b, Plg, let F be the Poisson in-
tegral of f, and let §(F) = §,(F) with g = 1. To prove the theorem, it
suffices to establish

(18) IS (). < OBl liglle.

If we apply Green’s formula

(19) b [ ifPdo—n [ BP0 =2 [ 19ppsia0
aB" B" 2 b3 !

then for F amalytic with F(0) = 0 we have
. )
n f |FPdo = f p2n=1 f B (r2) |2 dor (2)
B" o aBn
1

<n [ [1fp0ane) ar <22 [ ifpas.

7 N
0 oBv &
Thus "
Cn i
I = [ 1ffao<m+1) 5o [[ VPR d0<0(s(m)
oBn B
~1)!
by (18) <OIBRIgE, where o, ={"=D!
—

That will prove the theorem.
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To prove (18), we choose for each 2, e B® the function u, =b—bz
where B = B, . Then as indicated before, u, satisfies both (9) and (10)
with 0, , = C,[[bll« for all > 0. We then write f= f, +f,+f, where fy= (b —
—bp)P(g), fa :P(Xis(b“bB)g) and f; = P(XaBn\ﬁ(b—bB)g) and let Fy,
I, T, be their Poisson integral, respectively. Apply inequalities (11) and
(12) to By and F, directly and obtain

(20) [ (8p,8000) (FD)HE) G0 (8) < OB ubnz(i;x:; Ag(p(@)%
B
(21) [ (Spateg (o)) (8)80(2) < Oog | BIIBIE (im Ay (@)
B

To estimate Iy, we will use a slightly different argument. Notice that

Fy&) = [ 8z, 000 —ba)g(Dde(0)

aBN\B
where 8(z, £) is the Szegé kernel for B",
(n=1)! 1
e

Thus instead of estimating the gradient of the Poisson kernejl ag in (14),
we will estimate the gradient of S(z, £). By a divect computation, we have

(6 (z))1/2

V8 (e, 01 < O = e

Thus for z e o4(L,) with &, eB
[B{£) —bgllg (&)

8B"\B "
b(£)— bl "’( lg () )
by (18) < 0(5(3))( f mﬁ%ﬁdd(m) f e 7 e do
OB\ B IBNE

< 0(80) o Pl 1413 2

where 1, I are any number with 1/1-+1 /b = 1. Hence

2y do(f) < [VE (2)[* 6 (2) deo (2)
(22) (S (L)) ()40 (0) P —

< Olbj (B inf |4,g(E)*
~leB

Qo if we choose g8 = k < 2, and define for suitable constant ¢
h(t) = sup {h > 0, 8k (£) < Olibile (4g (D) + 4P (@ D)}
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then using inequalities (20), (21), (22) and applying similar arguments ag
in the proof of Theorem 1, we obtain the desired incquality (18). We have
thus finished the proof of Theorem 2.

As another application of the estimate (11), we obtain the following
result (cf. [1], [2]) which could be compared with a result of Sibony [8],
Theorem 5 of similar type.

TrEoREM 3. Suppose fe L°(OB™ with |f leo < 1, and F is the Poisson
integral, then

IVE ()67 (2) do (2) < 0,
{2 | F(2) =10}

where 0, is a constant, C,— 0 as ¢ — 0.

Proof. Let &, be the region {z, [F(2)| > 1 — ¢}. For each Z & 0, let
Uy, = F—f(2o). Then

J Plo,0lu(0)Fdo@) = [ Pley, If(0) —f(enPdo(d)

=1 I5i=1
< Il = 15 () < 26.

Hence Uy, Satisfies (9) for all r> 1 (if r < 2, apply Schwa.rfz lemma;
if r > 2, using the property gy lloe << 2) With appropriate constant C, where
0,—0 as p—0. Thus if we choose ¢ = 1in equality (11), we have

| (paFido < 0B, |0,  for each 2, el,.

By,

Again a similar argument as in the proof of Theorem 1 could be applied
to the region @, and finish the proof of the theorem.
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